Single Image Super-Resolution with Dynamic Residual Connection

Karam Park, Jae Woong Soh, Nam Ik Cho

Responsive image

Auto-TLDR; Dynamic Residual Attention Network for Lightweight Single Image Super-Residual Networks

Slides Poster

Deep convolutional neural networks have shown significant improvement in the single image super-resolution (SISR) field. Recently, there have been attempts to solve the SISR problem using lightweight networks, considering limited computational resources for real-world applications. Especially for lightweight networks, balancing between parameter demand and performance is very difficult to adjust, and most lightweight SISR networks are manually designed based on a huge number of brute-force experiments. Besides, a critical key to the network performance relies on the skip connection of building blocks that are repeatedly in the architecture. Notably, in previous works, these connections are pre-defined and manually determined by human researchers. Hence, they are less flexible to the input image statistics, and there can be a better solution for the given number of parameters. Therefore, we focus on the automated design of networks regarding the connection of basic building blocks (residual networks), and as a result, propose a dynamic residual attention network (DRAN). The proposed method allows the network to dynamically select residual paths depending on the input image, based on the idea of attention mechanism. For this, we design a dynamic residual module that determines the residual paths between the basic building blocks for the given input image. By finding optimal residual paths between the blocks, the network can selectively bypass informative features needed to reconstruct the target high-resolution (HR) image. Experimental results show that our proposed DRAN outperforms most of the existing state-of-the-arts lightweight models in SISR.

Similar papers

LiNet: A Lightweight Network for Image Super Resolution

Armin Mehri, Parichehr Behjati Ardakani, Angel D. Sappa

Responsive image

Auto-TLDR; LiNet: A Compact Dense Network for Lightweight Super Resolution

Slides Poster Similar

This paper proposes a new lightweight network, LiNet, that enhancing technical efficiency in lightweight super resolution and operating approximately like very large and costly networks in terms of number of network parameters and operations. The proposed architecture allows the network to learn more abstract properties by avoiding low-level information via multiple links. LiNet introduces a Compact Dense Module, which contains set of inner and outer blocks, to efficiently extract meaningful information, to better leverage multi-level representations before upsampling stage, and to allow an efficient information and gradient flow within the network. Experiments on benchmark datasets show that the proposed LiNet achieves favorable performance against lightweight state-of-the-art methods.

Residual Fractal Network for Single Image Super Resolution by Widening and Deepening

Jiahang Gu, Zhaowei Qu, Xiaoru Wang, Jiawang Dan, Junwei Sun

Responsive image

Auto-TLDR; Residual fractal convolutional network for single image super-resolution

Slides Poster Similar

The architecture of the convolutional neural network (CNN) plays an important role in single image super-resolution (SISR). However, most models proposed in recent years usually transplant methods or architectures that perform well in other vision fields. Thence they do not combine the characteristics of super-resolution (SR) and ignore the key information brought by the recurring texture feature in the image. To utilize patch-recurrence in SR and the high correlation of texture, we propose a residual fractal convolutional block (RFCB) and expand its depth and width to obtain residual fractal network (RFN), which contains deep residual fractal network (DRFN) and wide residual fractal network (WRFN). RFCB is recursive with multiple branches of magnified receptive field. Through the phased feature fusion module, the network focuses on extracting high-frequency texture feature that repeatedly appear in the image. We also introduce residual in residual (RIR) structure to RFCB that enables abundant low-frequency feature feed into deeper layers and reduce the difficulties of network training. RFN is the first supervised learning method to combine the patch-recurrence characteristic in SISR into network design. Extensive experiments demonstrate that RFN outperforms state-of-the-art SISR methods in terms of both quantitative metrics and visual quality, while the amount of parameters has been greatly optimized.

