Hybrid Decomposition Convolution Neural Network and Vocabulary Forest for Image Retrieval

Djenouri Youcef, Jon Hjelmervik

Responsive image

Auto-TLDR; DCNN-vForest: Convolutional Neural Network and Vocabulary Forest for Efficient Image Retrieval

Slides Poster

This paper introduces a highly efficient image retrieval technique called DCNN-vForest (Decomposition Convolution Neural Network and vocabulary Forest), which aims to retrieve the relevant images to the given image query by studying the correlation between images in the image database based on decomposition. The regional and global features of the image database are first extracted using the convolution neural network, and then divided into similar clusters using the Kmeans algorithm. We propose a new structure called vForest (vocabulary Forest), by calculating the vocabulary tree on each cluster of images. The retrieval process benefits from the knowledge provided by the vForest, and instead of considering the whole image database, only the most similar clusters to the image query are explored. To demonstrate the usefulness of our approach, intensive experiments have been carried out on ground-truth image databases, the results reveal the superiority of DCNN-vForest against the baseline image retrieval solutions, in terms of runtime and accuracy.

Similar papers

Hierarchical Deep Hashing for Fast Large Scale Image Retrieval

Yongfei Zhang, Cheng Peng, Zhang Jingtao, Xianglong Liu, Shiliang Pu, Changhuai Chen

Responsive image

Auto-TLDR; Hierarchical indexed deep hashing for fast large scale image retrieval

Slides Poster Similar

Fast image retrieval is of great importance in many computer vision tasks and especially practical applications. Deep hashing, the state-of-the-art fast image retrieval scheme, introduces deep learning to learn the hash functions and generate binary hash codes, and outperforms the other image retrieval methods in terms of accuracy. However, all the existing deep hashing methods could only generate one level hash codes and require a linear traversal of all the hash codes to figure out the closest one when a new query arrives, which is very time-consuming and even intractable for large scale applications. In this work, we propose a Hierarchical Deep HASHing(HDHash) scheme to speed up the state-of-the-art deep hashing methods. More specifically, hierarchical deep hash codes of multiple levels can be generated and indexed with tree structures rather than linear ones, and pruning irrelevant branches can sharply decrease the retrieval time. To our best knowledge, this is the first work to introduce hierarchical indexed deep hashing for fast large scale image retrieval. Extensive experimental results on three benchmark datasets demonstrate that the proposed HDHash scheme achieves better or comparable accuracy with significantly improved efficiency and reduced memory as compared to state-of-the-art fast image retrieval schemes.

Exploiting Local Indexing and Deep Feature Confidence Scores for Fast Image-To-Video Search

Savas Ozkan, Gözde Bozdağı Akar

Responsive image

Auto-TLDR; Fast and Robust Image-to-Video Retrieval Using Local and Global Descriptors

Slides Poster Similar

Cost-effective visual representation and fast query-by-example search are two challenging goals hat should be provided for web-scale visual retrieval task on a moderate hardware. In this paper, we introduce a fast yet robust method that ensures both of these goals by obtaining the state-of-the-art results for an image-to-video search scenario. To this end, we present important enhancements to commonly used indexing and visual representation techniques by promoting faster, better and more moderate retrieval performance. We also boost the effectiveness of the method for visual distortion by exploiting the individual decision results of local and global descriptors in the query time. By this way, local content descriptors effectively represent copied / duplicated scenes with large geometric deformations, while global descriptors for near duplicate and semantic searches are more practical. Experiments are conducted on the large-scale Stanford I2V dataset. The experimental results show that the method is effective in terms of complexity and query processing time for large-scale visual retrieval scenarios, even if local and global representations are used together. In addition, the proposed method is fairly accurate and achieves state-of-the-art performance based on the mAP score of the dataset. Lastly, we report additional mAP scores after updating the ground annotations obtained by the retrieval results of the proposed method showing more clearly the actual performance.

Deep Convolutional Embedding for Digitized Painting Clustering

Giovanna Castellano, Gennaro Vessio

Responsive image

Auto-TLDR; A Deep Convolutional Embedding Model for Clustering Artworks

Slides Poster Similar

Clustering artworks is difficult because of several reasons. On one hand, recognizing meaningful patterns in accordance with domain knowledge and visual perception is extremely hard. On the other hand, the application of traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, we propose to use a deep convolutional embedding model for digitized painting clustering, in which the task of mapping the input raw data to an abstract, latent space is jointly optimized with the task of finding a set of cluster centroids in this latent feature space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. The model is also able to outperform other state-of-the-art deep clustering approaches to the same problem. The proposed method may be beneficial to several art-related tasks, particularly visual link retrieval and historical knowledge discovery in painting datasets.

Leveraging Quadratic Spherical Mutual Information Hashing for Fast Image Retrieval

Nikolaos Passalis, Anastasios Tefas

Responsive image

Auto-TLDR; Quadratic Mutual Information for Large-Scale Hashing and Information Retrieval

Slides Poster Similar

Several deep supervised hashing techniques have been proposed to allow for querying large image databases. However, it is often overlooked that the process of information retrieval can be modeled using information-theoretic metrics, leading to optimizing various proxies for the problem at hand instead. Contrary to this, we propose a deep supervised hashing algorithm that optimizes the learned codes using an information-theoretic measure, the Quadratic Mutual Information (QMI). The proposed method is adapted to the needs of large-scale hashing and information retrieval leading to a novel information-theoretic measure, the Quadratic Spherical Mutual Information (QSMI), that is inspired by QMI, but leads to significant better retrieval precision. Indeed, the effectiveness of the proposed method is demonstrated under several different scenarios, using different datasets and network architectures, outperforming existing deep supervised image hashing techniques.

A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata

Tobia Tesan, Pasquale Coscia, Lamberto Ballan

Responsive image

Auto-TLDR; Context-Based Image Annotation with Multiple Semantic Embeddings and Recurrent Neural Networks

Slides Poster Similar

Images represent a commonly used form of visual communication among people. Nevertheless, image classification may be a challenging task when dealing with unclear or non-common images needing more context to be correctly annotated. Metadata accompanying images on social-media represent an ideal source of additional information for retrieving proper neighborhoods easing image annotation task. To this end, we blend visual features extracted from neighbors and their metadata to jointly leverage context and visual cues. Our models use multiple semantic embeddings to achieve the dual objective of being robust to vocabulary changes between train and test sets and decoupling the architecture from the low-level metadata representation. Convolutional and recurrent neural networks (CNNs-RNNs) are jointly adopted to infer similarity among neighbors and query images. We perform comprehensive experiments on the NUS-WIDE dataset showing that our models outperform state-of-the-art architectures based on images and metadata, and decrease both sensory and semantic gaps to better annotate images.

