Classification of Spatially Enriched Pixel Time Series with Convolutional Neural Networks

Mohamed Chelali, Camille Kurtz, Anne Puissant, Nicole Vincent

Responsive image

Auto-TLDR; Spatio-Temporal Features Extraction from Satellite Image Time Series Using Random Walk

Slides Poster

Satellite Image Time Series (SITS), MRI sequences, and more generally image time series, constitute 2D+t data providing spatial and temporal information about an observed scene. Given a pattern recognition task such as image classification, considering jointly such rich information is crucial during the decision process. Nevertheless, due to the complex representation of the data-cube, spatio-temporal features extraction from 2D+t data remains difficult to handle. We present in this article an approach to learn such features from this data, and then to proceed to their classification. Our strategy consists in enriching pixel time series with spatial information. It is based on Random Walk to build a novel segment-based representation of the data, passing from a 2D+t dimension to a 2D one, without loosing too much spatial information. Such new representation is then involved in an end-to-end learning process with a classical 2D Convolutional Neural Network (CNN) in order to learn spatio-temporal features for the classification of image time series. Our approach is evaluated on a remote sensing application for the mapping of agricultural crops. Thanks to a visual attention mechanism, the proposed $2D$ spatio-temporal representation makes also easier the interpretation of a SITS to understand spatio-temporal phenomenons related to soil management practices.

Similar papers

Force Banner for the Recognition of Spatial Relations

Robin Deléarde, Camille Kurtz, Laurent Wendling, Philippe Dejean

Responsive image

Auto-TLDR; Spatial Relation Recognition using Force Banners

Slides Similar

Studying the spatial organization of objects in images is fundamental to increase both the understanding of the sensed scene and the accuracy of the perceived similarity between images. This often leads to the problem of spatial relation recognition: given two objects depicted in an image, what is their spatial relation? In this article, we consider this as a classification problem. Instead of considering directly the original image space (or imaging features) to predict the spatial relation, we propose a novel intermediate representation (called Force Banner) modeling rich spatial information between pairs of objects composing a scene. Such a representation captures the relative position between objects using a panel of forces (attraction and repulsion), that take into account the structural shapes of the objects and their distance in a directional fashion. Force Banners are used to feed a classical 2D Convolutional Neural Network (CNN) for the recognition of spatial relations, benefiting from pre-trained models and fine-tuning. Experimental results obtained on a dataset of images with various shapes highlight the interest of this approach, and in particular its benefit to describe spatial information.

The Color Out of Space: Learning Self-Supervised Representations for Earth Observation Imagery

Stefano Vincenzi, Angelo Porrello, Pietro Buzzega, Marco Cipriano, Pietro Fronte, Roberto Cuccu, Carla Ippoliti, Annamaria Conte, Simone Calderara

Responsive image

Auto-TLDR; Satellite Image Representation Learning for Remote Sensing

Slides Poster Similar

The recent growth in the number of satellite images fosters the development of effective deep-learning techniques for Remote Sensing (RS). However, their full potential is untapped due to the lack of large annotated datasets. Such a problem is usually countered by fine-tuning a feature extractor that is previously trained on the ImageNet dataset. Unfortunately, the domain of natural images differs from the RS one, which hinders the final performance. In this work, we propose to learn meaningful representations from satellite imagery, leveraging its high-dimensionality spectral bands to reconstruct the visible colors. We conduct experiments on land cover classification (BigEarthNet) and West Nile Virus detection, showing that colorization is a solid pretext task for training a feature extractor. Furthermore, we qualitatively observe that guesses based on natural images and colorization rely on different parts of the input. This paves the way to an ensemble model that eventually outperforms both the above-mentioned techniques.

On Morphological Hierarchies for Image Sequences

Caglayan Tuna, Alain Giros, François Merciol, Sébastien Lefèvre

Responsive image

Auto-TLDR; Comparison of Hierarchies for Image Sequences

Slides Poster Similar

Morphological hierarchies form a popular framework aiming at emphasizing the multiscale structure of digital image by performing an unsupervised spatial partitioning of the data. These hierarchies have been recently extended to cope with image sequences, and different strategies have been proposed to allow their construction from spatio-temporal data. In this paper, we compare these hierarchical representation strategies for image sequences according to their structural properties. We introduce a projection method to make these representations comparable. Furthermore, we extend one of these recent strategies in order to obtain more efficient hierarchical representations for image sequences. Experiments were conducted on both synthetic and real datasets, the latter being made of satellite image time series. We show that building one hierarchy by using spatial and temporal information together is more efficient comparing to other existing strategies.

3D Attention Mechanism for Fine-Grained Classification of Table Tennis Strokes Using a Twin Spatio-Temporal Convolutional Neural Networks

Pierre-Etienne Martin, Jenny Benois-Pineau, Renaud Péteri, Julien Morlier

Responsive image

Auto-TLDR; Attentional Blocks for Action Recognition in Table Tennis Strokes

Slides Poster Similar

The paper addresses the problem of recognition of actions in video with low inter-class variability such as Table Tennis strokes. Two stream, "twin" convolutional neural networks are used with 3D convolutions both on RGB data and optical flow. Actions are recognized by classification of temporal windows. We introduce 3D attention modules and examine their impact on classification efficiency. In the context of the study of sportsmen performances, a corpus of the particular actions of table tennis strokes is considered. The use of attention blocks in the network speeds up the training step and improves the classification scores up to 5% with our twin model. We visualize the impact on the obtained features and notice correlation between attention and player movements and position. Score comparison of state-of-the-art action classification method and proposed approach with attentional blocks is performed on the corpus. Proposed model with attention blocks outperforms previous model without them and our baseline.

One Step Clustering Based on A-Contrario Framework for Detection of Alterations in Historical Violins

Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, Marco Malagodi

Responsive image

Auto-TLDR; A-Contrario Clustering for the Detection of Altered Violins using UVIFL Images

Slides Poster Similar

Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of interventions necessary. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the ``Violins UVIFL imagery'' dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with the state of the art clustering methods shows improved overall precision and recall.

Multi-Scanning Based Recurrent Neural Network for Hyperspectral Image Classification

Weilian Zhou, Sei-Ichiro Kamata

Responsive image

Auto-TLDR; Spatial-Spectral Unification for Hyperspectral Image Classification

Slides Poster Similar

As the specialty of hyperspectral image (HSI), it consists of 2D spatial and 1D spectral information. In the field of deep learning, HSI classification is an appealing research topic. Many existing methods process the HSI in spatial or spectral domain separately, which cannot fully extract the representative features and the most used 3D convolutional neural network (3D-CNN) will suffer from mixing up complex spectral information. In this paper, we propose a spatial-spectral unified method by using recurrent neural networks (RNN) and multi-scanning direction strategy to construct spatial-spectral information sequences for learning the spatial dependencies among the central pixel and neighboring pixels. Meanwhile, residual connections and dense connections are introduced into multi-scanning direction sequences to overcome the memory problem in the RNN. The proposed method is tested on two benchmark datasets: the Pavia University dataset and the Pavia Center dataset. The experimental results demonstrate that the proposed method can achieve better classification rate than other state-of-the-art methods.

Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster Similar

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.

Exploring Spatial-Temporal Representations for fNIRS-based Intimacy Detection via an Attention-enhanced Cascade Convolutional Recurrent Neural Network

Chao Li, Qian Zhang, Ziping Zhao

Responsive image

Auto-TLDR; Intimate Relationship Prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network Using Functional Near-Infrared Spectroscopy

Slides Poster Similar

The detection of intimacy plays a crucial role in the improvement of intimate relationship, which contributes to promote the family and social harmony. Previous studies have shown that different degrees of intimacy have significant differences in brain imaging. Recently, a few of work has emerged to recognise intimacy automatically by using machine learning technique. Moreover, considering the temporal dynamic characteristics of intimacy relationship on neural mechanism, how to model spatio-temporal dynamics for intimacy prediction effectively is still a challenge. In this paper, we propose a novel method to explore deep spatial-temporal representations for intimacy prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network (ACCRNN). Given the advantages of time-frequency resolution in complex neuronal activities analysis, this paper utilizes functional near-infrared spectroscopy (fNIRS) to analyse and infer to intimate relationship. We collect a fNIRS-based dataset for the analysis of intimate relationship. Forty-two-channel fNIRS signals are recorded from the 44 subjects' prefrontal cortex when they watched a total of 18 photos of lovers, friends and strangers for 30 seconds per photo. The experimental results show that our proposed method outperforms the others in terms of accuracy with the precision of 96.5%. To the best of our knowledge, this is the first time that such a hybrid deep architecture has been employed for fNIRS-based intimacy prediction.

SDMA: Saliency Driven Mutual Cross Attention for Multi-Variate Time Series

Yash Garg, K. Selcuk Candan

Responsive image

Auto-TLDR; Salient-Driven Mutual Cross Attention for Intelligent Time Series Analytics

Slides Poster Similar

Integration of rich sensory technologies into critical applications, such as gesture recognition and building energy optimization, has highlighted the importance of intelligent time series analytics. To accommodate this demand, uni-variate approaches have been extended for multi-variate scenarios, but naive extensions have lead to deterioration in model performances due to their limited ability to capture the information recorded in different variates and complex multi-variate time series patterns’ evolution over time. Furthermore, real-world time series are often contaminated with noisy information. In this paper, we note that a time series often carry robust localized temporal events that could help improve model performance by highlighting the relevant information; however, the lack of sufficient data to train for these events make it impossible for neural architectures to identify and make use of these temporal events. We, therefore, argue that a companion process helping identify salient events in the input time series and driving model’s attention to the associated salient sub-sequences can help with learning a high-performing network. Relying on this observation, we propose a novel Saliency-Driven Mutual Cross Attention (SDMA) framework that extracts localized temporal events and generate a saliency series to complement the input time series. We further propose an architecture which accounts for the mutual cross-talk between the input and saliency series branches where input and saliency series attend each other. Experiments show that the proposed mutually-cross attention framework can offer significant boosts in model performance when compared against non-attentioned, conventionally attentioned, and conventionally cross-attentioned models.

Machine-Learned Regularization and Polygonization of Building Segmentation Masks

Stefano Zorzi, Ksenia Bittner, Friedrich Fraundorfer

Responsive image

Auto-TLDR; Automatic Regularization and Polygonization of Building Segmentation masks using Generative Adversarial Network

Slides Poster Similar

We propose a machine learning based approach for automatic regularization and polygonization of building segmentation masks. Taking an image as input, we first predict building segmentation maps exploiting generic fully convolutional network (FCN). A generative adversarial network (GAN) is then involved to perform a regularization of building boundaries to make them more realistic, i.e., having more rectilinear outlines which construct right angles if required. This is achieved through the interplay between the discriminator which gives a probability of input image being true and generator that learns from discriminator’s response to create more realistic images. Finally, we train the backbone convolutional neural network (CNN) which is adapted to predict sparse outcomes corresponding to building corners out of regularized building segmentation results. Experiments on three building segmentation datasets demonstrate that the proposed method is not only capable of obtaining accurate results, but also of producing visually pleasing building outlines parameterized as polygons.

Detecting Marine Species in Echograms Via Traditional, Hybrid, and Deep Learning Frameworks

Porto Marques Tunai, Alireza Rezvanifar, Melissa Cote, Alexandra Branzan Albu, Kaan Ersahin, Todd Mudge, Stephane Gauthier

Responsive image

Auto-TLDR; End-to-End Deep Learning for Echogram Interpretation of Marine Species in Echograms

Slides Poster Similar

This paper provides a comprehensive comparative study of traditional, hybrid, and deep learning (DL) methods for detecting marine species in echograms. Acoustic backscatter data obtained from multi-frequency echosounders is visualized as echograms and typically interpreted by marine biologists via manual or semi-automatic methods, which are time-consuming. Challenges related to automatic echogram interpretation are the variable size and acoustic properties of the biological targets (marine life), along with significant inter-class similarities. Our study explores and compares three types of approaches that cover the entire range of machine learning methods. Based on our experimental results, we conclude that an end-to-end DL-based framework, that can be readily scaled to accommodate new species, is overall preferable to other learning approaches for echogram interpretation, even when only a limited number of annotated training samples is available.

SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit Detection

Zhihua Li, Zheng Zhang, Lijun Yin

Responsive image

Auto-TLDR; Temporal Fusion and Self-Attention Network for Facial Action Unit Detection

Slides Poster Similar

Research on facial action unit detection has shown remarkable performances by using deep spatial learning models in recent years, however, it is far from reaching its full capacity in learning due to the lack of use of temporal information of AUs across time. Since the AU occurrence in one frame is highly likely related to previous frames in a temporal sequence, exploring temporal correlation of AUs across frames becomes a key motivation of this work. In this paper, we propose a novel temporal fusion and AU-supervised self-attention network (a so-called SAT-Net) to address the AU detection problem. First of all, we input the deep features of a sequence into a convolutional LSTM network and fuse the previous temporal information into the feature map of the last frame, and continue to learn the AU occurrence. Second, considering the AU detection problem is a multi-label classification problem that individual label depends only on certain facial areas, we propose a new self-learned attention mask by focusing the detection of each AU on parts of facial areas through the learning of individual attention mask for each AU, thus increasing the AU independence without the loss of any spatial relations. Our extensive experiments show that the proposed framework achieves better results of AU detection over the state-of-the-arts on two benchmark databases (BP4D and DISFA).

