Siamese-Structure Deep Neural Network Recognizing Changes in Facial Expression According to the Degree of Smiling

Kazuaki Kondo, Taichi Nakamura, Yuichi Nakamura, Shin'Ichi Satoh

Responsive image

Auto-TLDR; A Siamese-Structure Deep Neural Network for Happiness Recognition

Slides Poster

A smile is a representative expression of happiness or high quality-of-life; however, automatic recognition of a smile according to happiness remains a challenging task. Because expressions of happiness are strongly dependent upon physical condition and occurrence of other emotions, and similar facial expression often occur under different emotions, we consider that there is no absolute visual pattern of a smile corresponding to happiness. Therefore, in this study, we assumed that a ``smile with happiness'' is observed as the temporal ascent in the degree of smiling and attempted to recognize this by capturing changes in facial expression within temporally sequential images. As an implementation of this scheme, we proposed a Siamese-structure deep neural network to compare facial expressions in two input images and estimate the existence of smile ascension or descension. For primal analysis of the proposed network, we developed a unique smiling dataset containing image pairs with various changes in smiling degree, including slight changes. The results demonstrated that the proposed method achieved nearly perfect recognition with >0.95 accuracy when recognizing changes in the degree of smiling that humans certainly recognize. Attention regions that contributed to the predicted labels were concentrated on the mouth, cheeks, and tail of the eyes, which indicates a reasonable function for recognizing changes in smiling degree was constructed by the proposed method.

Similar papers

Learning Emotional Blinded Face Representations

Alejandro Peña Almansa, Julian Fierrez, Agata Lapedriza, Aythami Morales

Responsive image

Auto-TLDR; Blind Face Representations for Emotion Recognition

Slides Poster Similar

This work proposes two new face representations that are blind to the expressions associated to emotional responses. This work is in part motivated by new international regulations for personal data protection, which force data controllers to protect any kind of sensitive information involved in automatic processes. The advances in affective computing have contributed to improve human-machine interfaces, but at the same time, the capacity to monitorize emotional responses trigger potential risks for humans, both in terms of fairness and privacy. We propose two different methods to learn these facial expression blinded features. We show that it is possible to eliminate information related to emotion recognition tasks, while the performance of subject verification, gender recognition, and ethnicity classification are just slightly affected. We also present an application to train fairer classifiers over a protected facial expression attribute. The results demonstrate that it is possible to reduce emotional information in the face representation while retaining competitive performance in other face-based artificial intelligence tasks.

Depth Videos for the Classification of Micro-Expressions

Ankith Jain Rakesh Kumar, Bir Bhanu, Christopher Casey, Sierra Cheung, Aaron Seitz

Responsive image

Auto-TLDR; RGB-D Dataset for the Classification of Facial Micro-expressions

Slides Poster Similar

Facial micro-expressions are spontaneous, subtle, involuntary muscle movements occurring briefly on the face. The spotting and recognition of these expressions are difficult due to the subtle behavior, and the time duration of these expressions is about half a second, which makes it difficult for humans to identify them. These micro-expressions have many applications in our daily life, such as in the field of online learning, game playing, lie detection, and therapy sessions. Traditionally, researchers use RGB images/videos to spot and classify these micro-expressions, which pose challenging problems, such as illumination, privacy concerns and pose variation. The use of depth videos solves these issues to some extent, as the depth videos are not susceptible to the variation in illumination. This paper describes the collection of a first RGB-D dataset for the classification of facial micro-expressions into 6 universal expressions: Anger, Happy, Sad, Fear, Disgust, and Surprise. This paper shows the comparison between the RGB and Depth videos for the classification of facial micro-expressions. Further, a comparison of results shows that depth videos alone can be used to classify facial micro-expressions correctly in a decision tree structure by using the traditional and deep learning approaches with good classification accuracy. The dataset will be released to the public in the near future.

Automatic Annotation of Corpora for Emotion Recognition through Facial Expressions Analysis

Alex Mircoli, Claudia Diamantini, Domenico Potena, Emanuele Storti

Responsive image

Auto-TLDR; Automatic annotation of video subtitles on the basis of facial expressions using machine learning algorithms

Slides Poster Similar

The recent diffusion of social networks has made available an unprecedented amount of user-generated content, which may be analyzed in order to determine people's opinions and emotions about a large variety of topics. Research has made many efforts in defining accurate algorithms for analyzing emotions expressed by users in texts; however, their performance often rely on the existence of large annotated datasets, whose current scarcity represents a major issue. The manual creation of such datasets represents a costly and time-consuming activity and hence there is an increasing demand for techniques for the automatic annotation of corpora. In this work we present a methodology for the automatic annotation of video subtitles on the basis of the analysis of facial expressions of people in videos, with the goal of creating annotated corpora that may be used to train emotion recognition algorithms. Facial expressions are analyzed through machine learning algorithms, on the basis of a set of manually-engineered facial features that are extracted from video frames. The soundness of the proposed methodology has been evaluated through an extensive experimentation aimed at determining the performance on real datasets of each methodological step.

Facial Expression Recognition Using Residual Masking Network

Luan Pham, Vu Huynh, Tuan Anh Tran

Responsive image

Auto-TLDR; Deep Residual Masking for Automatic Facial Expression Recognition

Slides Poster Similar

Automatic facial expression recognition (FER) has gained much attention due to its applications in human-computer interaction. Among the approaches to improve FER tasks, this paper focuses on deep architecture with the attention mechanism. We propose a novel Masking idea to boost the performance of CNN in facial expression task. It uses a segmentation network to refine feature maps, enabling the network to focus on relevant information to make correct decisions. In experiments, we combine the ubiquitous Deep Residual Network and Unet-like architecture to produce a Residual Masking Network. The proposed method holds state-of-the-art (SOTA) accuracy on the well-known FER2013 and private VEMO datasets. Our works are available on Github.

Responsive Social Smile: A Machine-Learning Based Multimodal Behavior Assessment Framework towards Early Stage Autism Screening

Yueran Pan, Kunjing Cai, Ming Cheng, Xiaobing Zou, Ming Li

Responsive image

Auto-TLDR; Responsive Social Smile: A Machine Learningbased Assessment Framework for Early ASD Screening

Poster Similar

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which causes social deficits in social lives. Early ASD screening for children is an important method to reduce the impact of ASD on people’s whole lives. Traditional screening methods rely on protocol experiments and subjective evaluations from clinicians and domain experts and thereby cost a lot. To standardize the process of ASD screening, we 1 collaborate with a group of ASD experts, and design a ”Responsive Social Smile” protocol and an experiment environment. Also, we propose a machine learningbased assessment framework for early ASD screening. By integrating technologies of speech recognition and computer vision, the framework can quantitatively analyze the behaviors of children under well-designed protocols. By collecting 196 test samples from 41 children in the clinical treatments, our proposed method obtains 85.20% accuracy for the score prediction of individual protocol, and 80.49% unweighted accuracy for the final ASD prediction. This result indicates that our model reaches the average level of domain experts in ASD diagnosis.