Attention-Based Deep Metric Learning for Near-Duplicate Video Retrieval

Kuan-Hsun Wang, Chia Chun Cheng, Yi-Ling Chen, Yale Song, Shang-Hong Lai

Responsive image

Auto-TLDR; Attention-based Deep Metric Learning for Near-duplicate Video Retrieval

Slides Similar

Near-duplicate video retrieval (NDVR) is an important and challenging problem due to the increasing amount of videos uploaded to the Internet. In this paper, we propose an attention-based deep metric learning method for NDVR. Our method is based on well-established principles: We leverage two-stream networks to combine RGB and optical flow features, and incorporate an attention module to effectively deal with distractor frames commonly observed in near duplicate videos. We further aggregate the features corresponding to multiple video segments to enhance the discriminative power. The whole system is trained using a deep metric learning objective with a Siamese architecture. Our experiments show that the attention module helps eliminate redundant and noisy frames, while focusing on visually relevant frames for solving NVDR. We evaluate our approach on recent large-scale NDVR datasets, CC_WEB_VIDEO, VCDB, FIVR and SVD. To demonstrate the generalization ability of our approach, we report results in both within- and cross-dataset settings, and show that the proposed method significantly outperforms state-of-the-art approaches.

Discrete Semantic Matrix Factorization Hashing for Cross-Modal Retrieval

Jianyang Qin, Lunke Fei, Shaohua Teng, Wei Zhang, Genping Zhao, Haoliang Yuan

Responsive image

Auto-TLDR; Discrete Semantic Matrix Factorization Hashing for Cross-Modal Retrieval

Slides Poster Similar

Hashing has been widely studied for cross-modal retrieval due to its promising efficiency and effectiveness in massive data analysis. However, most existing supervised hashing has the limitations of inefficiency for very large-scale search and intractable discrete constraint for hash codes learning. In this paper, we propose a new supervised hashing method, namely, Discrete Semantic Matrix Factorization Hashing (DSMFH), for cross-modal retrieval. First, we conduct the matrix factorization via directly utilizing the available label information to obtain a latent representation, so that both the inter-modality and intra-modality similarities are well preserved. Then, we simultaneously learn the discriminative hash codes and corresponding hash functions by deriving the matrix factorization into a discrete optimization. Finally, we adopt an alternatively iterative procedure to efficiently optimize the matrix factorization and discrete learning. Extensive experimental results on three widely used image-tag databases demonstrate the superiority of the DSMFH over state-of-the-art cross-modal hashing methods.

Comparison of Deep Learning and Hand Crafted Features for Mining Simulation Data

Theodoros Georgiou, Sebastian Schmitt, Thomas Baeck, Nan Pu, Wei Chen, Michael Lew

Responsive image

Auto-TLDR; Automated Data Analysis of Flow Fields in Computational Fluid Dynamics Simulations

Slides Poster Similar

Computational Fluid Dynamics (CFD) simulations are a very important tool for many industrial applications, such as aerodynamic optimization of engineering designs like cars shapes, airplanes parts etc. The output of such simulations, in particular the calculated flow fields, are usually very complex and hard to interpret for realistic three-dimensional real-world applications, especially if time-dependent simulations are investigated. Automated data analysis methods are warranted but a non-trivial obstacle is given by the very large dimensionality of the data. A flow field typically consists of six measurement values for each point of the computational grid in 3D space and time (velocity vector values, turbulent kinetic energy, pressure and viscosity). In this paper we address the task of extracting meaningful results in an automated manner from such high dimensional data sets. We propose deep learning methods which are capable of processing such data and which can be trained to solve relevant tasks on simulation data, i.e. predicting drag and lift forces applied on an airfoil. We also propose an adaptation of the classical hand crafted features known from computer vision to address the same problem and compare a large variety of descriptors and detectors. Finally, we compile a large dataset of 2D simulations of the flow field around airfoils which contains 16000 flow fields with which we tested and compared approaches. Our results show that the deep learning-based methods, as well as hand crafted feature based approaches, are well-capable to accurately describe the content of the CFD simulation output on the proposed dataset.

RWMF: A Real-World Multimodal Foodlog Database

Pengfei Zhou, Cong Bai, Kaining Ying, Jie Xia, Lixin Huang

Responsive image

Auto-TLDR; Real-World Multimodal Foodlog: A Real-World Foodlog Database for Diet Assistant

Slides Poster Similar

With the increasing health concerns on diet, it's worthwhile to develop an intelligent assistant that can help users eat healthier. Such assistants can automatically give personal advice for the users' diet and generate health reports about eating on a regular basis. To boost the research on such diet assistant, we establish a real-world foodlog database using various methods such as filter, cluster and graph convolutional network. This database is built based on real-world lifelog and medical data, which is named as Real-World Multimodal Foodlog (RWMF). It contains 7500 multimodal pairs, and each pair consists of a food image paired with a line of personal biometrics data (such as Blood Glucose) and a textual food description of food composition paired with a line of food nutrition data. In this paper, we present the detailed procedures for setting up the database. We evaluate the performance of RWMF using different food classification and cross-modal retrieval approaches. We also test the performance of multimodal fusion on RWMF through ablation experiments. The experimental results show that the RWMF database is quite challenging and can be widely used to evaluate the performance of food analysis methods based on multimodal data.

Cross-Media Hash Retrieval Using Multi-head Attention Network

Zhixin Li, Feng Ling, Chuansheng Xu, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Unsupervised Cross-Media Hash Retrieval Using Multi-Head Attention Network

Slides Poster Similar

The cross-media hash retrieval method is to encode multimedia data into a common binary hash space, which can effectively measure the correlation between samples from different modalities. In order to further improve the retrieval accuracy, this paper proposes an unsupervised cross-media hash retrieval method based on multi-head attention network. First of all, we use a multi-head attention network to make better matching images and texts, which contains rich semantic information. At the same time, an auxiliary similarity matrix is constructed to integrate the original neighborhood information from different modalities. Therefore, this method can capture the potential correlations between different modalities and within the same modality, so as to make up for the differences between different modalities and within the same modality. Secondly, the method is unsupervised and does not require additional semantic labels, so it has the potential to achieve large-scale cross-media retrieval. In addition, batch normalization and replacement hash code generation functions are adopted to optimize the model, and two loss functions are designed, which make the performance of this method exceed many supervised deep cross-media hash methods. Experiments on three datasets show that the average performance of this method is about 5 to 6 percentage points higher than the state-of-the-art unsupervised method, which proves the effectiveness and superiority of this method.

Supporting Skin Lesion Diagnosis with Content-Based Image Retrieval

Stefano Allegretti, Federico Bolelli, Federico Pollastri, Sabrina Longhitano, Giovanni Pellacani, Costantino Grana

Responsive image

Auto-TLDR; Skin Images Retrieval Using Convolutional Neural Networks for Skin Lesion Classification and Segmentation

Slides Poster Similar

Given the relevance of skin cancer, many attempts have been dedicated to the creation of automated devices that could assist both expert and beginner dermatologists towards fast and early diagnosis of skin lesions. In recent years, tasks such as skin lesion classification and segmentation have been extensively addressed with deep learning algorithms, which in some cases reach a diagnostic accuracy comparable to that of expert physicians. However, the general lack of interpretability and reliability severely hinders the ability of those approaches to actually support dermatologists in the diagnosis process. In this paper a novel skin images retrieval system is presented, which exploits features extracted by Convolutional Neural Networks to gather similar images from a publicly available dataset, in order to assist the diagnosis process of both expert and novice practitioners. In the proposed framework, Resnet-50 is initially trained for the classification of dermoscopic images; then, the feature extraction part is isolated, and an embedding network is build on top of it. The embedding learns an alternative representation, which allows to check image similarity by means of a distance measure. Experimental results reveal that the proposed method is able to select meaningful images, which can effectively boost the classification accuracy of human dermatologists.