RSAN: Residual Subtraction and Attention Network for Single Image Super-Resolution

Shuo Wei, Xin Sun, Haoran Zhao, Junyu Dong

Responsive image

Auto-TLDR; RSAN: Residual subtraction and attention network for super-resolution

Slides Similar

The single-image super-resolution (SISR) aims to recover a potential high-resolution image from its low-resolution version. Recently, deep learning-based methods have played a significant role in super-resolution field due to its effectiveness and efficiency. However, most of the SISR methods neglect the importance among the feature map channels. Moreover, they can not eliminate the redundant noises, making the output image be blurred. In this paper, we propose the residual subtraction and attention network (RSAN) for powerful feature expression and channels importance learning. More specifically, RSAN firstly implements one redundance removal module to learn noise information in the feature map and subtract noise through residual learning. Then it introduces the channel attention module to amplify high-frequency information and suppress the weight of effectless channels. Experimental results on extensive public benchmarks demonstrate our RSAN achieves significant improvement over the previous SISR methods in terms of both quantitative metrics and visual quality.

Hierarchically Aggregated Residual Transformation for Single Image Super Resolution

Zejiang Hou, Sy Kung

Responsive image

Auto-TLDR; HARTnet: Hierarchically Aggregated Residual Transformation for Multi-Scale Super-resolution

Slides Poster Similar

Visual patterns usually appear at different scales/sizes in natural images. Multi-scale feature representation is of great importance for the single-image super-resolution(SISR) task to reconstruct image objects at different scales.However, such characteristic has been rarely considered by CNN-based SISR methods. In this work, we propose a novel build-ing block, i.e. hierarchically aggregated residual transformation(HART), to achieve multi-scale feature representation in each layer of the network. Within each HART block, we connect multiple convolutions in a hierarchical residual-like manner, which greatly expands the range of effective receptive fields and helps to detect image features at different scales. To theoretically understand the proposed HART block, we recast SISR as an optimal control problem and show that HART effectively approximates the classical4th-order Runge-Kutta method, which has the merit of small local truncation error for solving numerical ordinary differential equation. By cascading the proposed HART blocks, we establish our high-performing HARTnet. Comparedwith existing SR state-of-the-arts (including those in NTIRE2019 SR Challenge leaderboard), the proposed HARTnet demonstrates consistent PSNR/SSIM performance improvements on various benchmark datasets under different degradation models.Moreover, HARTnet can efficiently restore more faithful high-resolution images than comparative SR methods (cf. Figure 1).

Progressive Splitting and Upscaling Structure for Super-Resolution

Qiang Li, Tao Dai, Shutao Xia

Responsive image

Auto-TLDR; PSUS: Progressive and Upscaling Layer for Single Image Super-Resolution

Slides Poster Similar

Recently, very deep convolutional neural networks (CNNs) have shown great success in single image super-resolution (SISR). Most of these methods focus on the design of network architecture and adopt a sub-pixel convolution layer at the end of network, but few have paid attention to exploring potential representation ability of upscaling layer. Sub-pixel convolution layer aggregates several low resolution (LR) feature maps and builds super-resolution (SR) images in a single step. However, those LR feature maps share similar patterns as they are extracted from a single trunk network. We believe that the mapping relationships between input image and each LR feature map are not consistent. Inspired by this, we propose a novel progressive splitting and upscaling structure, termed PSUS, which generates decoupled feature maps for upscaling layer to get better SR image. Experiments show that our method can not only speed up the convergence, but also achieve considerable improvement on image quality with fewer parameters and lower computational complexity.

Efficient Super Resolution by Recursive Aggregation

Zhengxiong Luo Zhengxiong Luo, Yan Huang, Shang Li, Liang Wang, Tieniu Tan

Responsive image

Auto-TLDR; Recursive Aggregation Network for Efficient Deep Super Resolution

Slides Poster Similar

Deep neural networks have achieved remarkable results on image super resolution (SR), but the efficiency problem of deep SR networks is rarely studied. We experimentally find that many sequentially stacked convolutional blocks in nowadays SR networks are far from being fully optimized, which largely damages their overall efficiency. It indicates that comparable or even better results could be achieved with less but sufficiently optimized blocks. In this paper, we try to construct more efficient SR model via the proposed recursive aggregation network (RAN). It recursively aggregates convolutional blocks in different orders, and avoids too many sequentially stacked blocks. In this way, multiple shortcuts are introduced in RAN, and help gradients easier flow to all inner layers, even for very deep SR networks. As a result, all blocks in RAN can be better optimized, thus RAN can achieve better performance with smaller model size than existing methods.