Interpretable Emotion Classification Using Temporal Convolutional Models

Manasi Bharat Gund, Abhiram Ravi Bharadwaj, Ifeoma Nwogu

Responsive image

Auto-TLDR; Understanding the Dynamics of Facial Emotion Expression with Spatiotemporal Representations

Slides Poster Similar

As with many problems solved by deep neural networks, existing solutions rarely explain, precisely, the important factors responsible for the predictions made by the model. This work looks to investigate how different spatial regions and landmark points change in position over time, to better explain the underlying factors responsible for various facial emotion expressions. By pinpointing the specific regions or points responsible for the classification of a particular facial expression, we gain better insight into the dynamics of the face when displaying that emotion. To accomplish this, we examine two spatiotemporal representations of moving faces, while expressing different emotions. The representations are then presented to a convolutional neural network for emotion classification. Class activation maps are used in highlighting the regions of interest and the results are qualitatively compared with the well known facial action units, using the facial action coding system. The model was originally trained and tested on the CK+ dataset for emotion classification, and then generalized to the SAMM dataset. In so doing, we successfully present an interpretable technique for understanding the dynamics that occur during convolutional-based prediction tasks on sequences of face data.

Magnifying Spontaneous Facial Micro Expressions for Improved Recognition

Pratikshya Sharma, Sonya Coleman, Pratheepan Yogarajah, Laurence Taggart, Pradeepa Samarasinghe

Responsive image

Auto-TLDR; Eulerian Video Magnification for Micro Expression Recognition

Slides Poster Similar

Building an effective automatic micro expression recognition (MER) system is becoming increasingly desirable in computer vision applications. However, it is also very challenging given the fine-grained nature of the expressions to be recognized. Hence, we investigate if amplifying micro facial muscle movements as a pre-processing phase, by employing Eulerian Video Magnification (EVM), can boost performance of Local Phase Quantization with Three Orthogonal Planes (LPQ-TOP) to achieve improved facial MER across various datasets. In addition, we examine the rate of increase for recognition to determine if it is uniform across datasets using EVM. Ultimately, we classify the extracted features using Support Vector Machines (SVM). We evaluate and compare the performance with various methods on seven different datasets namely CASME, CAS(ME)2, CASME2, SMIC-HS, SMIC-VIS, SMIC-NIR and SAMM. The results obtained demonstrate that EVM can enhance LPQ-TOP to achieve improved recognition accuracy on the majority of the datasets.

Recognizing American Sign Language Nonmanual Signal Grammar Errors in Continuous Videos

Elahe Vahdani, Longlong Jing, Ying-Li Tian, Matt Huenerfauth

Responsive image

Auto-TLDR; ASL-HW-RGBD: Recognizing Grammatical Errors in Continuous Sign Language

Slides Poster Similar

As part of the development of an educational tool that can help students achieve fluency in American Sign Language (ASL) through independent and interactive practice with immediate feedback, this paper introduces a near real-time system to recognize grammatical errors in continuous signing videos without necessarily identifying the entire sequence of signs. Our system automatically recognizes if a performance of ASL sentences contains grammatical errors made by ASL students. We first recognize the ASL grammatical elements including both manual gestures and nonmanual signals independently from multiple modalities (i.e. hand gestures, facial expressions, and head movements) by 3D-ResNet networks. Then the temporal boundaries of grammatical elements from different modalities are examined to detect ASL grammatical mistakes by using a sliding window-based approach. We have collected a dataset of continuous sign language, ASL-HW-RGBD, covering different aspects of ASL grammars for training and testing. Our system is able to recognize grammatical elements on ASL-HW-RGBD from manual gestures, facial expressions, and head movements and successfully detect 8 ASL grammatical mistakes.

Teacher-Student Training and Triplet Loss for Facial Expression Recognition under Occlusion

Mariana-Iuliana Georgescu, Radu Ionescu

Responsive image

Auto-TLDR; Knowledge Distillation for Facial Expression Recognition under Occlusion

Slides Similar

In this paper, we study the task of facial expression recognition under strong occlusion. We are particularly interested in cases where 50% of the face is occluded, e.g. when the subject wears a Virtual Reality (VR) headset. While previous studies show that pre-training convolutional neural networks (CNNs) on fully-visible (non-occluded) faces improves the accuracy, we propose to employ knowledge distillation to achieve further improvements. First of all, we employ the classic teacher-student training strategy, in which the teacher is a CNN trained on fully-visible faces and the student is a CNN trained on occluded faces. Second of all, we propose a new approach for knowledge distillation based on triplet loss. During training, the goal is to reduce the distance between an anchor embedding, produced by a student CNN that takes occluded faces as input, and a positive embedding (from the same class as the anchor), produced by a teacher CNN trained on fully-visible faces, so that it becomes smaller than the distance between the anchor and a negative embedding (from a different class than the anchor), produced by the student CNN. Third of all, we propose to combine the distilled embeddings obtained through the classic teacher-student strategy and our novel teacher-student strategy based on triplet loss into a single embedding vector. We conduct experiments on two benchmarks, FER+ and AffectNet, with two CNN architectures, VGG-f and VGG-face, showing that knowledge distillation can bring significant improvements over the state-of-the-art methods designed for occluded faces in the VR setting. Furthermore, we obtain accuracy rates that are quite close to the state-of-the-art models that take as input fully-visible faces. For example, on the FER+ data set, our VGG-face based on concatenated distilled embeddings attains an accuracy rate of 82.75% on lower-half-visible faces, which is only 2.24% below the accuracy rate of a state-of-the-art VGG-13 that is evaluated on fully-visible faces. Given that our model sees only the lower-half of the face, we consider this to be a remarkable achievement. In conclusion, we consider that our distilled CNN models can provide useful feedback for the task of recognizing the facial expressions of a person wearing a VR headset.

Sequential Non-Rigid Factorisation for Head Pose Estimation

Stefania Cristina, Kenneth Patrick Camilleri

Responsive image

Auto-TLDR; Sequential Shape-and-Motion Factorisation for Head Pose Estimation in Eye-Gaze Tracking

Slides Poster Similar

Within the context of eye-gaze tracking, the capability of permitting the user to move naturally is an important step towards allowing for more natural user interaction in less constrained scenarios. Natural movement can be characterised by changes in head pose, as well as non-rigid face deformations as the user performs different facial expressions. While the estimation of head pose within the domain of eye-gaze tracking is being increasingly considered, the face is most often regarded as a rigid body. The few methods that factor the challenge of handling face deformations into the head pose estimation problem, often require the availability of a pre-defined face model or a considerable amount of training data. In this paper, we direct our attention towards the application of shape-and-motion factorisation for head pose estimation, since this does not generally rely on the availability of an initial face model. Over the years, various shape-and-motion factorisation methods have been proposed to address the challenges of rigid and non-rigid shape and motion recovery, in a batch or sequential manner. However, the real-time recovery of non-rigid shape and motion by factorisation remains, in general, an open problem. Our work addresses this open problem by proposing a sequential factorisation method for non-rigid shape and motion recovery, which does not rely on the availability of a pre-defined face deformation model or training data. Quantitative and qualitative results show that our method can handle various non-rigid face deformations without deterioration of the head pose estimation accuracy.