Enhancing Deep Semantic Segmentation of RGB-D Data with Entangled Forests

Matteo Terreran, Elia Bonetto, Stefano Ghidoni

Responsive image

Auto-TLDR; FuseNet: A Lighter Deep Learning Model for Semantic Segmentation

Slides Poster Similar

Semantic segmentation is a problem which is getting more and more attention in the computer vision community. Nowadays, deep learning methods represent the state of the art to solve this problem, and the trend is to use deeper networks to get higher performance. The drawback with such models is a higher computational cost, which makes it difficult to integrate them on mobile robot platforms. In this work we want to explore how to obtain lighter deep learning models without compromising performance. To do so we will consider the features used in the Entangled Random Forest algorithm and we will study the best strategies to integrate these within FuseNet deep network. Such new features allow us to shrink the network size without loosing performance, obtaining hence a lighter model which achieves state-of-the-art performance on the semantic segmentation task and represents an interesting alternative for mobile robotics applications, where computational power and energy are limited.

Late Fusion of Bayesian and Convolutional Models for Action Recognition

Camille Maurice, Francisco Madrigal, Frederic Lerasle

Responsive image

Auto-TLDR; Fusion of Deep Neural Network and Bayesian-based Approach for Temporal Action Recognition

Slides Poster Similar

The activities we do in our daily-life are generally carried out as a succession of atomic actions, following a logical order. During a video sequence, actions usually follow a logical order. In this paper, we propose a hybrid approach resulting from the fusion of a deep learning neural network with a Bayesian-based approach. The latter models human-object interactions and transition between actions. The key idea is to combine both approaches in the final prediction. We validate our strategy in two public datasets: CAD-120 and Watch-n-Patch. We show that our fusion approach yields performance gains in accuracy of respectively +4\% and +6\% over a baseline approach. Temporal action recognition performances are clearly improved by the fusion, especially when classes are imbalanced.

Trainable Spectrally Initializable Matrix Transformations in Convolutional Neural Networks

Michele Alberti, Angela Botros, Schuetz Narayan, Rolf Ingold, Marcus Liwicki, Mathias Seuret

Responsive image

Auto-TLDR; Trainable and Spectrally Initializable Matrix Transformations for Neural Networks

Slides Poster Similar

In this work, we introduce a new architectural component to Neural Networks (NN), i.e., trainable and spectrally initializable matrix transformations on feature maps. While previous literature has already demonstrated the possibility of adding static spectral transformations as feature processors, our focus is on more general trainable transforms. We study the transforms in various architectural configurations on four datasets of different nature: from medical (ColorectalHist, HAM10000) and natural (Flowers) images to historical documents (CB55). With rigorous experiments that control for the number of parameters and randomness, we show that networks utilizing the introduced matrix transformations outperform vanilla neural networks. The observed accuracy increases appreciably across all datasets. In addition, we show that the benefit of spectral initialization leads to significantly faster convergence, as opposed to randomly initialized matrix transformations. The transformations are implemented as auto-differentiable PyTorch modules that can be incorporated into any neural network architecture. The entire code base is open-source.

Documents Counterfeit Detection through a Deep Learning Approach

Darwin Danilo Saire Pilco, Salvatore Tabbone

Responsive image

Auto-TLDR; End-to-End Learning for Counterfeit Documents Detection using Deep Neural Network

Slides Poster Similar

The main topic of this work is on the detection of counterfeit documents and especially banknotes. We propose an end-to-end learning model using a deep learning approach based on Adapnet++ which manages feature extraction at multiple scale levels using several residual units. Unlike previous models based on regions of interest (ROI) and high-resolution documents, our network is feed with simple input images (i.e., a single patch) and we do not need high resolution images. Besides, discriminative regions can be visualized at different scales. Our network learns by itself which regions of interest predict the better results. Experimental results show that we are competitive compared with the state-of-the-art and our deep neural network has good ability to generalize and can be applied to other kind of documents like identity or administrative one.

Space-Time Domain Tensor Neural Networks: An Application on Human Pose Classification

Konstantinos Makantasis, Athanasios Voulodimos, Anastasios Doulamis, Nikolaos Doulamis, Nikolaos Bakalos

Responsive image

Auto-TLDR; Tensor-Based Neural Network for Spatiotemporal Pose Classifiaction using Three-Dimensional Skeleton Data

Slides Poster Similar

Recent advances in sensing technologies require the design and development of pattern recognition models capable of processing spatiotemporal data efficiently. In this study, we propose a spatially and temporally aware tensor-based neural network for human pose classifiaction using three-dimensional skeleton data. Our model employs three novel components. First, an input layer capable of constructing highly discriminative spatiotemporal features. Second, a tensor fusion operation that produces compact yet rich representations of the data, and third, a tensor-based neural network that processes data representations in their original tensor form. Our model is end-to-end trainable and characterized by a small number of trainable parameters making it suitable for problems where the annotated data is limited. Experimental evaluation of the proposed model indicates that it can achieve state-of-the-art performance.

Estimation of Abundance and Distribution of SaltMarsh Plants from Images Using Deep Learning

Jayant Parashar, Suchendra Bhandarkar, Jacob Simon, Brian Hopkinson, Steven Pennings

Responsive image

Auto-TLDR; CNN-based approaches to automated plant identification and localization in salt marsh images

Poster Similar

Recent advances in computer vision and machine learning, most notably deep convolutional neural networks (CNNs), are exploited to identify and localize various plant species in salt marsh images. Three different approaches are explored that provide estimations of abundance and spatial distribution at varying levels of granularity in terms of spatial resolution. In the coarsest-grained approach, CNNs are tasked with identifying which of six plant species are present/absent in large patches within the salt marsh images. CNNs with diverse topological properties and attention mechanisms are shown capable of providing accurate estimations with >90 % precision and recall in the case of the more abundant plant species whereas the performance declines for less common plant species. Estimation of percent cover of each plant species is performed at a finer spatial resolution, where smaller image patches are extracted and the CNNs tasked with identifying the plant species or substrate at the center of the image patch. For the percent cover estimation task, the CNNs are observed to exhibit a performance profile similar to that for the presence/absence estimation task, but with an ~ 5-10% reduction in precision and recall. Finally, fine-grained estimation of the spatial distribution of the various plant species is performed via semantic segmentation. The Deeplab-V3 semantic segmentation architecture is observed to provide very accurate estimations for abundant plant species; however,a significant degradation in performance is observed in the case of less abundant plant species and, in extreme cases, rare plant classes are seen to be ignored entirely. Overall, a clear trade-off is observed between the CNN estimation quality and the spatial resolution of the underlying estimation thereby offering guidance for ecological applications of CNN-based approaches to automated plant identification and localization in salt marsh images.