VSB^2-Net: Visual-Semantic Bi-Branch Network for Zero-Shot Hashing

Xin Li, Xiangfeng Wang, Bo Jin, Wenjie Zhang, Jun Wang, Hongyuan Zha

Responsive image

Auto-TLDR; VSB^2-Net: inductive zero-shot hashing for image retrieval

Slides Poster Similar

Zero-shot hashing aims at learning hashing model from seen classes and the obtained model is capable of generalizing to unseen classes for image retrieval. Inspired by zero-shot learning, existing zero-shot hashing methods usually transfer the supervised knowledge from seen to unseen classes, by embedding the hamming space to a shared semantic space. However, this makes instances difficult to distinguish due to limited hashing bit numbers, especially for semantically similar unseen classes. We propose a novel inductive zero-shot hashing framework, i.e., VSB^2-Net, where both semantic space and visual feature space are embedded to the same hamming space instead. The reconstructive semantic relationships are established in the hamming space, preserving local similarity relationships and explicitly enlarging the discrepancy between semantic hamming vectors. A two-task architecture, comprising of classification module and visual feature reconstruction module, is employed to enhance the generalization and transfer abilities. Extensive evaluation results on several benchmark datasets demonstratethe superiority of our proposed method compared to several state-of-the-art baselines.

Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology

Yigit Ozen, Selim Aksoy, Kemal Kosemehmetoglu, Sevgen Onder, Aysegul Uner

Responsive image

Auto-TLDR; Self-supervised Contrastive Learning for Deep Representation Learning of Histopathology Images

Slides Poster Similar

Deep learning has achieved successful performance in representation learning and content-based retrieval of histopathology images. The commonly used setting in deep learning-based approaches is supervised training of deep neural networks for classification, and using the trained model to extract representations that are used for computing and ranking the distances between images. However, there are two remaining major challenges. First, supervised training of deep neural networks requires large amount of manually labeled data which is often limited in the medical field. Transfer learning has been used to overcome this challenge, but its success remained limited. Second, the clinical practice in histopathology necessitates working with regions of interest (ROI) of multiple diagnostic classes with arbitrary shapes and sizes. The typical solution to this problem is to aggregate the representations of fixed-sized patches cropped from these regions to obtain region-level representations. However, naive methods cannot sufficiently exploit the rich contextual information in the complex tissue structures. To tackle these two challenges, we propose a generic method that utilizes graph neural networks (GNN), combined with a self-supervised training method using a contrastive loss. GNN enables representing arbitrarily-shaped ROIs as graphs and encoding contextual information. Self-supervised contrastive learning improves quality of learned representations without requiring labeled data. The experiments using a challenging breast histopathology data set show that the proposed method achieves better performance than the state-of-the-art.

Fast Discrete Cross-Modal Hashing Based on Label Relaxation and Matrix Factorization

Donglin Zhang, Xiaojun Wu, Zhen Liu, Jun Yu, Josef Kittler

Responsive image

Auto-TLDR; LRMF: Label Relaxation and Discrete Matrix Factorization for Cross-Modal Retrieval

Poster Similar

In recent years, cross-media retrieval has drawn considerable attention due to the exponential growth of multimedia data. Many hashing approaches have been proposed for the cross-media search task. However, there are still open problems that warrant investigation. For example, most existing supervised hashing approaches employ a binary label matrix, which achieves small margins between wrong labels (0) and true labels (1). This may affect the retrieval performance by generating many false negatives and false positives. In addition, some methods adopt a relaxation scheme to solve the binary constraints, which may cause large quantization errors. There are also some discrete hashing methods that have been presented, but most of them are time-consuming. To conquer these problems, we present a label relaxation and discrete matrix factorization method (LRMF) for cross-modal retrieval. It offers a number of innovations. First of all, the proposed approach employs a novel label relaxation scheme to control the margins adaptively, which has the benefit of reducing the quantization error. Second, by virtue of the proposed discrete matrix factorization method designed to learn the binary codes, large quantization errors caused by relaxation can be avoided. The experimental results obtained on two widely-used databases demonstrate that LRMF outperforms state-of-the-art cross-media methods.

Multimodal Side-Tuning for Document Classification

Stefano Zingaro, Giuseppe Lisanti, Maurizio Gabbrielli

Responsive image

Auto-TLDR; Side-tuning for Multimodal Document Classification

Slides Poster Similar

In this paper, we propose to exploit the side-tuning framework for multimodal document classification. Side-tuning is a methodology for network adaptation recently introduced to solve some of the problems related to previous approaches. Thanks to this technique it is actually possible to overcome model rigidity and catastrophic forgetting of transfer learning by fine-tuning. The proposed solution uses off-the-shelf deep learning architectures leveraging the side-tuning framework to combine a base model with a tandem of two side networks. We show that side-tuning can be successfully employed also when different data sources are considered, e.g. text and images in document classification. The experimental results show that this approach pushes further the limit for document classification accuracy with respect to the state of the art.

Visual Localization for Autonomous Driving: Mapping the Accurate Location in the City Maze

Dongfang Liu, Yiming Cui, Xiaolei Guo, Wei Ding, Baijian Yang, Yingjie Chen

Responsive image

Auto-TLDR; Feature Voting for Robust Visual Localization in Urban Settings

Slides Poster Similar

Accurate localization is a foundational capacity, required for autonomous vehicles to accomplish other tasks such as navigation or path planning. It is a common practice for vehicles to use GPS to acquire location information. However, the application of GPS can result in severe challenges when vehicles run within the inner city where different kinds of structures may shadow the GPS signal and lead to inaccurate location results. To address the localization challenges of urban settings, we propose a novel feature voting technique for visual localization. Different from the conventional front-view-based method, our approach employs views from three directions (front, left, and right) and thus significantly improves the robustness of location prediction. In our work, we craft the proposed feature voting method into three state-of-the-art visual localization networks and modify their architectures properly so that they can be applied for vehicular operation. Extensive field test results indicate that our approach can predict location robustly even in challenging inner-city settings. Our research sheds light on using the visual localization approach to help autonomous vehicles to find accurate location information in a city maze, within a desirable time constraint.