Identity-Aware Facial Expression Recognition in Compressed Video

Xiaofeng Liu, Linghao Jin, Xu Han, Jun Lu, Jonghye Woo, Jane You

Responsive image

Auto-TLDR; Exploring Facial Expression Representation in Compressed Video with Mutual Information Minimization

Slides Similar

This paper targets to explore the inter-subject variations eliminated facial expression representation in the compressed video domain. Most of the previous methods process the RGB images of a sequence, while the off-the-shelf and valuable expression-related muscle movement already embedded in the compression format. In the up to two orders of magnitude compressed domain, we can explicitly infer the expression from the residual frames and possible to extract identity factors from the I frame with a pre-trained face recognition network. By enforcing the marginal independent of them, the expression feature is expected to be purer for the expression and be robust to identity shifts. Specifically, we propose a novel collaborative min-min game for mutual information (MI) minimization in latent space. We do not need the identity label or multiple expression samples from the same person for identity elimination. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can be further added to regularize the feature-level game. In testing, only the compressed residual frames are required to achieve expression prediction. Our solution can achieve comparable or better performance than the recent decoded image based methods on the typical FER benchmarks with about 3$\times$ faster inference with compressed data.

Attentive Hybrid Feature Based a Two-Step Fusion for Facial Expression Recognition

Jun Weng, Yang Yang, Zichang Tan, Zhen Lei

Responsive image

Auto-TLDR; Attentive Hybrid Architecture for Facial Expression Recognition

Slides Poster Similar

Facial expression recognition is inherently a challenging task, especially for the in-the-wild images with various occlusions and large pose variations, which may lead to the loss of some crucial information. To address it, in this paper, we propose an attentive hybrid architecture (AHA) which learns global, local and integrated features based on different face regions. Compared with one type of feature, our extracted features own complementary information and can reduce the loss of crucial information. Specifically, AHA contains three branches, where all sub-networks in those branches employ the attention mechanism to further localize the interested pixels/regions. Moreover, we propose a two-step fusion strategy based on LSTM to deeply explore the hidden correlations among different face regions. Extensive experiments on four popular expression databases (i.e., CK+, FER-2013, SFEW 2.0, RAF-DB) show the effectiveness of the proposed method.

Quality-Based Representation for Unconstrained Face Recognition

Nelson Méndez-Llanes, Katy Castillo-Rosado, Heydi Mendez-Vazquez, Massimo Tistarelli

Responsive image

Auto-TLDR; activation map for face recognition in unconstrained environments

Slides Similar

Significant advances have been achieved in face recognition in the last decade thanks to the development of deep learning methods. However, recognizing faces captured in uncontrolled environments is still a challenging problem for the scientific community. In these scenarios, the performance of most of existing deep learning based methods abruptly falls, due to the bad quality of the face images. In this work, we propose to use an activation map to represent the quality information in a face image. Different face regions are analyzed to determine their quality and then only those regions with good quality are used to perform the recognition using a given deep face model. For experimental evaluation, in order to simulate unconstrained environments, three challenging databases, with different variations in appearance, were selected: the Labeled Faces in the Wild Database, the Celebrities in Frontal-Profile in the Wild Database, and the AR Database. Three deep face models were used to evaluate the proposal on these databases and in all cases, the use of the proposed activation map allows the improvement of the recognition rates obtained by the original models in a range from 0.3 up to 31%. The obtained results experimentally demonstrated that the proposal is able to select those face areas with higher discriminative power and enough identifying information, while ignores the ones with spurious information.

MRP-Net: A Light Multiple Region Perception Neural Network for Multi-Label AU Detection

Yang Tang, Shuang Chen, Honggang Zhang, Gang Wang, Rui Yang

Responsive image

Auto-TLDR; MRP-Net: A Fast and Light Neural Network for Facial Action Unit Detection

Slides Poster Similar

Facial Action Units (AUs) are of great significance in communication. Automatic AU detection can improve the understanding of psychological condition and emotional status. Recently, a number of deep learning methods have been proposed to take charge with problems in automatic AU detection. Several challenges, like unbalanced labels and ignorance of local information, remain to be addressed. In this paper, we propose a fast and light neural network called MRP-Net, which is an end-to-end trainable method for facial AU detection to solve these problems. First, we design a Multiple Region Perception (MRP) module aimed at capturing different locations and sizes of features in the deeper level of the network without facial landmark points. Then, in order to balance the positive and negative samples in the large dataset, a batch balanced method adjusting the weight of every sample in one batch in our loss function is suggested. Experimental results on two popular AU datasets, BP4D and DISFA prove that MRP-Net outperforms state-of-the-art methods. Compared with the best method, not only does MRP-Net have an average F1 score improvement of 2.95% on BP4D and 5.43% on DISFA, and it also decreases the number of network parameters by 54.62% and the number of network FLOPs by 19.6%.

Video-Based Facial Expression Recognition Using Graph Convolutional Networks

Daizong Liu, Hongting Zhang, Pan Zhou

Responsive image

Auto-TLDR; Graph Convolutional Network for Video-based Facial Expression Recognition

Slides Poster Similar

Facial expression recognition (FER), aiming to classify the expression present in the facial image or video, has attracted a lot of research interests in the field of artificial intelligence and multimedia. In terms of video based FER task, it is sensible to capture the dynamic expression variation among the frames to recognize facial expression. However, existing methods directly utilize CNN-RNN or 3D CNN to extract the spatial-temporal features from different facial units, instead of concentrating on a certain region during expression variation capturing, which leads to limited performance in FER. In our paper, we introduce a Graph Convolutional Network (GCN) layer into a common CNN-RNN based model for video-based FER. First, the GCN layer is utilized to learn more contributing facial expression features which concentrate on certain regions after sharing information between nodes those represent CNN extracted features. Then, a LSTM layer is applied to learn long-term dependencies among the GCN learned features to model the variation. In addition, a weight assignment mechanism is also designed to weight the output of different nodes for final classification by characterizing the expression intensities in each frame. To the best of our knowledge, it is the first time to use GCN in FER task. We evaluate our method on three widely-used datasets, CK+, Oulu-CASIA and MMI, and also one challenging wild dataset AFEW8.0, and the experimental results demonstrate that our method has superior performance to existing methods.