Towards Tackling Multi-Label Imbalances in Remote Sensing Imagery

Dominik Koßmann, Thorsten Wilhelm, Gernot Fink

Responsive image

Auto-TLDR; Class imbalance in land cover datasets using attribute encoding schemes

Slides Poster Similar

Recent advances in automated image analysis have lead to an increased number of proposed datasets in remote sensing applications. This permits the successful employment of data hungry state-of-the-art deep neural networks. However, the Earth is not covered equally by semantically meaningful classes. Thus, many land cover datasets suffer from a severe class imbalance. We show that by taking appropriate measures, the performance in the minority classes can be improved by up to 30 percent without affecting the performance in the majority classes strongly. Additionally, we investigate the use of an attribute encoding scheme to represent the inherent class hierarchies commonly observed in land cover analysis.

Creating Classifier Ensembles through Meta-Heuristic Algorithms for Aerial Scene Classification

Álvaro Roberto Ferreira Jr., Gustavo Gustavo Henrique De Rosa, Joao Paulo Papa, Gustavo Carneiro, Fabio Augusto Faria

Responsive image

Auto-TLDR; Univariate Marginal Distribution Algorithm for Aerial Scene Classification Using Meta-Heuristic Optimization

Slides Poster Similar

Aerial scene classification is a challenging task to be solved in the remote sensing area, whereas deep learning approaches, such as Convolutional Neural Networks (CNN), are being widely employed to overcome such a problem. Nevertheless, it is not straightforward to find single CNN models that can solve all aerial scene classification tasks, allowing the nurturing of a better alternative, which is to fuse CNN-based classifiers into an ensemble. However, an appropriate choice of the classifiers that will belong to the ensemble is a critical factor, as it is unfeasible to employ all the possible classifiers in the literature. Therefore, this work proposes a novel framework based on meta-heuristic optimization for creating optimized-ensembles in the context of aerial scene classification. The experimental results were performed across nine meta-heuristic algorithms and three aerial scene literature datasets, being compared in terms of effectiveness (accuracy), efficiency (execution time), and behavioral performance in different scenarios. Finally, one can observe that the Univariate Marginal Distribution Algorithm (UMDA) overcame popular literature meta-heuristic algorithms, such as Genetic Programming and Particle Swarm Optimization considering the adopted criteria in the performed experiments.

Relevance Detection in Cataract Surgery Videos by Spatio-Temporal Action Localization

Negin Ghamsarian, Mario Taschwer, Doris Putzgruber, Stephanie. Sarny, Klaus Schoeffmann

Responsive image

Auto-TLDR; relevance-based retrieval in cataract surgery videos

Slides Similar

In cataract surgery, the operation is performed with the help of a microscope. Since the microscope enables watching real-time surgery by up to two people only, a major part of surgical training is conducted using the recorded videos. To optimize the training procedure with the video content, the surgeons require an automatic relevance detection approach. In addition to relevance-based retrieval, these results can be further used for skill assessment and irregularity detection in cataract surgery videos. In this paper, a three-module framework is proposed to detect and classify the relevant phase segments in cataract videos. Taking advantage of an idle frame recognition network, the video is divided into idle and action segments. To boost the performance in relevance detection Mask R-CNN is utilized to detect the cornea in each frame where the relevant surgical actions are conducted. The spatio-temporal localized segments containing higher-resolution information about the pupil texture and actions, and complementary temporal information from the same phase are fed into the relevance detection module. This module consists of four parallel recurrent CNNs being responsible to detect four relevant phases that have been defined with medical experts. The results will then be integrated to classify the action phases as irrelevant or one of four relevant phases. Experimental results reveal that the proposed approach outperforms static CNNs and different configurations of feature-based and end-to-end recurrent networks.

Motion U-Net: Multi-Cue Encoder-Decoder Network for Motion Segmentation

Gani Rahmon, Filiz Bunyak, Kannappan Palaniappan

Responsive image

Auto-TLDR; Motion U-Net: A Deep Learning Framework for Robust Moving Object Detection under Challenging Conditions

Slides Poster Similar

Detection of moving objects is a critical first step in many computer vision applications. Several algorithms for motion and change detection were proposed. However, many of these approaches lack the ability to handle challenging real-world scenarios. Recently, deep learning approaches started to produce impressive solutions to computer vision tasks, particularly for detection and segmentation. Many existing deep learning networks proposed for moving object detection rely only on spatial appearance cues. In this paper, we propose a novel multi-cue and multi-stream network, Motion U-Net (MU-Net), which integrates motion, change, and appearance cues using a deep learning framework for robust moving object detection under challenging conditions. The proposed network consists of a two-stream encoder module followed by feature concatenation and a decoder module. Motion and change cues are computed through our tensor-based motion estimation and a multi-modal background subtraction modules. The proposed system was tested and evaluated on the change detection challenge datasets (CDnet-2014) and compared to state-of-the-art methods. On CDnet-2014 dataset, our approach reaches an average overall F-measure of 0.9852 and outperforms all current state-of-the-art methods. The network was also tested on the unseen SBI-2015 dataset and produced promising results.

Attention Pyramid Module for Scene Recognition

Zhinan Qiao, Xiaohui Yuan, Chengyuan Zhuang, Abolfazl Meyarian

Responsive image

Auto-TLDR; Attention Pyramid Module for Multi-Scale Scene Recognition

Slides Poster Similar

The unrestricted open vocabulary and diverse substances of scenery images bring significant challenges to scene recognition. However, most deep learning architectures and attention methods are developed on general-purpose datasets and omit the characteristics of scene data. In this paper, we exploit the attention pyramid module (APM) to tackle the predicament of scene recognition. Our method streamlines the multi-scale scene recognition pipeline, learns comprehensive scene features at various scales and locations, addresses the interdependency among scales, and further assists feature re-calibration as well as aggregation process. APM is extremely light-weighted and can be easily plugged into existing network architectures in a parameter-efficient manner. By simply integrating APM into ResNet-50, we obtain a 3.54\% boost in terms of top-1 accuracy on the benchmark scene dataset. Comprehensive experiments show that APM achieves better performance comparing with state-of-the-art attention methods using significant less computation budget. Code and pre-trained models will be made publicly available.

Modeling Long-Term Interactions to Enhance Action Recognition

Alejandro Cartas, Petia Radeva, Mariella Dimiccoli

Responsive image

Auto-TLDR; A Hierarchical Long Short-Term Memory Network for Action Recognition in Egocentric Videos

Slides Poster Similar

In this paper, we propose a new approach to understand actions in egocentric videos that exploit the semantics of object interactions at both frame and temporal levels. At the frame level, we use a region-based approach that takes as input a primary region roughly corresponding to the user hands and a set of secondary regions potentially corresponding to the interacting objects and calculates the action score through a CNN formulation. This information is then fed to a Hierarchical Long Short-Term Memory Network (HLSTM) that captures temporal dependencies between actions within and across shots. Ablation studies thoroughly validate the proposed approach, showing in particular that both levels of the HLSTM architecture contribute to performance improvement. Furthermore, quantitative comparisons show that the proposed approach outperforms the state-of-the-art in terms of action recognition on standard benchmarks, without relying on motion information.