Audio-Based Near-Duplicate Video Retrieval with Audio Similarity Learning

Pavlos Avgoustinakis, Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Andreas L. Symeonidis, Ioannis Kompatsiaris

Responsive image

Auto-TLDR; AuSiL: Audio Similarity Learning for Near-duplicate Video Retrieval

Slides Poster Similar

In this work, we address the problem of audio-based near-duplicate video retrieval. We propose the Audio Similarity Learning (AuSiL) approach that effectively captures temporal patterns of audio similarity between video pairs. For the robust similarity calculation between two videos, we first extract representative audio-based video descriptors by leveraging transfer learning based on a Convolutional Neural Network (CNN) trained on a large scale dataset of audio events, and then we calculate the similarity matrix derived from the pairwise similarity of these descriptors. The similarity matrix is subsequently fed to a CNN network that captures the temporal structures existing within its content. We train our network following a triplet generation process and optimizing the triplet loss function. To evaluate the effectiveness of the proposed approach, we have manually annotated two publicly available video datasets based on the audio duplicity between their videos. The proposed approach achieves very competitive results compared to three state-of-the-art methods. Also, unlike the competing methods, it is very robust for the retrieval of audio duplicates generated with speed transformations.

One Step Clustering Based on A-Contrario Framework for Detection of Alterations in Historical Violins

Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, Marco Malagodi

Responsive image

Auto-TLDR; A-Contrario Clustering for the Detection of Altered Violins using UVIFL Images

Slides Poster Similar

Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of interventions necessary. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the ``Violins UVIFL imagery'' dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with the state of the art clustering methods shows improved overall precision and recall.

Improved Deep Classwise Hashing with Centers Similarity Learning for Image Retrieval

Ming Zhang, Hong Yan

Responsive image

Auto-TLDR; Deep Classwise Hashing for Image Retrieval Using Center Similarity Learning

Slides Poster Similar

Deep supervised hashing for image retrieval has attracted researchers' attention due to its high efficiency and superior retrieval performance. Most existing deep supervised hashing works, which are based on pairwise/triplet labels, suffer from the expensive computational cost and insufficient utilization of the semantics information. Recently, deep classwise hashing introduced a classwise loss supervised by class labels information alternatively; however, we find it still has its drawback. In this paper, we propose an improved deep classwise hashing, which enables hashing learning and class centers learning simultaneously. Specifically, we design a two-step strategy on center similarity learning. It interacts with the classwise loss to attract the class center to concentrate on the intra-class samples while pushing other class centers as far as possible. The centers similarity learning contributes to generating more compact and discriminative hashing codes. We conduct experiments on three benchmark datasets. It shows that the proposed method effectively surpasses the original method and outperforms state-of-the-art baselines under various commonly-used evaluation metrics for image retrieval.

Aggregating Object Features Based on Attention Weights for Fine-Grained Image Retrieval

Hongli Lin, Yongqi Song, Zixuan Zeng, Weisheng Wang

Responsive image

Auto-TLDR; DSAW: Unsupervised Dual-selection for Fine-Grained Image Retrieval

Similar

Object localization and local feature representation are key issues in fine-grained image retrieval. However, the existing unsupervised methods still need to be improved in these two aspects. For conquering these issues in a unified framework, a novel unsupervised scheme, named DSAW for short, is presented in this paper. Firstly, we proposed a dual-selection (DS) method, which achieves more accurate object localization by using adaptive threshold method to perform feature selection on local and global activation map in turn. Secondly, a novel and faster self-attention weights (AW) method is developed to weight local features by measuring their importance in the global context. Finally, we also evaluated the performance of the proposed method on five fine-grained image datasets and the results showed that our DSAW outperformed the existing best method.

Creating Classifier Ensembles through Meta-Heuristic Algorithms for Aerial Scene Classification

Álvaro Roberto Ferreira Jr., Gustavo Gustavo Henrique De Rosa, Joao Paulo Papa, Gustavo Carneiro, Fabio Augusto Faria

Responsive image

Auto-TLDR; Univariate Marginal Distribution Algorithm for Aerial Scene Classification Using Meta-Heuristic Optimization

Slides Poster Similar

Aerial scene classification is a challenging task to be solved in the remote sensing area, whereas deep learning approaches, such as Convolutional Neural Networks (CNN), are being widely employed to overcome such a problem. Nevertheless, it is not straightforward to find single CNN models that can solve all aerial scene classification tasks, allowing the nurturing of a better alternative, which is to fuse CNN-based classifiers into an ensemble. However, an appropriate choice of the classifiers that will belong to the ensemble is a critical factor, as it is unfeasible to employ all the possible classifiers in the literature. Therefore, this work proposes a novel framework based on meta-heuristic optimization for creating optimized-ensembles in the context of aerial scene classification. The experimental results were performed across nine meta-heuristic algorithms and three aerial scene literature datasets, being compared in terms of effectiveness (accuracy), efficiency (execution time), and behavioral performance in different scenarios. Finally, one can observe that the Univariate Marginal Distribution Algorithm (UMDA) overcame popular literature meta-heuristic algorithms, such as Genetic Programming and Particle Swarm Optimization considering the adopted criteria in the performed experiments.

ILS-SUMM: Iterated Local Search for Unsupervised Video Summarization

Yair Shemer, Daniel Rotman, Nahum Shimkin

Responsive image

Auto-TLDR; ILS-SUMM: Iterated Local Search for Video Summarization

Slides Similar

In recent years, there has been an increasing interest in building video summarization tools, where the goal is to automatically create a short summary of an input video that properly represents the original content. We consider shot-based video summarization where the summary consists of a subset of the video shots which can be of various lengths. A straightforward approach to maximize the representativeness of a subset of shots is by minimizing the total distance between shots and their nearest selected shots. We formulate the task of video summarization as an optimization problem with a knapsack-like constraint on the total summary duration. Previous studies have proposed greedy algorithms to solve this problem approximately, but no experiments were presented to measure the ability of these methods to obtain solutions with low total distance. Indeed, our experiments on video summarization datasets show that the success of current methods in obtaining results with low total distance still has much room for improvement. In this paper, we develop ILS-SUMM, a novel video summarization algorithm to solve the subset selection problem under the knapsack constraint. Our algorithm is based on the well-known metaheuristic optimization framework -- Iterated Local Search (ILS), known for its ability to avoid weak local minima and obtain a good near-global minimum. Extensive experiments show that our method finds solutions with significantly better total distance than previous methods. Moreover, to indicate the high scalability of ILS-SUMM, we introduce a new dataset consisting of videos of various lengths.

A Multi-Task Multi-View Based Multi-Objective Clustering Algorithm

Sayantan Mitra, Sriparna Saha

Responsive image

Auto-TLDR; MTMV-MO: Multi-task multi-view multi-objective optimization for multi-task clustering

Slides Poster Similar

In recent years, multi-view multi-task clustering has received much attention. There are several real-life problems that involve both multi-view clustering and multi-task clustering, i.e., the tasks are closely related, and each task can be analyzed using multiple views. Traditional multi-task multi-view clustering algorithms use single-objective optimization-based approaches and cannot apply too-many regularization terms. However, these problems are inherently some multi-objective optimization problems because conflict may be between different views within a given task and also between different tasks, necessitating a trade-off. Based on these observations, in this paper, we have proposed a novel multi-task multi-view multi-objective optimization (MTMV-MO) algorithm which simultaneously optimizes three objectives, i.e., within-view task relation, within-task view relation and the quality of the clusters obtained. The proposed methodology (MTMV-MO) is evaluated on four different datasets and the results are compared with five state-of-the-art algorithms in terms of Adjusted Rand Index (ARI) and Classification Accuracy (%CoA). MTMV-MO illustrates an improvement of 1.5-2% in terms of ARI and 4-5% in terms of %CoA compared to the state-of-the-art algorithms.