Deep Multi-Task Learning for Facial Expression Recognition and Synthesis Based on Selective Feature Sharing

Rui Zhao, Tianshan Liu, Jun Xiao, P. K. Daniel Lun, Kin-Man Lam

Responsive image

Auto-TLDR; Multi-task Learning for Facial Expression Recognition and Synthesis

Slides Poster Similar

Multi-task learning is an effective learning strategy for deep-learning-based facial expression recognition tasks. However, most existing methods take into limited consideration the feature selection, when transferring information between different tasks, which may lead to task interference when training the multi-task networks. To address this problem, we propose a novel selective feature-sharing method, and establish a multi-task network for facial expression recognition and facial expression synthesis. The proposed method can effectively transfer beneficial features between different tasks, while filtering out useless and harmful information. Moreover, we employ the facial expression synthesis task to enlarge and balance the training dataset to further enhance the generalization ability of the proposed method. Experimental results show that the proposed method achieves state-of-the-art performance on those commonly used facial expression recognition benchmarks, which makes it a potential solution to real-world facial expression recognition problems.

Inner Eye Canthus Localization for Human Body Temperature Screening

Claudio Ferrari, Lorenzo Berlincioni, Marco Bertini, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Localization of the Inner Eye Canthus in Thermal Face Images using 3D Morphable Face Model

Slides Poster Similar

In this paper, we propose an automatic approach for localizing the inner eye canthus in thermal face images. We first coarsely detect 5 facial keypoints corresponding to the center of the eyes, the nosetip and the ears. Then we compute a sparse 2D-3D points correspondence using a 3D Morphable Face Model (3DMM). This correspondence is used to project the entire 3D face onto the image, and subsequently locate the inner eye canthus. Detecting this location allows to obtain the most precise body temperature measurement for a person using a thermal camera. We evaluated the approach on a thermal face dataset provided with manually annotated landmarks. However, such manual annotations are normally conceived to identify facial parts such as eyes, nose and mouth, and are not specifically tailored for localizing the eye canthus region. As additional contribution, we enrich the original dataset by using the annotated landmarks to deform and project the 3DMM onto the images. Then, by manually selecting a small region corresponding to the eye canthus, we enrich the dataset with additional annotations. By using the manual landmarks, we ensure the correctness of the 3DMM projection, which can be used as ground-truth for future evaluations. Moreover, we supply the dataset with the 3D head poses and per-point visibility masks for detecting self-occlusions. The data will be publicly released.

Self-Supervised Learning of Dynamic Representations for Static Images

Siyang Song, Enrique Sanchez, Linlin Shen, Michel Valstar

Responsive image

Auto-TLDR; Facial Action Unit Intensity Estimation and Affect Estimation from Still Images with Multiple Temporal Scale

Slides Poster Similar

Facial actions are spatio-temporal signals by nature, and therefore their modeling is crucially dependent on the availability of temporal information. In this paper, we focus on inferring such temporal dynamics of facial actions when no explicit temporal information is available, i.e. from still images. We present a novel approach to capture multiple scales of such temporal dynamics, with an application to facial Action Unit (AU) intensity estimation and dimensional affect estimation. In particular, 1) we propose a framework that infers a dynamic representation (DR) from a still image, which captures the bi-directional flow of time within a short time-window centered at the input image; 2) we show that we can train our method without the need of explicitly generating target representations, allowing the network to represent dynamics more broadly; and 3) we propose to apply a multiple temporal scale approach that infers DRs for different window lengths (MDR) from a still image. We empirically validate the value of our approach on the task of frame ranking, and show how our proposed MDR attains state of the art results on BP4D for AU intensity estimation and on SEMAINE for dimensional affect estimation, using only still images at test time.

Unconstrained Facial Expression Recogniton Based on Cascade Decision and Gabor Filters

Yanhong Wu, Lijie Zhang, Guannan Chen, Pablo Navarrete Michelini

Responsive image

Auto-TLDR; Convolutional Neural Network for Facial Expression Recognition under unconstrained natural conditions

Slides Similar

Facial Expression Recognition (FER) research with Convolutional Neural Networks (CNN) has been active, especially under unconstrained natural conditions. From our observation, prior arts treat expressions equally in classification and the reconition accuracy of some expression are always higher than others. In this paper, we make the assumption that an expression with a higher accuracy is easier to be recognized, and those expressions easier to recognize will hinder the recognition of uneasy expressions. Then, we propose a novel algorithm for unconstrained FER based on cascade decision and Gabor filters. Easier expressions are recognized before the difficult expressions. This simple method trains up to five models to cascadedly recognize a given facial image expression. The first binary classifier model is for the classification of Happy with the highest accuracy. The second binary classifier model is for the classification of Surprise with the second high accuracy. The third binary classifier model is for the classification of Neutral with the third high accuracy. The forth model is for the classification of Sad with the forth high accuracy. And the final model is 3-class classifier for Angry, Disgust and Fear. Gabor filters are included in every model to enhance robustness on illumination variations and face poses. Extensive experiment results on several datasets validate the effectiveness of the proposed method. We obtain accuracy of 77.6% on FER2013 with the final models, outperforming the latest state-of-the-arts.

Deep Gait Relative Attribute Using a Signed Quadratic Contrastive Loss

Yuta Hayashi, Shehata Allam, Yasushi Makihara, Daigo Muramatsu, Yasushi Yagi

Responsive image

Auto-TLDR; Signal-Contrastive Loss for Gait Attributes Estimation

Similar

This paper presents a deep learning-based method to estimate gait attributes (e.g., stately, cool, relax, etc.). Similarly to the existing studies on relative attribute, human perception-based annotations on the gait attributes are given to pairs of gait videos (i.e., the first one is better, tie, and the second one is better), and the relative annotations are utilized to train a ranking model of the gait attribute. More specifically, we design a Siamese (i.e., two-stream) network which takes a pair of gait inputs and output gait attribute score for each. We then introduce a suitable loss function called a signed contrastive loss to train the network parameters with the relative annotation. Unlike the existing loss functions for learning to rank does not inherent a nice property of a quadratic contrastive loss, the proposed signed quadratic contrastive loss function inherents the nice property. The quantitative evaluation results reveal that the proposed method shows better or comparable accuracies of relative attribute prediction against the baseline methods.

Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Nina Weng, Jiahao Wang, Annan Li, Yunhong Wang

Responsive image

Auto-TLDR; 2S-TCN: A Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Slides Poster Similar

In the field of facial attractiveness prediction, while deep models using static pictures have shown promising results, little attention is paid to dynamic facial information, which is proven to be influential by psychological studies. Meanwhile, the increasing popularity of short video apps creates an enormous demand of facial attractiveness prediction from short video clips. In this paper, we target on the dynamic facial attractiveness prediction problem. To begin with, a large-scale video-based facial attractiveness prediction dataset (VFAP) with more than one thousand clips from TikTok is collected. A two-stream temporal convolutional network (2S-TCN) is then proposed to capture dynamic attractiveness feature from both facial appearance and landmarks. We employ attentive feature enhancement along with specially designed modality and temporal fusion strategies to better explore the temporal dynamics. Extensive experiments on the proposed VFAP dataset demonstrate that 2S-TCN has a distinct advantage over the state-of-the-art static prediction methods.