A Detection-Based Approach to Multiview Action Classification in Infants

Carolina Pacheco, Effrosyni Mavroudi, Elena Kokkoni, Herbert Tanner, Rene Vidal

Responsive image

Auto-TLDR; Multiview Action Classification for Infants in a Pediatric Rehabilitation Environment

Slides Similar

Activity recognition in children and infants is important in applications such as safety monitoring, behavior assessment, and child-robot interaction, among others. However, it differs from activity recognition in adults not only because body poses and proportions are different, but also because of the way in which actions are performed. This paper addresses the problem of infant action classification (up to 2 years old) in challenging conditions. The actions are performed in a pediatric rehabilitation environment in which not only infants but also robots and adults are present, with the infant being one of the smallest actors in the scene. We propose a multiview action classification system based on Faster R-CNN and LSTM networks, which fuses information from different views by using learnable fusion coefficients derived from detection confidence scores. The proposed system is view-independent, learns features that are close to view-invariant, and can handle new or missing views at test time. Our approach outperforms the state-of-the-art baseline model for this dataset by 11.4% in terms of average classification accuracy in four classes (crawl, sit, stand and walk). Moreover, experiments in a extended dataset from 6 subjects (8 to 24 months old) show that the proposed fusion strategy outperforms the best post-processing fusion strategy by 2.5% and 6.8% average classification accuracy in Leave One Super-session Out and Leave One Subject Out cross-validation, respectively.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

Bridging the Gap between Natural and Medical Images through Deep Colorization

Lia Morra, Luca Piano, Fabrizio Lamberti, Tatiana Tommasi

Responsive image

Auto-TLDR; Transfer Learning for Diagnosis on X-ray Images Using Color Adaptation

Slides Poster Similar

Deep learning has thrived by training on large-scale datasets. However, in many applications, as for medical image diagnosis, getting massive amount of data is still prohibitive due to privacy, lack of acquisition homogeneity and annotation cost. In this scenario transfer learning from natural image collections is a standard practice that attempts to tackle shape, texture and color discrepancy all at once through pretrained model fine-tuning. In this work we propose to disentangle those challenges and design a dedicated network module that focuses on color adaptation. We combine learning from scratch of the color module with transfer learning of different classification backbones obtaining an end-to-end, easy-to-train architecture for diagnostic image recognition on X-ray images. Extensive experiments show how our approach is particularly efficient in case of data scarcity and provides a new path for further transferring the learned color information across multiple medical datasets.

Video Face Manipulation Detection through Ensemble of CNNs

Nicolo Bonettini, Edoardo Daniele Cannas, Sara Mandelli, Luca Bondi, Paolo Bestagini, Stefano Tubaro

Responsive image

Auto-TLDR; Face Manipulation Detection in Video Sequences Using Convolutional Neural Networks

Slides Similar

In the last few years, several techniques for facial manipulation in videos have been successfully developed and made available to the masses (i.e., FaceSwap, deepfake, etc.). These methods enable anyone to easily edit faces in video sequences with incredibly realistic results and a very little effort. Despite the usefulness of these tools in many fields, if used maliciously, they can have a significantly bad impact on society (e.g., fake news spreading, cyber bullying through fake revenge porn). The ability of objectively detecting whether a face has been manipulated in a video sequence is then a task of utmost importance. In this paper, we tackle the problem of face manipulation detection in video sequences targeting modern facial manipulation techniques. In particular, we study the ensembling of different trained Convolutional Neural Network (CNN) models. In the proposed solution, different models are obtained starting from a base network (i.e., EfficientNetB4) making use of two different concepts: (i) attention layers; (ii) siamese training. We show that combining these networks leads to promising face manipulation detection results on two publicly available datasets with more than 119000 videos.

Global-Local Attention Network for Semantic Segmentation in Aerial Images

Minglong Li, Lianlei Shan, Weiqiang Wang

Responsive image

Auto-TLDR; GLANet: Global-Local Attention Network for Semantic Segmentation

Slides Poster Similar

Errors in semantic segmentation task could be classified into two types: large area misclassification and local inaccurate boundaries. Previously attention based methods capture rich global contextual information, this is beneficial to diminish the first type of error, but local imprecision still exists. In this paper we propose Global-Local Attention Network (GLANet) with a simultaneous consideration of global context and local details. Specifically, our GLANet is composed of two branches namely global attention branch and local attention branch, and three different modules are embedded in the two branches for the purpose of modeling semantic interdependencies in spatial, channel and boundary dimensions respectively. We sum the outputs of the two branches to further improve feature representation, leading to more precise segmentation results. The proposed method achieves very competitive segmentation accuracy on two public aerial image datasets, bringing significant improvements over baseline.

ESResNet: Environmental Sound Classification Based on Visual Domain Models

Andrey Guzhov, Federico Raue, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Environmental Sound Classification with Short-Time Fourier Transform Spectrograms

Slides Poster Similar

Environmental Sound Classification (ESC) is an active research area in the audio domain and has seen a lot of progress in the past years. However, many of the existing approaches achieve high accuracy by relying on domain-specific features and architectures, making it harder to benefit from advances in other fields (e.g., the image domain). Additionally, some of the past successes have been attributed to a discrepancy of how results are evaluated (i.e., on unofficial splits of the UrbanSound8K (US8K) dataset), distorting the overall progression of the field. The contribution of this paper is twofold. First, we present a model that is inherently compatible with mono and stereo sound inputs. Our model is based on simple log-power Short-Time Fourier Transform (STFT) spectrograms and combines them with several well-known approaches from the image domain (i.e., ResNet, Siamese-like networks and attention). We investigate the influence of cross-domain pre-training, architectural changes, and evaluate our model on standard datasets. We find that our model out-performs all previously known approaches in a fair comparison by achieving accuracies of 97.0 % (ESC-10), 91.5 % (ESC-50) and 84.2 % / 85.4 % (US8K mono / stereo). Second, we provide a comprehensive overview of the actual state of the field, by differentiating several previously reported results on the US8K dataset between official or unofficial splits. For better reproducibility, our code (including any re-implementations) is made available.

Automatic Semantic Segmentation of Structural Elements related to the Spinal Cord in the Lumbar Region by Using Convolutional Neural Networks

Jhon Jairo Sáenz Gamboa, Maria De La Iglesia-Vaya, Jon Ander Gómez

Responsive image

Auto-TLDR; Semantic Segmentation of Lumbar Spine Using Convolutional Neural Networks

Slides Poster Similar

This work addresses the problem of automatically segmenting the MR images corresponding to the lumbar spine. The purpose is to detect and delimit the different structural elements like vertebrae, intervertebral discs, nerves, blood vessels, etc. This task is known as semantic segmentation. The approach proposed in this work is based on convolutional neural networks whose output is a mask where each pixel from the input image is classified into one of the possible classes. Classes were defined by radiologists and correspond to structural elements and tissues. The proposed network architectures are variants of the U-Net. Several complementary blocks were used to define the variants: spatial attention models, deep supervision and multi-kernels at input, this last block type is based on the idea of inception. Those architectures which got the best results are described in this paper, and their results are discussed. Two of the proposed architectures outperform the standard U-Net used as baseline.