More Correlations Better Performance: Fully Associative Networks for Multi-Label Image Classification

Yaning Li, Liu Yang

Responsive image

Auto-TLDR; Fully Associative Network for Fully Exploiting Correlation Information in Multi-Label Classification

Slides Poster Similar

Recent researches demonstrate that correlation modeling plays a key role in high-performance multi-label classification methods. However, existing methods do not take full advantage of correlation information, especially correlations in feature and label spaces of each image, which limits the performance of correlation-based multi-label classification methods. With more correlations considered, in this study, a Fully Associative Network (FAN) is proposed for fully exploiting correlation information, which involves both visual feature and label correlations. Specifically, FAN introduces a robust covariance pooling to summarize convolution features as global image representation for capturing feature correlation in the multi-label task. Moreover, it constructs an effective label correlation matrix based on a re-weighted scheme, which is fed into a graph convolution network for capturing label correlation. Then, correlation between covariance representations (i.e., feature correlation ) and the outputs of GCN (i.e., label correlation) are modeled for final prediction. Experimental results on two datasets illustrate the effectiveness and efficiency of our proposed FAN compared with state-of-the-art methods.

JECL: Joint Embedding and Cluster Learning for Image-Text Pairs

Sean Yang, Kuan-Hao Huang, Bill Howe

Responsive image

Auto-TLDR; JECL: Clustering Image-Caption Pairs with Parallel Encoders and Regularized Clusters

Poster Similar

We propose JECL, a method for clustering image-caption pairs by training parallel encoders with regularized clustering and alignment objectives, simultaneously learning both representations and cluster assignments. These image-caption pairs arise frequently in high-value applications where structured training data is expensive to produce, but free-text descriptions are common. JECL trains by minimizing the Kullback-Leibler divergence between the distribution of the images and text to that of a combined joint target distribution and optimizing the Jensen-Shannon divergence between the soft cluster assignments of the images and text. Regularizers are also applied to JECL to prevent trivial solutions. Experiments show that JECL outperforms both single-view and multi-view methods on large benchmark image-caption datasets, and is remarkably robust to missing captions and varying data sizes.

Multi-Modal Deep Clustering: Unsupervised Partitioning of Images

Guy Shiran, Daphna Weinshall

Responsive image

Auto-TLDR; Multi-Modal Deep Clustering for Unlabeled Images

Slides Poster Similar

The clustering of unlabeled raw images is a daunting task, which has recently been approached with some success by deep learning methods. Here we propose an unsupervised clustering framework, which learns a deep neural network in an end-to-end fashion, providing direct cluster assignments of images without additional processing. Multi-Modal Deep Clustering (MMDC), trains a deep network to align its image embeddings with target points sampled from a Gaussian Mixture Model distribution. The cluster assignments are then determined by mixture component association of image embeddings. Simultaneously, the same deep network is trained to solve an additional self-supervised task. This pushes the network to learn more meaningful image representations and stabilizes the training. Experimental results show that MMDC achieves or exceeds state-of-the-art performance on four challenging benchmarks. On natural image datasets we improve on previous results with significant margins of up to 11% absolute accuracy points, yielding an accuracy of 70% on CIFAR-10 and 61% on STL-10.

RGB-Infrared Person Re-Identification Via Image Modality Conversion

Huangpeng Dai, Qing Xie, Yanchun Ma, Yongjian Liu, Shengwu Xiong

Responsive image

Auto-TLDR; CE2L: A Novel Network for Cross-Modality Re-identification with Feature Alignment

Slides Poster Similar

As a cross modality retrieval task, RGB-infrared person re-identification(Re-ID) is an important and challenging tasking, because of its important role in video surveillance applications and large cross-modality variations between visible and infrared images. Most previous works addressed the problem of cross-modality gap with feature alignment by original feature representation learning straightly. In this paper, different from existing works, we propose a novel network(CE2L) to tackle the cross-modality gap with feature alignment. CE2L mainly focuses on adding discriminative information and learning robust features by converting modality between visible and infrared images. Its merits are highlighted in two aspects: 1)Using CycleGAN to convert infrared images into color images can not only increase the recognition characteristics of images, but also allow the our network to better learn the two modal image features; 2)Our novel method can serve as data augmentation. Specifically, it can increase data diversity and total data against over-fitting by converting labeled training images to another modal images. Extensive experimental results on two datasets demonstrate superior performance compared to the baseline and the state-of-the-art methods.

Rotation Invariant Aerial Image Retrieval with Group Convolutional Metric Learning

Hyunseung Chung, Woo-Jeoung Nam, Seong-Whan Lee

Responsive image

Auto-TLDR; Robust Remote Sensing Image Retrieval Using Group Convolution with Attention Mechanism and Metric Learning

Slides Poster Similar

Remote sensing image retrieval (RSIR) is the process of ranking database images depending on the degree of similarity compared to the query image. As the complexity of RSIR increases due to the diversity in shooting range, angle, and location of remote sensors, there is an increasing demand for methods to address these issues and improve retrieval performance. In this work, we introduce a novel method for retrieving aerial images by merging group convolution with attention mechanism and metric learning, resulting in robustness to rotational variations. For refinement and emphasis on important features, we applied channel attention in each group convolution stage. By utilizing the characteristics of group convolution and channel-wise attention, it is possible to acknowledge the equality among rotated but identically located images. The training procedure has two main steps: (i) training the network with Aerial Image Dataset (AID) for classification, (ii) fine-tuning the network with triplet-loss for retrieval with Google Earth South Korea and NWPU-RESISC45 datasets. Results show that the proposed method performance exceeds other state-of-the-art retrieval methods in both rotated and original environments. Furthermore, we utilize class activation maps (CAM) to visualize the distinct difference of main features between our method and baseline, resulting in better adaptability in rotated environments.

Writer Identification Using Deep Neural Networks: Impact of Patch Size and Number of Patches

Akshay Punjabi, José Ramón Prieto Fontcuberta, Enrique Vidal

Responsive image

Auto-TLDR; Writer Recognition Using Deep Neural Networks for Handwritten Text Images

Slides Poster Similar

Traditional approaches for the recognition or identification of the writer of a handwritten text image used to relay on heuristic knowledge about the shape and other features of the strokes of previously segmented characters. However, recent works have done significantly advances on the state of the art thanks to the use of various types of deep neural networks. In most of all of these works, text images are decomposed into patches, which are processed by the networks without any previous character or word segmentation. In this paper, we study how the way images are decomposed into patches impact recognition accuracy, using three publicly available datasets. The study also includes a simpler architecture where no patches are used at all - a single deep neural network inputs a whole text image and directly provides a writer recognition hypothesis. Results show that bigger patches generally lead to improved accuracy, achieving in one of the datasets a significant improvement over the best results reported so far.