Quantified Facial Temporal-Expressiveness Dynamics for Affect Analysis

Md Taufeeq Uddin, Shaun Canavan

Responsive image

Auto-TLDR; quantified facial Temporal-expressiveness Dynamics for quantified affect analysis

Poster Similar

The quantification of visual affect data (e.g. face images) is essential to build and monitor automated affect modeling systems efficiently. Considering this, this work proposes quantified facial Temporal-expressiveness Dynamics (TED) to quantify the expressiveness of human faces. The proposed algorithm leverages multimodal facial features by incorporating static and dynamic information to enable accurate measurements of facial expressiveness. We show that TED can be used for high-level tasks such as summarization of unstructured visual data, expectation from and interpretation of automated affect recognition models. To evaluate the positive impact of using TED, a case study was conducted on spontaneous pain using the UNBC-McMaster spontaneous shoulder pain dataset. Experimental results show the efficacy of using TED for quantified affect analysis.

Pixel-based Facial Expression Synthesis

Arbish Akram, Nazar Khan

Responsive image

Auto-TLDR; pixel-based facial expression synthesis using GANs

Slides Poster Similar

Recently, Facial expression synthesis has shown remarkable advances with the advent of Generative Adversarial Networks (GANs). However, these GAN-based approaches mostly generate photo-realistic results as long as the target data distribution is close to the training data distribution. The quality of GANs results significantly degrades when testing images are from a slightly different distribution. In this work, we propose a pixel-based facial expression synthesis method. Recent work has shown that facial expression synthesis changes only local regions of faces. In the proposed method, each output pixel observes only one input pixel. The proposed method achieves generalization capability by leveraging only few hundred images. Experimental results demonstrate that the proposed method performs comparably with the recent GANs on in-dataset images and significantly outperforms on in the wild images. In addition, the proposed method is faster and it also achieves significantly better performance with two orders of magnitudes lesser computational and storage cost as compared to state-of-the-art GAN-based methods.

3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties

Soha Sadat Mahdi, Nele Nauwelaers, Philip Joris, Giorgos Bouritsas, Imperial London, Sergiy Bokhnyak, Susan Walsh, Mark Shriver, Michael Bronstein, Peter Claes

Responsive image

Auto-TLDR; Multi-biometric Fusion for Biometric Verification using 3D Facial Mesures

Slides Similar

Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naïve Bayes-based score-fuser.

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

Facial Expression Recognition by Using a Disentangled Identity-Invariant Expression Representation

Kamran Ali, Charles Hughes

Responsive image

Auto-TLDR; Transfer-based Expression Recognition Generative Adversarial Network (TER-GAN)

Slides Poster Similar

Facial Expression Recognition (FER) is a challenging task because many factors of variation such as pose, illumination, and identity-specific attributes are entangled with the expression information in an expressive face image. Recent works show that the performance of a FER algorithm can be improved by disentangling the expression information from identity features. In this paper, we present Transfer-based Expression Recognition Generative Adversarial Network (TER-GAN) that combines the effectiveness of a novel feature disentanglement technique with the concept of identity-invariant expression representation learning for facial expression recognition. More specifically, TER-GAN learns a disentangled expression representation by extracting expression features from one image and transferring the expression information to the identity of another image. To improve the feature disentanglement process, and to learn an identity-invariant expression representation, we introduce a novel expression consistency loss and an identity consistency loss that exploit expression and identity information from both real and synthetic images. We evaluated the performance of our proposed facial expression recognition technique by employing five public facial expression databases, CK+, Oulu-CASIA, MMI, BU-3DFE, and BU-4DFE, the latter being used for pre-training. The experimental results show the effectiveness of the proposed technique.

Learning Semantic Representations Via Joint 3D Face Reconstruction and Facial Attribute Estimation

Zichun Weng, Youjun Xiang, Xianfeng Li, Juntao Liang, Wanliang Huo, Yuli Fu

Responsive image

Auto-TLDR; Joint Framework for 3D Face Reconstruction with Facial Attribute Estimation

Slides Poster Similar

We propose a novel joint framework for 3D face reconstruction (3DFR) that integrates facial attribute estimation (FAE) as an auxiliary task. One of the essential problems of 3DFR is to extract semantic facial features (e.g., Big Nose, High Cheekbones, and Asian) from in-the-wild 2D images, which is inherently involved with FAE. These two tasks, though heterogeneous, are highly relevant to each other. To achieve this, we leverage a Convolutional Neural Network to extract shared facial representations for both shape decoder and attribute classifier. We further develop an in-batch hybrid-task training scheme that enables our model to learn from heterogeneous facial datasets jointly within a mini-batch. Thanks to the joint loss that provides supervision from both 3DFR and FAE domains, our model learns the correlations between 3D shapes and facial attributes, which benefit both feature extraction and shape inference. Quantitative evaluation and qualitative visualization results confirm the effectiveness and robustness of our joint framework.

Pose-Based Body Language Recognition for Emotion and Psychiatric Symptom Interpretation

Zhengyuan Yang, Amanda Kay, Yuncheng Li, Wendi Cross, Jiebo Luo

Responsive image

Auto-TLDR; Body Language Based Emotion Recognition for Psychiatric Symptoms Prediction

Slides Poster Similar

Inspired by the human ability to infer emotions from body language, we propose an automated framework for body language based emotion recognition starting from regular RGB videos. In collaboration with psychologists, we further extend the framework for psychiatric symptom prediction. Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set and possess a good transferability. The proposed system in the first stage generates sequences of body language predictions based on human poses estimated from input videos. In the second stage, the predicted sequences are fed into a temporal network for emotion interpretation and psychiatric symptom prediction. We first validate the accuracy and transferability of the proposed body language recognition method on several public action recognition datasets. We then evaluate the framework on a proposed URMC dataset, which consists of conversations between a standardized patient and a behavioral health professional, along with expert annotations of body language, emotions, and potential psychiatric symptoms. The proposed framework outperforms other methods on the URMC dataset.

SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit Detection

Zhihua Li, Zheng Zhang, Lijun Yin

Responsive image

Auto-TLDR; Temporal Fusion and Self-Attention Network for Facial Action Unit Detection

Slides Poster Similar

Research on facial action unit detection has shown remarkable performances by using deep spatial learning models in recent years, however, it is far from reaching its full capacity in learning due to the lack of use of temporal information of AUs across time. Since the AU occurrence in one frame is highly likely related to previous frames in a temporal sequence, exploring temporal correlation of AUs across frames becomes a key motivation of this work. In this paper, we propose a novel temporal fusion and AU-supervised self-attention network (a so-called SAT-Net) to address the AU detection problem. First of all, we input the deep features of a sequence into a convolutional LSTM network and fuse the previous temporal information into the feature map of the last frame, and continue to learn the AU occurrence. Second, considering the AU detection problem is a multi-label classification problem that individual label depends only on certain facial areas, we propose a new self-learned attention mask by focusing the detection of each AU on parts of facial areas through the learning of individual attention mask for each AU, thus increasing the AU independence without the loss of any spatial relations. Our extensive experiments show that the proposed framework achieves better results of AU detection over the state-of-the-arts on two benchmark databases (BP4D and DISFA).