Deep Transfer Learning for Alzheimer’s Disease Detection

Nicole Cilia, Claudio De Stefano, Francesco Fontanella, Claudio Marrocco, Mario Molinara, Alessandra Scotto Di Freca

Responsive image

Auto-TLDR; Automatic Detection of Handwriting Alterations for Alzheimer's Disease Diagnosis using Dynamic Features

Slides Poster Similar

Early detection of Alzheimer’s Disease (AD) is essential in order to initiate therapies that can reduce the effects of such a disease, improving both life quality and life expectancy of patients. Among all the activities carried out in our daily life, handwriting seems one of the first to be influenced by the arise of neurodegenerative diseases. For this reason, the analysis of handwriting and the study of its alterations has become of great interest in this research field in order to make a diagnosis as early as possible. In recent years, many studies have tried to use classification algorithms applied to handwritings to implement decision support systems for AD diagnosis. A key issue for the use of these techniques is the detection of effective features, that allow the system to distinguish the natural handwriting alterations due to age, from those caused by neurodegenerative disorders. In this context, many interesting results have been published in the literature in which the features have been typically selected by hand, generally considering the dynamics of the handwriting process in order to detect motor disorders closely related to AD. Features directly derived from handwriting generation models can be also very helpful for AD diagnosis. It should be remarked, however, that the above features do not consider changes in the shape of handwritten traces, which may occur as a consequence of neurodegenerative diseases, as well as the correlation among shape alterations and changes in the dynamics of the handwriting process. Moving from these considerations, the aim of this study is to verify if the combined use of both shape and dynamic features allows a decision support system to improve performance for AD diagnosis. To this purpose, starting from a database of on-line handwriting samples, we generated for each of them a synthetic off-line colour image, where the colour of each elementary trait encodes, in the three RGB channels, the dynamic information associated to that trait. Finally, we exploited the capability of Deep Neural Networks (DNN) to automatically extract features from raw images. The experimental comparison of the results obtained by using standard features and features extracted according the above procedure, confirmed the effectiveness of our approach.

Epileptic Seizure Prediction: A Semi-Dilated Convolutional Neural Network Architecture

Ramy Hussein, Rabab K. Ward, Soojin Lee, Martin Mckeown

Responsive image

Auto-TLDR; Semi-Dilated Convolutional Network for Seizure Prediction using EEG Scalograms

Poster Similar

Despite many recent advances in machine learning and time-series classification, accurate prediction of seizures remains elusive. In this work, we develop a convolutional network module that uses Electroencephalogram (EEG) scalograms to distinguish between the pre-seizure and normal brain activities. Since the EEG scalogram takes rectangular image format with many more temporal bins than spectral bins, the presented module uses "semi-dilated convolutions" to also create a proportional non-square receptive field. The proposed semi-dilated convolutions support exponential expansion of the receptive field over the long dimension (image width, i.e. time) while maintaining high resolution over the short dimension (image height, i.e., frequency). The proposed architecture comprises a set of co-operative semi-dilated convolutional blocks, each block has a stack of parallel semi-dilated convolutional modules with different dilation rates. Results show that our proposed seizure prediction solution outperforms the state-of-the-art methods, achieving a seizure prediction sensitivity of 88.45% and 89.52% for the American Epilepsy Society and Melbourne University EEG datasets, respectively.

Rotation Invariant Aerial Image Retrieval with Group Convolutional Metric Learning

Hyunseung Chung, Woo-Jeoung Nam, Seong-Whan Lee

Responsive image

Auto-TLDR; Robust Remote Sensing Image Retrieval Using Group Convolution with Attention Mechanism and Metric Learning

Slides Poster Similar

Remote sensing image retrieval (RSIR) is the process of ranking database images depending on the degree of similarity compared to the query image. As the complexity of RSIR increases due to the diversity in shooting range, angle, and location of remote sensors, there is an increasing demand for methods to address these issues and improve retrieval performance. In this work, we introduce a novel method for retrieving aerial images by merging group convolution with attention mechanism and metric learning, resulting in robustness to rotational variations. For refinement and emphasis on important features, we applied channel attention in each group convolution stage. By utilizing the characteristics of group convolution and channel-wise attention, it is possible to acknowledge the equality among rotated but identically located images. The training procedure has two main steps: (i) training the network with Aerial Image Dataset (AID) for classification, (ii) fine-tuning the network with triplet-loss for retrieval with Google Earth South Korea and NWPU-RESISC45 datasets. Results show that the proposed method performance exceeds other state-of-the-art retrieval methods in both rotated and original environments. Furthermore, we utilize class activation maps (CAM) to visualize the distinct difference of main features between our method and baseline, resulting in better adaptability in rotated environments.

Transformer Networks for Trajectory Forecasting

Francesco Giuliari, Hasan Irtiza, Marco Cristani, Fabio Galasso

Responsive image

Auto-TLDR; TransformerNetworks for Trajectory Prediction of People Interactions

Slides Poster Similar

Most recent successes on forecasting the people mo-tion are based on LSTM models andallmost recent progress hasbeen achieved by modelling the social interaction among peopleand the people interaction with the scene. We question the useof the LSTM models and propose the novel use of TransformerNetworks for trajectory forecasting. This is a fundamental switchfrom the sequential step-by-step processing of LSTMs to theonly-attention-based memory mechanisms of Transformers. Inparticular, we consider both the original Transformer Network(TF) and the larger Bidirectional Transformer (BERT), state-of-the-art on all natural language processing tasks. Our proposedTransformers predict the trajectories of the individual peoplein the scene. These are “simple” models because each personis modelled separately without any complex human-human norscene interaction terms. In particular, the TF modelwithoutbells and whistlesyields the best score on the largest and mostchallenging trajectory forecasting benchmark of TrajNet [1]. Ad-ditionally, its extension which predicts multiple plausible futuretrajectories performs on par with more engineered techniqueson the 5 datasets of ETH [2]+UCY [3]. Finally, we showthat Transformers may deal with missing observations, as itmay be the case with real sensor data. Code is available atgithub.com/FGiuliari/Trajectory-Transformer

Video Semantic Segmentation Using Deep Multi-View Representation Learning

Akrem Sellami, Salvatore Tabbone

Responsive image

Auto-TLDR; Deep Multi-view Representation Learning for Video Object Segmentation

Slides Poster Similar

In this paper, we propose a deep learning model based on deep multi-view representation learning, to address the video object segmentation task. The proposed model emphasizes the importance of the inherent correlation between video frames and incorporates a multi-view representation learning based on deep canonically correlated autoencoders. The multi-view representation learning in our model provides an efficient mechanism for capturing inherent correlations by jointly extracting useful features and learning better representation into a joint feature space, i.e., shared representation. To increase the training data and the learning capacity, we train the proposed model with pairs of video frames, i.e., $F_{a}$ and $F_{b}$. During the segmentation phase, the deep canonically correlated autoencoders model encodes useful features by processing multiple reference frames together, which is used to detect the frequently reappearing. Our model enhances the state-of-the-art deep learning-based methods that mainly focus on learning discriminative foreground representations over appearance and motion. Experimental results over two large benchmarks demonstrate the ability of the proposed method to outperform competitive approaches and to reach good performances, in terms of semantic segmentation.