Enhancing Deep Semantic Segmentation of RGB-D Data with Entangled Forests

Matteo Terreran, Elia Bonetto, Stefano Ghidoni

Responsive image

Auto-TLDR; FuseNet: A Lighter Deep Learning Model for Semantic Segmentation

Slides Poster Similar

Semantic segmentation is a problem which is getting more and more attention in the computer vision community. Nowadays, deep learning methods represent the state of the art to solve this problem, and the trend is to use deeper networks to get higher performance. The drawback with such models is a higher computational cost, which makes it difficult to integrate them on mobile robot platforms. In this work we want to explore how to obtain lighter deep learning models without compromising performance. To do so we will consider the features used in the Entangled Random Forest algorithm and we will study the best strategies to integrate these within FuseNet deep network. Such new features allow us to shrink the network size without loosing performance, obtaining hence a lighter model which achieves state-of-the-art performance on the semantic segmentation task and represents an interesting alternative for mobile robotics applications, where computational power and energy are limited.

Price Suggestion for Online Second-Hand Items

Liang Han, Zhaozheng Yin, Zhurong Xia, Li Guo, Mingqian Tang, Rong Jin

Responsive image

Auto-TLDR; An Intelligent Price Suggestion System for Online Second-hand Items

Slides Poster Similar

This paper describes an intelligent price suggestion system for online second-hand listings. In contrast to conventional pricing strategies which are employed to a large number of identical products, or to non-identical but similar products such as homes on Airbnb, the proposed system provides price suggestions for online second-hand items which are non-identical and fall into numerous different categories. Moreover, simplifying the item listing process for users is taken into consideration when designing the price suggestion system. Specifically, we design a truncate loss to train a vision-based price suggestion module which mainly takes some vision-based features as input to first classify whether an uploaded item image is qualified for price suggestion, and then offer price suggestions for items with qualified images. For the items with unqualified images, we encourage users to input some text descriptions of the items, and with the text descriptions, we design a multimodal item retrieval module to offer price suggestions. Extensive experiments demonstrate the effectiveness of the proposed system.

Picture-To-Amount (PITA): Predicting Relative Ingredient Amounts from Food Images

Jiatong Li, Fangda Han, Ricardo Guerrero, Vladimir Pavlovic

Responsive image

Auto-TLDR; PITA: A Deep Learning Architecture for Predicting the Relative Amount of Ingredients from Food Images

Slides Poster Similar

Increased awareness of the impact of food consumption on health and lifestyle today has given rise to novel data-driven food analysis systems. Although these systems may recognize the ingredients, a detailed analysis of their amounts in the meal, which is paramount for estimating the correct nutrition, is usually ignored. In this paper, we study the novel and challenging problem of predicting the relative amount of each ingredient from a food image. We propose PITA, the Picture-to-Amount deep learning architecture to solve the problem. More specifically, we predict the ingredient amounts using a domain-driven Wasserstein loss from image-to-recipe cross-modal embeddings learned to align the two views of food data. Experiments on a dataset of recipes collected from the Internet show the model generates promising results and improves the baselines on this challenging task.

ClusterFace: Joint Clustering and Classification for Set-Based Face Recognition

Samadhi Poornima Kumarasinghe Wickrama Arachchilage, Ebroul Izquierdo

Responsive image

Auto-TLDR; Joint Clustering and Classification for Face Recognition in the Wild

Slides Poster Similar

Deep learning technology has enabled successful modeling of complex facial features when high quality images are available. Nonetheless, accurate modeling and recognition of human faces in real world scenarios 'on the wild' or under adverse conditions remains an open problem. When unconstrained faces are mapped into deep features, variations such as illumination, pose, occlusion, etc., can create inconsistencies in the resultant feature space. Hence, deriving conclusions based on direct associations could lead to degraded performance. This rises the requirement for a basic feature space analysis prior to face recognition. This paper devises a joint clustering and classification scheme which learns deep face associations in an easy-to-hard way. Our method is based on hierarchical clustering where the early iterations tend to preserve high reliability. The rationale of our method is that a reliable clustering result can provide insights on the distribution of the feature space, that can guide the classification that follows. Experimental evaluations on three tasks, face verification, face identification and rank-order search, demonstrates better or competitive performance compared to the state-of-the-art, on all three experiments.

On Identification and Retrieval of Near-Duplicate Biological Images: A New Dataset and Protocol

Thomas E. Koker, Sai Spandana Chintapalli, San Wang, Blake A. Talbot, Daniel Wainstock, Marcelo Cicconet, Mary C. Walsh

Responsive image

Auto-TLDR; BINDER: Bio-Image Near-Duplicate Examples Repository for Image Identification and Retrieval

Poster Similar

Manipulation and re-use of images in scientific publications is a growing issue, not only for biomedical publishers, but also for the research community in general. In this work we introduce BINDER -- Bio-Image Near-Duplicate Examples Repository, a novel dataset to help researchers develop, train, and test models to detect same-source biomedical images. BINDER contains 7,490 unique image patches for model training, 1,821 same-size patch duplicates for validation and testing, and 868 different-size image/patch pairs for image retrieval validation and testing. Except for the training set, patches already contain manipulations including rotation, translation, scale, perspective transform, contrast adjustment and/or compression artifacts. We further use the dataset to demonstrate how novel adaptations of existing image retrieval and metric learning models can be applied to achieve high-accuracy inference results, creating a baseline for future work. In aggregate, we thus present a supervised protocol for near-duplicate image identification and retrieval without any "real-world" training example. Our dataset and source code are available at hms-idac.github.io/BINDER.

GuCNet: A Guided Clustering-Based Network for Improved Classification

Ushasi Chaudhuri, Syomantak Chaudhuri, Subhasis Chaudhuri

Responsive image

Auto-TLDR; Semantic Classification of Challenging Dataset Using Guide Datasets

Slides Poster Similar

We deal with the problem of semantic classification of challenging and highly-cluttered dataset. We present a novel, and yet a very simple classification technique by leveraging the ease of classifiability of any existing well separable dataset for guidance. Since the guide dataset which may or may not have any semantic relationship with the experimental dataset, forms well separable clusters in the feature set, the proposed network tries to embed class-wise features of the challenging dataset to those distinct clusters of the guide set, making them more separable. Depending on the availability, we propose two types of guide sets: one using texture (image) guides and another using prototype vectors representing cluster centers. Experimental results obtained on the challenging benchmark RSSCN, LSUN, and TU-Berlin datasets establish the efficacy of the proposed method as we outperform the existing state-of-the-art techniques by a considerable margin.

Motion Segmentation with Pairwise Matches and Unknown Number of Motions

Federica Arrigoni, Tomas Pajdla, Luca Magri

Responsive image

Auto-TLDR; Motion Segmentation using Multi-Modelfitting andpermutation synchronization

Slides Poster Similar

In this paper we address motion segmentation, that is the problem of clustering points in multiple images according to a number of moving objects. Two-frame correspondences are assumed as input without prior knowledge about trajectories. Our method is based on principles from ''multi-model fitting'' and ''permutation synchronization'', and - differently from previous techniques working under the same assumptions - it can handle an unknown number of motions. The proposed approach is validated on standard datasets, showing that it can correctly estimate the number of motions while maintaining comparable or better accuracy than the state of the art.

Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches

Kalun Ho, Janis Keuper, Franz-Josef Pfreundt, Margret Keuper

Responsive image

Auto-TLDR; Clustering Objectives for K-means and Correlation Clustering Using Triplet Loss

Slides Poster Similar

In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset.

Expectation-Maximization for Scheduling Problems in Satellite Communication

Werner Bailer, Martin Winter, Johannes Ebert, Joel Flavio, Karin Plimon

Responsive image

Auto-TLDR; Unsupervised Machine Learning for Satellite Communication Using Expectation-Maximization

Slides Poster Similar

In this paper we address unsupervised machine learning for two use cases in satellite communication, which are scheduling problems: (i) Ka-band frequency plan optimization and (ii) dynamic configuration of an active antenna array satellite. We apply approaches based on the Expectation-Maximization (EM) framework to both of them. We compare against baselines of currently deployed solutions, and show that they can be significantly outperformed by the EM-based approach. In addition, the approaches can be applied incrementally, thus supporting fast adaptation to small changes in the input configuration.

Large-Scale Historical Watermark Recognition: Dataset and a New Consistency-Based Approach

Xi Shen, Ilaria Pastrolin, Oumayma Bounou, Spyros Gidaris, Marc Smith, Olivier Poncet, Mathieu Aubry

Responsive image

Auto-TLDR; Historical Watermark Recognition with Fine-Grained Cross-Domain One-Shot Instance Recognition

Slides Poster Similar

Historical watermark recognition is a highly practical, yet unsolved challenge for archivists and historians. With a large number of well-defined classes, cluttered and noisy samples, different types of representations, both subtle differences between classes and high intra-class variation, historical watermarks are also challenging for pattern recognition. In this paper, overcoming the difficulty of data collection, we present a large public dataset with more than 6k new photographs, allowing for the first time to tackle at scale the scenarios of practical interest for scholars: one-shot instance recognition and cross-domain one-shot instance recognition amongst more than 16k fine-grained classes. We demonstrate that this new dataset is large enough to train modern deep learning approaches, and show that standard methods can be improved considerably by using mid-level deep features. More precisely, we design both a matching score and a feature fine-tuning strategy based on filtering local matches using spatial consistency. This consistency-based approach provides important performance boost compared to strong baselines. Our model achieves 55\% as top-1 accuracy on our very challenging 16,753-class one-shot cross-domain recognition task, each class described by a single drawing from the classic Briquet catalog. In addition to watermark classification, we show our approach provides promising results on fine-grained sketch-based image retrieval.

Transformer Reasoning Network for Image-Text Matching and Retrieval

Nicola Messina, Fabrizio Falchi, Andrea Esuli, Giuseppe Amato

Responsive image

Auto-TLDR; A Transformer Encoder Reasoning Network for Image-Text Matching in Large-Scale Information Retrieval

Slides Poster Similar

Image-text matching is an interesting and fascinating task in modern AI research. Despite the evolution of deep-learning-based image and text processing systems, multi-modal matching remains a challenging problem. In this work, we consider the problem of accurate image-text matching for the task of multi-modal large-scale information retrieval. State-of-the-art results in image-text matching are achieved by inter-playing image and text features from the two different processing pipelines, usually using mutual attention mechanisms. However, this invalidates any chance to extract separate visual and textual features needed for later indexing steps in large-scale retrieval systems. In this regard, we introduce the Transformer Encoder Reasoning Network (TERN), an architecture built upon one of the modern relationship-aware self-attentive architectures, the Transformer Encoder (TE). This architecture is able to separately reason on the two different modalities and to enforce a final common abstract concept space by sharing the weights of the deeper transformer layers. Thanks to this design, the implemented network is able to produce compact and very rich visual and textual features available for the successive indexing step. Experiments are conducted on the MS-COCO dataset, and we evaluate the results using a discounted cumulative gain metric with relevance computed exploiting caption similarities, in order to assess possibly non-exact but relevant search results. We demonstrate that on this metric we are able to achieve state-of-the-art results in the image retrieval task. Our code is freely available at https://github.com/mesnico/TERN.

A Systematic Investigation on Deep Architectures for Automatic Skin Lesions Classification

Pierluigi Carcagni, Marco Leo, Andrea Cuna, Giuseppe Celeste, Cosimo Distante

Responsive image

Auto-TLDR; RegNet: Deep Investigation of Convolutional Neural Networks for Automatic Classification of Skin Lesions

Slides Poster Similar

Computer vision-based techniques are more and more employed in healthcare and medical fields nowadays in order, principally, to be as a support to the experienced medical staff to help them to make a quick and correct diagnosis. One of the hot topics in this arena concerns the automatic classification of skin lesions. Several promising works exist about it, mainly leveraging Convolutional Neural Networks (CNN), but proposed pipeline mainly rely on complex data preprocessing and there is no systematic investigation about how available deep models can actually reach the accuracy needed for real applications. In order to overcome these drawbacks, in this work, an end-to-end pipeline is introduced and some of the most recent Convolutional Neural Networks (CNNs) architectures are included in it and compared on the largest common benchmark dataset recently introduced. To this aim, for the first time in this application context, a new network design paradigm, namely RegNet, has been exploited to get the best models among a population of configurations. The paper introduces a threefold level of contribution and novelty with respect the previous literature: the deep investigation of several CNN architectures driving to a consistent improvement of the lesions recognition accuracy, the exploitation of a new network design paradigm able to study the behavior of populations of models and a deep discussion about pro and cons of each analyzed method paving the path towards new research lines.

MEG: Multi-Evidence GNN for Multimodal Semantic Forensics

Ekraam Sabir, Ayush Jaiswal, Wael Abdalmageed, Prem Natarajan

Responsive image

Auto-TLDR; Scalable Image Repurposing Detection with Graph Neural Network Based Model

Slides Poster Similar

Image repurposing is a category of fake news where a digitally unmanipulated image is misrepresented by means of its accompanying metadata such as captions, location, etc., where the image and accompanying metadata together comprise a multimedia package. The problem setup is to authenticate a query multimedia package using a reference dataset of potentially related packages as evidences. Existing methods are limited to using a single evidence (retrieved package), which ignores potential performance improvement from the use of multiple evidences. In this work, we introduce a novel graph neural network based model for image repurposing detection, which effectively utilizes multiple retrieved packages as evidences and is scalable with the number of evidences. We compare the scalability and performance of our model against existing methods. Experimental results show that the proposed model outperforms existing state-of-the-art for image repurposing detection with an error reduction of up to 25%.