Attribute-Based Quality Assessment for Demographic Estimation in Face Videos

Fabiola Becerra-Riera, Annette Morales-González, Heydi Mendez-Vazquez, Jean-Luc Dugelay

Responsive image

Auto-TLDR; Facial Demographic Estimation in Video Scenarios Using Quality Assessment

Slides Similar

Most existing works regarding facial demographic estimation are focused on still image datasets, although nowadays the need to analyze video content in real applications is increasing. We propose to tackle gender, age and ethnicity estimation in the context of video scenarios. Our main contribution is to use an attribute-specific quality assessment procedure to select best quality frames from a video sequence for each of the three demographic modalities. Best quality frames are classified with fine-tuned MobileNet models and a final video prediction is obtained with a majority voting strategy among the best selected frames. Our validation on three different datasets and our comparison with state-of-the-art models, show the effectiveness of the proposed demographic classifiers and the quality pipeline, which allows to reduce both: the number of frames to be classified and the processing time in practical applications; and improves the soft biometrics prediction accuracy.

A Quantitative Evaluation Framework of Video De-Identification Methods

Sathya Bursic, Alessandro D'Amelio, Marco Granato, Giuliano Grossi, Raffaella Lanzarotti

Responsive image

Auto-TLDR; Face de-identification using photo-reality and facial expressions

Slides Poster Similar

We live in an era of privacy concerns, motivating a large research effort in face de-identification. As in other fields, we are observing a general movement from hand-crafted methods to deep learning methods, mainly involving generative models. Although these methods produce more natural de-identified images or videos, we claim that the mere evaluation of the de-identification is not sufficient, especially when it comes to processing the images/videos further. In this note, we take into account the issue of preserving privacy, facial expressions, and photo-reality simultaneously, proposing a general testing framework. The method is applied to four open-source tools, producing a baseline for future de-identification methods.

Learning Disentangled Representations for Identity Preserving Surveillance Face Camouflage

Jingzhi Li, Lutong Han, Hua Zhang, Xiaoguang Han, Jingguo Ge, Xiaochu Cao

Responsive image

Auto-TLDR; Individual Face Privacy under Surveillance Scenario with Multi-task Loss Function

Poster Similar

In this paper, we focus on protecting the person face privacy under the surveillance scenarios, whose goal is to change the visual appearances of faces while keep them to be recognizable by current face recognition systems. This is a challenging problem as that we should retain the most important structures of captured facial images, while alter the salient facial regions to protect personal privacy. To address this problem, we introduce a novel individual face protection model, which can camouflage the face appearance from the perspective of human visual perception and preserve the identity features of faces used for face authentication. To that end, we develop an encoder-decoder network architecture that can separately disentangle the person feature representation into an appearance code and an identity code. Specifically, we first randomly divide the face image into two groups, the source set and the target set, where the source set is used to extract the identity code and the target set provides the appearance code. Then, we recombine the identity and appearance codes to synthesize a new face, which has the same identity with the source subject. Finally, the synthesized faces are used to replace the original face to protect the privacy of individual. Furthermore, our model is trained end-to-end with a multi-task loss function, which can better preserve the identity and stabilize the training loss. Experiments conducted on Cross-Age Celebrity dataset demonstrate the effectiveness of our model and validate our superiority in terms of visual quality and scalability.

Real-Time Driver Drowsiness Detection Using Facial Action Units

Malaika Vijay, Nandagopal Netrakanti Vinayak, Maanvi Nunna, Subramanyam Natarajan

Responsive image

Auto-TLDR; Real-Time Detection of Driver Drowsiness using Facial Action Units using Extreme Gradient Boosting

Slides Poster Similar

This paper presents a two-stage, vision-based pipeline for the real-time detection of driver drowsiness using Facial Action Units (FAUs). FAUs capture movements in groups of muscles in the face like widening of the eyes or dropping of the jaw. The first stage of the pipeline employs a Convolutional Neural Network (CNN) trained to detect FAUs. The output of the penultimate layer of this network serves as an image embedding that captures features relevant to FAU detection. These embeddings are then used to predict drowsiness using an Extreme Gradient Boosting (XGBoost) classifier. A separate XGBoost model is trained for each user of the system so that behavior specific to each user can be modeled into the drowsiness classifier. We show that user-specific classifiers require very little data and low training time to yield high prediction accuracies in real-time.

Age Gap Reducer-GAN for Recognizing Age-Separated Faces

Daksha Yadav, Naman Kohli, Mayank Vatsa, Richa Singh, Afzel Noore

Responsive image

Auto-TLDR; Generative Adversarial Network for Age-separated Face Recognition

Slides Poster Similar

In this paper, we propose a novel algorithm for matching faces with temporal variations caused due to age progression. The proposed generative adversarial network algorithm is a unified framework which combines facial age estimation and age-separated face verification. The key idea of this approach is to learn the age variations across time by conditioning the input image on the subject's gender and the target age group to which the face needs to be progressed. The loss function accounts for reducing the age gap between the original image and generated face image as well as preserving the identity. Both visual fidelity and quantitative evaluations demonstrate the efficacy of the proposed architecture on different facial age databases for age-separated face recognition.

Audio-Video Detection of the Active Speaker in Meetings

Francisco Madrigal, Frederic Lerasle, Lionel Pibre, Isabelle Ferrané

Responsive image

Auto-TLDR; Active Speaker Detection with Visual and Contextual Information from Meeting Context

Slides Poster Similar

Meetings are a common activity that provides certain challenges when creating systems that assist them. Such is the case of the Active speaker detection, which can provide useful information for human interaction modeling, or human-robot interaction. Active speaker detection is mostly done using speech, however, certain visual and contextual information can provide additional insights. In this paper we propose an active speaker detection framework that integrates audiovisual features with social information, from the meeting context. Visual cue is processed using a Convolutional Neural Network (CNN) that captures the spatio-temporal relationships. We analyze several CNN architectures with both cues: raw pixels (RGB images) and motion (estimated with optical flow). Contextual reasoning is done with an original methodology, based on the gaze of all participants. We evaluate our proposal with a public \textcolor{black}{benchmark} in state-of-art: AMI corpus. We show how the addition of visual and context information improves the performance of the active speaker detection.

Supervised Domain Adaptation Using Graph Embedding

Lukas Hedegaard, Omar Ali Sheikh-Omar, Alexandros Iosifidis

Responsive image

Auto-TLDR; Domain Adaptation from the Perspective of Multi-view Graph Embedding and Dimensionality Reduction

Slides Poster Similar

Getting deep convolutional neural networks to perform well requires a large amount of training data. When the available labelled data is small, it is often beneficial to use transfer learning to leverage a related larger dataset (source) in order to improve the performance on the small dataset (target). Among the transfer learning approaches, domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them. In this paper, we consider the domain adaptation problem from the perspective of multi-view graph embedding and dimensionality reduction. Instead of solving the generalised eigenvalue problem to perform the embedding, we formulate the graph-preserving criterion as loss in the neural network and learn a domain-invariant feature transformation in an end-to-end fashion. We show that the proposed approach leads to a powerful Domain Adaptation framework which generalises the prior methods CCSA and d-SNE, and enables simple and effective loss designs; an LDA-inspired instantiation of the framework leads to performance on par with the state-of-the-art on the most widely used Domain Adaptation benchmarks, Office31 and MNIST to USPS datasets.