Multi-Branch Attention Networks for Classifying Galaxy Clusters

Yu Zhang, Gongbo Liang, Yuanyuan Su, Nathan Jacobs

Responsive image

Auto-TLDR; Multi-branch Attention Networks for Classification of Galaxy Clusters

Slides Poster Similar

This paper addresses the task of classifying galaxy clusters, which are the largest known objects in the Universe. Galaxy Clusters can be categorized into cool-core (CC), weak-cool-core (WCC), and non-cool-core (NCC) clusters, defined by their central cooling times. Conventional approaches in astrophysics for conducting such classification are through measuring their surface brightness concentrations or central gas densities, which are inaccurate. Off-the-shelf deep learning approaches for solving this problem would be taking entire images as inputs and predicting cluster types directly. However, this strategy is limited in that central cooling times are usually related to only small informative regions near the center, and feeding unrelated outer regions into the network may hurt the performance. In this work, we propose multi-branch attention networks that utilize attention and bivariate Gaussian distribution to identify the galaxy cluster type. Our loss function is designed by encompassing our domain knowledge that the central cooling time of three different types of galaxy clusters (CC, WCC, NCC) varies continuously. To train our model, we take advantage of simulated X-ray emissivity images, which contains 954 projections of 318 clusters. Experimental results demonstrate that our method outperforms the baseline method and can be applied to classify large galaxy images accurately.

A Comparison of Neural Network Approaches for Melanoma Classification

Maria Frasca, Michele Nappi, Michele Risi, Genoveffa Tortora, Alessia Auriemma Citarella

Responsive image

Auto-TLDR; Classification of Melanoma Using Deep Neural Network Methodologies

Slides Poster Similar

Melanoma is the deadliest form of skin cancer and it is diagnosed mainly visually, starting from initial clinical screening and followed by dermoscopic analysis, biopsy and histopathological examination. A dermatologist’s recognition of melanoma may be subject to errors and may take some time to diagnose it. In this regard, deep learning can be useful in the study and classification of skin cancer. In particular, by classifying images with Deep Neural Network methodologies, it is possible to obtain comparable or even superior results compared to those of dermatologists. In this paper, we propose a methodology for the classification of melanoma by adopting different deep learning techniques applied to a common dataset, composed of images from the ISIC dataset and consisting of different types of skin diseases, including melanoma on which we applied a specific pre-processing phase. In particular, a comparison of the results is performed in order to select the best effective neural network to be applied to the problem of recognition and classification of melanoma. Moreover, we also evaluate the impact of the pre- processing phase on the final classification. Different metrics such as accuracy, sensitivity, and specificity have been selected to assess the goodness of the adopted neural networks and compare them also with the manual classification of dermatologists.

A Grid-Based Representation for Human Action Recognition

Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Responsive image

Auto-TLDR; GRAR: Grid-based Representation for Action Recognition in Videos

Slides Poster Similar

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

Probability Guided Maxout

Claudio Ferrari, Stefano Berretti, Alberto Del Bimbo

Responsive image

Auto-TLDR; Probability Guided Maxout for CNN Training

Slides Poster Similar

In this paper, we propose an original CNN training strategy that brings together ideas from both dropout-like regularization methods and solutions that learn discriminative features. We propose a dropping criterion that, differently from dropout and its variants, is deterministic rather than random. It grounds on the empirical evidence that feature descriptors with larger $L2$-norm and highly-active nodes are strongly correlated to confident class predictions. Thus, our criterion guides towards dropping a percentage of the most active nodes of the descriptors, proportionally to the estimated class probability. We simultaneously train a per-sample scaling factor to balance the expected output across training and inference. This further allows us to keep high the descriptor's L2-norm, which we show enforces confident predictions. The combination of these two strategies resulted in our ``Probability Guided Maxout'' solution that acts as a training regularizer. We prove the above behaviors by reporting extensive image classification results on the CIFAR10, CIFAR100, and Caltech256 datasets.

A Systematic Investigation on Deep Architectures for Automatic Skin Lesions Classification

Pierluigi Carcagni, Marco Leo, Andrea Cuna, Giuseppe Celeste, Cosimo Distante

Responsive image

Auto-TLDR; RegNet: Deep Investigation of Convolutional Neural Networks for Automatic Classification of Skin Lesions

Slides Poster Similar

Computer vision-based techniques are more and more employed in healthcare and medical fields nowadays in order, principally, to be as a support to the experienced medical staff to help them to make a quick and correct diagnosis. One of the hot topics in this arena concerns the automatic classification of skin lesions. Several promising works exist about it, mainly leveraging Convolutional Neural Networks (CNN), but proposed pipeline mainly rely on complex data preprocessing and there is no systematic investigation about how available deep models can actually reach the accuracy needed for real applications. In order to overcome these drawbacks, in this work, an end-to-end pipeline is introduced and some of the most recent Convolutional Neural Networks (CNNs) architectures are included in it and compared on the largest common benchmark dataset recently introduced. To this aim, for the first time in this application context, a new network design paradigm, namely RegNet, has been exploited to get the best models among a population of configurations. The paper introduces a threefold level of contribution and novelty with respect the previous literature: the deep investigation of several CNN architectures driving to a consistent improvement of the lesions recognition accuracy, the exploitation of a new network design paradigm able to study the behavior of populations of models and a deep discussion about pro and cons of each analyzed method paving the path towards new research lines.

Recognizing Bengali Word Images - A Zero-Shot Learning Perspective

Sukalpa Chanda, Daniël Arjen Willem Haitink, Prashant Kumar Prasad, Jochem Baas, Umapada Pal, Lambert Schomaker

Responsive image

Auto-TLDR; Zero-Shot Learning for Word Recognition in Bengali Script

Slides Poster Similar

Zero-Shot Learning(ZSL) techniques could classify a completely unseen class, which it has never seen before during training. Thus, making it more apt for any real-life classification problem, where it is not possible to train a system with annotated data for all possible class types. This work investigates recognition of word images written in Bengali Script in a ZSL framework. The proposed approach performs Zero-Shot word recognition by coupling deep learned features procured from VGG16 architecture along with 13 basic shapes/stroke primitives commonly observed in Bengali script characters. As per the notion of ZSL framework those 13 basic shapes are termed as “Signature Attributes”. The obtained results are promising while evaluation was carried out in a Five-Fold cross-validation setup dealing with samples from 250 word classes.