Deep Composer: A Hash-Based Duplicative Neural Network for Generating Multi-Instrument Songs

Jacob Galajda, Brandon Royal, Kien Hua

Responsive image

Auto-TLDR; Deep Composer for Intelligence Duplication

Poster Similar

Music is one of the most appreciated forms of art, and generating songs has become a popular subject in the artificial intelligence community. There are various networks that can produce pleasant sounding music, but no model has been able to produce music that duplicates the style of a specific artist or artists. In this paper, we extend a previous single-instrument model: the Deep Composer -a model we believe to be capable of achieving this. Deep Composer originates from the Deep Segment Hash Learning (DSHL) single instrument model and is designed to learn how a specific artist would place individual segments of music together rather than create music similar to a specific genre. To the best of our knowledge, no other network has been designed to achieve this. For these reasons, we introduce a new field of study, Intelligence Duplication (ID). AI research generally focuses on developing techniques to mimic universal intelligence. Intelligence Duplication (ID) research focuses on techniques to artificially duplicate or clone a specific mind such as Mozart. Additionally, we present a new retrieval algorithm, Segment Barrier Retrieval (SBR), to improve retrieval accuracy within the hash-space as opposed to a more traditionally used feature-space. SBR prevents retrieval branches from entering areas of low-density within the hash-space, a phenomena we identify and label as segment sparsity. To test our Deep Composer and the effectiveness of SBR, we evaluate various models with different SBR threshold values and conduct qualitative surveys for each model. The survey results indicate that our Deep Composer model is capable of learning music generation from multiple composers. Our extended Deep Composer model provides a more suitable platform for Intelligence Duplication. Future work can apply this platform to duplicate great composers such as Mozart or allow them to collaborate in the virtual space.

Progressive Learning Algorithm for Efficient Person Re-Identification

Zhen Li, Hanyang Shao, Liang Niu, Nian Xue

Responsive image

Auto-TLDR; Progressive Learning Algorithm for Large-Scale Person Re-Identification

Slides Poster Similar

This paper studies the problem of Person Re-Identification (ReID) for large-scale applications. Recent research efforts have been devoted to building complicated part models, which introduce considerably high computational cost and memory consumption, inhibiting its practicability in large-scale applications. This paper aims to develop a novel learning strategy to find efficient feature embeddings while maintaining the balance of accuracy and model complexity. More specifically, we find by enhancing the classical triplet loss together with cross-entropy loss, our method can explore the hard examples and build a discriminant feature embedding yet compact enough for large-scale applications. Our method is carried out progressively using Bayesian optimization, and we call it the Progressive Learning Algorithm (PLA). Extensive experiments on three large-scale datasets show that our PLA is comparable or better than the state-of-the-arts. Especially, on the challenging Market-1501 dataset, we achieve Rank-1=94.7\%/mAP=89.4\% while saving at least 30\% parameters than strong part models.

Siamese Graph Convolution Network for Face Sketch Recognition

Liang Fan, Xianfang Sun, Paul Rosin

Responsive image

Auto-TLDR; A novel Siamese graph convolution network for face sketch recognition

Slides Poster Similar

In this paper, we present a novel Siamese graph convolution network (GCN) for face sketch recognition. To build a graph from an image, we utilize a deep learning method to detect the image edges, and then use a superpixel method to segment the edge image. Each segmented superpixel region is taken as a node, and each pair of adjacent regions forms an edge of the graph. Graphs from both a face sketch and a face photo are input into the Siamese GCN for recognition. A deep graph matching method is used to share messages between cross-modal graphs in this model. Experiments show that the GCN can obtain high performance on several face photo-sketch datasets, including seen and unseen face photo-sketch datasets. It is also shown that the model performance based on the graph structure representation of the data using the Siamese GCN is more stable than a Siamese CNN model.

N2D: (Not Too) Deep Clustering Via Clustering the Local Manifold of an Autoencoded Embedding

Ryan Mcconville, Raul Santos-Rodriguez, Robert Piechocki, Ian Craddock

Responsive image

Auto-TLDR; Local Manifold Learning for Deep Clustering on Autoencoded Embeddings

Slides Similar

Deep clustering has increasingly been demonstrating superiority over conventional shallow clustering algorithms. Deep clustering algorithms usually combine representation learning with deep neural networks to achieve this performance, typically optimizing a clustering and non-clustering loss. In such cases, an autoencoder is typically connected with a clustering network, and the final clustering is jointly learned by both the autoencoder and clustering network. Instead, we propose to learn an autoencoded embedding and then search this further for the underlying manifold. For simplicity, we then cluster this with a shallow clustering algorithm, rather than a deeper network. We study a number of local and global manifold learning methods on both the raw data and autoencoded embedding, concluding that UMAP in our framework is able to find the best clusterable manifold of the embedding. This suggests that local manifold learning on an autoencoded embedding is effective for discovering higher quality clusters. We quantitatively show across a range of image and time-series datasets that our method has competitive performance against the latest deep clustering algorithms, including out-performing current state-of-the-art on several. We postulate that these results show a promising research direction for deep clustering. The code can be found at https://github.com/rymc/n2d.

DFH-GAN: A Deep Face Hashing with Generative Adversarial Network

Bo Xiao, Lanxiang Zhou, Yifei Wang, Qiangfang Xu

Responsive image

Auto-TLDR; Deep Face Hashing with GAN for Face Image Retrieval

Slides Poster Similar

Face Image retrieval is one of the key research directions in computer vision field. Thanks to the rapid development of deep neural network in recent years, deep hashing has achieved good performance in the field of image retrieval. But for large-scale face image retrieval, the performance needs to be further improved. In this paper, we propose Deep Face Hashing with GAN (DFH-GAN), a novel deep hashing method for face image retrieval, which mainly consists of three components: a generator network for generating synthesized images, a discriminator network with a shared CNN to learn multi-domain face feature, and a hash encoding network to generate compact binary hash codes. The generator network is used to perform data augmentation so that the model could learn from both real images and diverse synthesized images. We adopt a two-stage training strategy. In the first stage, the GAN is trained to generate fake images, while in the second stage, to make the network convergence faster. The model inherits the trained shared CNN of discriminator to train the DFH model by using many different supervised loss functions not only in the last layer but also in the middle layer of the network. Extensive experiments on two widely used datasets demonstrate that DFH-GAN can generate high-quality binary hash codes and exceed the performance of the state-of-the-art model greatly.

Object Classification of Remote Sensing Images Based on Optimized Projection Supervised Discrete Hashing

Qianqian Zhang, Yazhou Liu, Quansen Sun

Responsive image

Auto-TLDR; Optimized Projection Supervised Discrete Hashing for Large-Scale Remote Sensing Image Object Classification

Slides Poster Similar

Recently, with the increasing number of large-scale remote sensing images, the demand for large-scale remote sensing image object classification is growing and attracting the interest of many researchers. Hashing, because of its low memory requirements and high time efficiency, has been widely solve the problem of large-scale remote sensing image. Supervised hashing methods mainly leverage the label information of remote sensing image to learn hash function, however, the similarity of the original feature space cannot be well preserved, which can not meet the accurate requirements for object classification of remote sensing image. To solve the mentioned problem, we propose a novel method named Optimized Projection Supervised Discrete Hashing(OPSDH), which jointly learns a discrete binary codes generation and optimized projection constraint model. It uses an effective optimized projection method to further constraint the supervised hash learning and generated hash codes preserve the similarity based on the data label while retaining the similarity of the original feature space. The experimental results show that OPSDH reaches improved performance compared with the existing hash learning methods and demonstrate that the proposed method is more efficient for operational applications