Siamese Graph Convolution Network for Face Sketch Recognition

Liang Fan, Xianfang Sun, Paul Rosin

Responsive image

Auto-TLDR; A novel Siamese graph convolution network for face sketch recognition

Slides Poster Similar

In this paper, we present a novel Siamese graph convolution network (GCN) for face sketch recognition. To build a graph from an image, we utilize a deep learning method to detect the image edges, and then use a superpixel method to segment the edge image. Each segmented superpixel region is taken as a node, and each pair of adjacent regions forms an edge of the graph. Graphs from both a face sketch and a face photo are input into the Siamese GCN for recognition. A deep graph matching method is used to share messages between cross-modal graphs in this model. Experiments show that the GCN can obtain high performance on several face photo-sketch datasets, including seen and unseen face photo-sketch datasets. It is also shown that the model performance based on the graph structure representation of the data using the Siamese GCN is more stable than a Siamese CNN model.

InsideBias: Measuring Bias in Deep Networks and Application to Face Gender Biometrics

Ignacio Serna, Alejandro Peña Almansa, Aythami Morales, Julian Fierrez

Responsive image

Auto-TLDR; InsideBias: Detecting Bias in Deep Neural Networks from Face Images

Slides Poster Similar

This work explores the biases in learning processes based on deep neural network architectures. We analyze how bias affects deep learning processes through a toy example using the MNIST database and a case study in gender detection from face images. We employ two gender detection models based on popular deep neural networks. We present a comprehensive analysis of bias effects when using an unbalanced training dataset on the features learned by the models. We show how bias impacts in the activations of gender detection models based on face images. We finally propose InsideBias, a novel method to detect biased models. InsideBias is based on how the models represent the information instead of how they perform, which is the normal practice in other existing methods for bias detection. Our strategy with InsideBias allows to detect biased models with very few samples (only 15 images in our case study). Our experiments include 72K face images from 24K identities and 3 ethnic groups.

Pose-Robust Face Recognition by Deep Meta Capsule Network-Based Equivariant Embedding

Fangyu Wu, Jeremy Simon Smith, Wenjin Lu, Bailing Zhang

Responsive image

Auto-TLDR; Deep Meta Capsule Network-based Equivariant Embedding Model for Pose-Robust Face Recognition

Similar

Despite the exceptional success in face recognition related technologies, handling large pose variations still remains a key challenge. Current techniques for pose-robust face recognition either, directly extract pose-invariant features, or first synthesize a face that matches the target pose before feature extraction. It is more desirable to learn face representations equivariant to pose variations. To this end, this paper proposes a deep meta Capsule network-based Equivariant Embedding Model (DM-CEEM) with three distinct novelties. First, the proposed RB-CapsNet allows DM-CEEM to learn an equivariant embedding for pose variations and achieve the desired transformation for input face images. Second, we introduce a new version of a Capsule network called RB-CapsNet to extend CapsNet to perform a profile-to-frontal face transformation in deep feature space. Third, we train the DM-CEEM in a meta way by treating a single overall classification target as multiple sub-tasks that satisfy certain unknown probabilities. In each sub-task, we sample the support and query sets randomly. The experimental results on both controlled and in-the-wild databases demonstrate the superiority of DM-CEEM over state-of-the-art.

How Unique Is a Face: An Investigative Study

Michal Balazia, S L Happy, Francois Bremond, Antitza Dantcheva

Responsive image

Auto-TLDR; Uniqueness of Face Recognition: Exploring the Impact of Factors such as image resolution, feature representation, database size, age and gender

Slides Poster Similar

Face recognition has been widely accepted as a means of identification in applications ranging from border control to security in the banking sector. Surprisingly, while widely accepted, we still lack the understanding of the uniqueness or distinctiveness of face as a biometric characteristic. In this work, we study the impact of factors such as image resolution, feature representation, database size, age and gender on uniqueness denoted by the Kullback-Leibler divergence between genuine and impostor distributions. Towards understanding the impact, we present experimental results on the datasets AT&T, LFW, IMDb-Face, as well as ND-TWINS, with the feature extraction algorithms VGGFace, VGG16, ResNet50, InceptionV3, MobileNet and DenseNet121, that reveal the quantitative impact of the named factors. While these are early results, our findings indicate the need for a better understanding of the concept of biometric uniqueness and its implication on face recognition.

User-Independent Gaze Estimation by Extracting Pupil Parameter and Its Mapping to the Gaze Angle

Sang Yoon Han, Nam Ik Cho

Responsive image

Auto-TLDR; Gaze Point Estimation using Pupil Shape for Generalization

Slides Poster Similar

Since gaze estimation plays a crucial role in recognizing human intentions, it has been researched for a long time, and its accuracy is ever increasing. However, due to the wide variation in eye shapes and focusing abilities between the individuals, accuracies of most algorithms vary depending on each person in the test group, especially when the initial calibration is not well performed. To alleviate the user-dependency, we attempt to derive features that are general for most people and use them as the input to a deep network instead of using the images as the input. Specifically, we use the pupil shape as the core feature because it is directly related to the 3D eyeball rotation, and thus the gaze direction. While existing deep learning methods learn the gaze point by extracting various features from the image, we focus on the mapping function from the eyeball rotation to the gaze point by using the pupil shape as the input. It is shown that the accuracy of gaze point estimation also becomes robust for the uncalibrated points by following the characteristics of the mapping function. Also, our gaze network learns the gaze difference to facilitate the re-calibration process to fix the calibration-drift problem that typically occurs with glass-type or head-mount devices.

Electroencephalography Signal Processing Based on Textural Features for Monitoring the Driver’s State by a Brain-Computer Interface

Giulia Orrù, Marco Micheletto, Fabio Terranova, Gian Luca Marcialis

Responsive image

Auto-TLDR; One-dimensional Local Binary Pattern Algorithm for Estimating Driver Vigilance in a Brain-Computer Interface System

Slides Poster Similar

In this study we investigate a textural processing method of electroencephalography (EEG) signal as an indicator to estimate the driver's vigilance in a hypothetical Brain-Computer Interface (BCI) system. The novelty of the solution proposed relies on employing the one-dimensional Local Binary Pattern (1D-LBP) algorithm for feature extraction from pre-processed EEG data. From the resulting feature vector, the classification is done according to three vigilance classes: awake, tired and drowsy. The claim is that the class transitions can be detected by describing the variations of the micro-patterns' occurrences along the EEG signal. The 1D-LBP is able to describe them by detecting mutual variations of the signal temporarily "close" as a short bit-code. Our analysis allows to conclude that the 1D-LBP adoption has led to significant performance improvement. Moreover, capturing the class transitions from the EEG signal is effective, although the overall performance is not yet good enough to develop a BCI for assessing the driver's vigilance in real environments.