Attention Based Coupled Framework for Road and Pothole Segmentation

Shaik Masihullah, Ritu Garg, Prerana Mukherjee, Anupama Ray

Responsive image

Auto-TLDR; Few Shot Learning for Road and Pothole Segmentation on KITTI and IDD

Slides Poster Similar

In this paper, we propose a novel attention based coupled framework for road and pothole segmentation. In many developing countries as well as in rural areas, the drivable areas are neither well-defined, nor well-maintained. Under such circumstances, an Advance Driver Assistant System (ADAS) is needed to assess the drivable area and alert about the potholes ahead to ensure vehicle safety. Moreover, this information can also be used in structured environments for assessment and maintenance of road health. We demonstrate few shot learning approach for pothole detection to leverage accuracy even with fewer training samples. We report the exhaustive experimental results for road segmentation on KITTI and IDD datasets. We also present pothole segmentation on IDD.

Attention-Driven Body Pose Encoding for Human Activity Recognition

Bappaditya Debnath, Swagat Kumar, Marry O'Brien, Ardhendu Behera

Responsive image

Auto-TLDR; Attention-based Body Pose Encoding for Human Activity Recognition

Slides Poster Similar

This article proposes a novel attention-based body pose encoding for human activity recognition. Most of the existing human activity recognition approaches based on 3D pose data often enrich the input data using additional handcrafted representations such as velocity, super normal vectors, pairwise relations, and so on. The enriched data complements the 3D body joint position data and improves the model performance. In this paper, we propose a novel approach that learns enhanced feature representations from a given sequence of 3D body joints. To achieve this, the approach exploits two body pose streams: 1) a spatial stream which encodes the spatial relationship between various body joints at each time point to learn spatial structure involving the spatial distribution of different body joints 2) a temporal stream that learns the temporal variation of individual body joints over the entire sequence duration to present a temporally enhanced representation. Afterwards, these two pose streams are fused with a multi-head attention mechanism. We also capture the contextual information from the RGB video stream using a deep Convolutional Neural Network (CNN) model combined with a multi-head attention and a bidirectional Long Short-Term Memory (LSTM) network. Finally, the RGB video stream is combined with the fused body pose stream to give a novel end-to-end deep model for effective human activity recognition. The proposed model is evaluated on three datasets including the challenging NTU-RGBD dataset and achieves state-of-the-art results.

Which are the factors affecting the performance of audio surveillance systems?

Antonio Greco, Antonio Roberto, Alessia Saggese, Mario Vento

Responsive image

Auto-TLDR; Sound Event Recognition Using Convolutional Neural Networks and Visual Representations on MIVIA Audio Events

Slides Similar

Sound event recognition systems are rapidly becoming part of our life, since they can be profitably used in several vertical markets, ranging from audio security applications to scene classification and multi-modal analysis in social robotics. In the last years, a not negligible part of the scientific community started to apply Convolutional Neural Networks (CNNs) to image-based representations of the audio stream, due to their successful adoption in almost all the computer vision tasks. In this paper, we carry out a detailed benchmark of various widely used CNN architectures and visual representations on a popular dataset, namely the MIVIA Audio Events database. Our analysis is aimed at understanding how these factors affect the sound event recognition performance with a particular focus on the false positive rate, very relevant in audio surveillance solutions. In fact, although most of the proposed solutions achieve a high recognition rate, the capability of distinguishing the events-of-interest from the background is often not yet sufficient for real systems, and prevent its usage in real applications. Our comprehensive experimental analysis investigates this aspect and allows to identify useful design guidelines for increasing the specificity of sound event recognition systems.

Single View Learning in Action Recognition

Gaurvi Goyal, Nicoletta Noceti, Francesca Odone

Responsive image

Auto-TLDR; Cross-View Action Recognition Using Domain Adaptation for Knowledge Transfer

Slides Poster Similar

Viewpoint is an essential aspect of how an action is visually perceived, with the motion appearing substantially different for some viewpoint pairs. Data driven action recognition algorithms compensate for this by including a variety of viewpoints in their training data, adding to the cost of data acquisition as well as training. We propose a novel methodology that leverages deeply pretrained features to learn actions from a single viewpoint using domain adaptation for knowledge transfer. We demonstrate the effectiveness of this pipeline on 3 different datasets: IXMAS, MoCA and NTU RGBD+, and compare with both classical and deep learning methods. Our method requires low training data and demonstrates unparalleled cross-view action recognition accuracies for single view learning.

Joint Supervised and Self-Supervised Learning for 3D Real World Challenges

Antonio Alliegro, Davide Boscaini, Tatiana Tommasi

Responsive image

Auto-TLDR; Self-supervision for 3D Shape Classification and Segmentation in Point Clouds

Slides Similar

Point cloud processing and 3D shape understanding are very challenging tasks for which deep learning techniques have demonstrated great potentials. Still further progresses are essential to allow artificial intelligent agents to interact with the real world. In many practical conditions the amount of annotated data may be limited and integrating new sources of knowledge becomes crucial to support autonomous learning. Here we consider several scenarios involving synthetic and real world point clouds where supervised learning fails due to data scarcity and large domain gaps. We propose to enrich standard feature representations by leveraging self-supervision through a multi-task model that can solve a 3D puzzle while learning the main task of shape classification or part segmentation. An extensive analysis investigating few-shot, transfer learning and cross-domain settings shows the effectiveness of our approach with state-of-the-art results for 3D shape classification and part segmentation.

Human or Machine? It Is Not What You Write, but How You Write It

Luis Leiva, Moises Diaz, M.A. Ferrer, Réjean Plamondon

Responsive image

Auto-TLDR; Behavioral Biometrics via Handwritten Symbols for Identification and Verification

Slides Poster Similar

Online fraud often involves identity theft. Since most security measures are weak or can be spoofed, we investigate a more nuanced and less explored avenue: behavioral biometrics via handwriting movements. This kind of data can be used to verify if a legitimate user is operating a device or a computer application, so it is important to distinguish between human and machine-generated movements reliably. For this purpose, we study handwritten symbols (isolated characters, digits, gestures, and signatures) produced by humans and machines, and compare and contrast several deep learning models. We find that if symbols are presented as static images, they can fool state-of-the-art classifiers (near 75% accuracy in the best case) but can be distinguished with remarkable accuracy if they are presented as temporal sequences (95% accuracy in the average case). We conclude that an accurate detection of fake movements has more to do with how users write, rather than what they write. Our work has implications for computerized systems that need to authenticate or verify legitimate human users, and provides an additional layer of security to keep attackers at bay.