Cam-Softmax for Discriminative Deep Feature Learning

Tamas Suveges, Stephen James Mckenna

Responsive image

Auto-TLDR; Cam-Softmax: A Generalisation of Activations and Softmax for Deep Feature Spaces

Slides Poster Similar

Deep convolutional neural networks are widely used to learn feature spaces for image classification tasks. We propose cam-softmax, a generalisation of the final layer activations and softmax function, that encourages deep feature spaces to exhibit high intra-class compactness and high inter-class separability. We provide an algorithm to automatically adapt the method's main hyperparameter so that it gradually diverges from the standard activations and softmax method during training. We report experiments using CASIA-Webface, LFW, and YTF face datasets demonstrating that cam-softmax leads to representations well suited to open-set face recognition and face pair matching. Furthermore, we provide empirical evidence that cam-softmax provides some robustness to class labelling errors in training data, making it of potential use for deep learning from large datasets with poorly verified labels.

One-Shot Representational Learning for Joint Biometric and Device Authentication

Sudipta Banerjee, Arun Ross

Responsive image

Auto-TLDR; Joint Biometric and Device Recognition from a Single Biometric Image

Slides Poster Similar

In this work, we propose a method to simultaneously perform (i) biometric recognition (\textit{i.e.}, identify the individual), and (ii) device recognition, (\textit{i.e.}, identify the device) from a single biometric image, say, a face image, using a one-shot schema. Such a joint recognition scheme can be useful in devices such as smartphones for enhancing security as well as privacy. We propose to automatically learn a joint representation that encapsulates both biometric-specific and sensor-specific features. We evaluate the proposed approach using iris, face and periocular images acquired using near-infrared iris sensors and smartphone cameras. Experiments conducted using 14,451 images from 13 sensors resulted in a rank-1 identification accuracy of upto 99.81\% and a verification accuracy of upto 100\% at a false match rate of 1\%.

Detecting Anomalies from Video-Sequences: A Novel Descriptor

Giulia Orrù, Davide Ghiani, Maura Pintor, Gian Luca Marcialis, Fabio Roli

Responsive image

Auto-TLDR; Trit-based Measurement of Group Dynamics for Crowd Behavior Analysis and Anomaly Detection

Slides Poster Similar

We present a novel descriptor for crowd behavior analysis and anomaly detection. The goal is to measure by appropriate patterns the speed of formation and disintegration of groups in the crowd. This descriptor is inspired by the concept of one-dimensional local binary patterns: in our case, such patterns depend on the number of group observed in a time window. An appropriate measurement unit, named "trit" (trinary digit), represents three possible dynamic states of groups on a certain frame. Our hypothesis is that abrupt variations of the groups' number may be due to an anomalous event that can be accordingly detected, by translating these variations on temporal trit-based sequence of strings which are significantly different from the one describing the "no-anomaly" one. Due to the peculiarity of the rationale behind this work, relying on the number of groups, three different methods of people group's extraction are compared. Experiments are carried out on the Motion-Emotion benchmark data set. Reported results point out in which cases the trit-based measurement of group dynamics allows us to detect the anomaly. Besides the promising performance of our approach, we show how it is correlated with the anomaly typology and the camera's perspective to the crowd's flow (frontal, lateral).

Weight Estimation from an RGB-D Camera in Top-View Configuration

Marco Mameli, Marina Paolanti, Nicola Conci, Filippo Tessaro, Emanuele Frontoni, Primo Zingaretti

Responsive image

Auto-TLDR; Top-View Weight Estimation using Deep Neural Networks

Slides Poster Similar

The development of so-called soft-biometrics aims at providing information related to the physical and behavioural characteristics of a person. This paper focuses on bodyweight estimation based on the observation from a top-view RGB-D camera. In fact, the capability to estimate the weight of a person can be of help in many different applications, from health-related scenarios to business intelligence and retail analytics. To deal with this issue, a TVWE (Top-View Weight Estimation) framework is proposed with the aim of predicting the weight. The approach relies on the adoption of Deep Neural Networks (DNNs) that have been trained on depth data. Each network has also been modified in its top section to replace classification with prediction inference. The performance of five state-of-art DNNs has been compared, namely VGG16, ResNet, Inception, DenseNet and Efficient-Net. In addition, a convolutional auto-encoder has also been included for completeness. Considering the limited literature in this domain, the TVWE framework has been evaluated on a new publicly available dataset: “VRAI Weight estimation Dataset”, which also collects, for each subject, labels related to weight, gender, and height. The experimental results have demonstrated that the proposed methods are suitable for this task, bringing different and significant insights for the application of the solution in different domains.

Multi-Attribute Regression Network for Face Reconstruction

Xiangzheng Li, Suping Wu

Responsive image

Auto-TLDR; A Multi-Attribute Regression Network for Face Reconstruction

Slides Poster Similar

In this paper, we propose a multi-attribute regression network (MARN) to investigate the problem of face reconstruction, especially in challenging cases when faces undergo large variations including severe poses, extreme expressions, and partial occlusions in unconstrained environments. The traditional 3DMM parametric regression method is absent from the learning of identity, expression, and attitude attributes, resulting in lacking geometric details in the reconstructed face. Our MARN method is to enable the network to better extract the feature information of face identity, expression, and pose attributes. We introduced identity, expression, and pose attribute loss functions to enhance the learning of details in each attribute. At the same time, we carefully design the geometric contour constraint loss function and use the constraints of sparse 2D face landmarks to improve the reconstructed geometric contour information. The experimental results show that our face reconstruction method has achieved significant results on the AFLW2000-3D and AFLW datasets compared with the most advanced methods. In addition, there has been a great improvement in dense face alignment. .

A Flatter Loss for Bias Mitigation in Cross-Dataset Facial Age Estimation

Ali Akbari, Muhammad Awais, Zhenhua Feng, Ammarah Farooq, Josef Kittler

Responsive image

Auto-TLDR; Cross-dataset Age Estimation for Neural Network Training

Slides Poster Similar

Existing studies in facial age estimation have mostly focused on intra-dataset protocols that assume training and test images captured under similar conditions. However, this is rarely valid in practical applications, where training and test sets usually have different characteristics. In this paper, we advocate a cross-dataset protocol for age estimation benchmarking. In order to improve the cross-dataset age estimation performance, we mitigate the inherent bias caused by the learning algorithm. To this end, we propose a novel loss function that is more effective for neural network training. The relative smoothness of the proposed loss function is its advantage with regards to the optimisation process performed by stochastic gradient decent. Its lower gradient, compared with existing loss functions, facilitates the discovery of and convergence to a better optimum, and consequently a better generalisation. The cross-dataset experimental results demonstrate the superiority of the proposed method over the state-of-the-art algorithms in terms of accuracy and generalisation capability.