Neural Architecture Search for Image Super-Resolution Using Densely Connected Search Space: DeCoNAS

Joon Young Ahn, Nam Ik Cho

Responsive image

Auto-TLDR; DeCoNASNet: Automated Neural Architecture Search for Super-Resolution

Slides Poster Similar

Abstract—The recent progress of deep convolutional neural networks has enabled great success in single image superresolution (SISR) and many other vision tasks. Their performances are also being increased by deepening the networks and developing more sophisticated network structures. However, finding an optimal structure for the given problem is a difficult task, even for human experts. For this reason, neural architecture search (NAS) methods have been introduced, which automate the procedure of constructing the structures. In this paper, we expand the NAS to the super-resolution domain and find a lightweight densely connected network named DeCoNASNet. We use a hierarchical search strategy to find the best connection with local and global features. In this process, we define a complexitybased penalty for solving image super-resolution, which can be considered a multi-objective problem. Experiments show that our DeCoNASNet outperforms the state-of-the-art lightweight superresolution networks designed by handcraft methods and existing NAS-based design.

DID: A Nested Dense in Dense Structure with Variable Local Dense Blocks for Super-Resolution Image Reconstruction

Longxi Li, Hesen Feng, Bing Zheng, Lihong Ma, Jing Tian

Responsive image

Auto-TLDR; DID: Deep Super-Residual Dense Network for Image Super-resolution Reconstruction

Slides Poster Similar

The success of single image super-resolution reconstruction (SR) relies on a refined mapping from low-resolution (LR) examples to high-resolution (HR) signals. However, the relation is sometimes chaos, especially in a deep SR network. We try to improve the mapping interpretability in two folds: i) The variable local dense blocks (VLDB) are suggested to match receptive fields in different depths of a residual dense network (RDN), with each VLDB a dyadic increment of layer numbers than its predecessor. ii) Based on VLDBs, a dense in dense (DID) network is created. It substitutes nodes in a regular RDN with super nodes, i.e. VLDBs; and formulates a joint learning by flexible hierarchical feature scaling, reusing and long-short term aggregating. VLDBs deal with feature underfitting occurred when a big receptive field meets a fixed-depth dense block, and the DID network provides a relative complete feature dictionary to preserve details for feature shift, dilating and grouping in high dimension image reconstruction. To demonstrate the validness of DID structure, detail experiments are performed on the benchmark datasets Set5, Set14, B100 and Urban100, where the accuracy PSNR and the visual perceptive SSIM are superior to most state-of-the-art methods. Besides, due to the depth adaption of VLDBs and its nesting in generalized RDN,DID network is converged easily and gradient explosion or disappearance are alleviated even when network deepens.

Boosting High-Level Vision with Joint Compression Artifacts Reduction and Super-Resolution

Xiaoyu Xiang, Qian Lin, Jan Allebach

Responsive image

Auto-TLDR; A Context-Aware Joint CAR and SR Neural Network for High-Resolution Text Recognition and Face Detection

Slides Poster Similar

Due to the limits of bandwidth and storage space, digital images are usually down-scaled and compressed when transmitted over networks, resulting in loss of details and jarring artifacts that can lower the performance of high-level visual tasks. In this paper, we aim to generate an artifact-free high-resolution image from a low-resolution one compressed with an arbitrary quality factor by exploring joint compression artifacts reduction (CAR) and super-resolution (SR) tasks. First, we propose a context-aware joint CAR and SR neural network (CAJNN) that integrates both local and non-local features to solve CAR and SR in one-stage. Finally, a deep reconstruction network is adopted to predict high quality and high-resolution images. Evaluation on CAR and SR benchmark datasets shows that our CAJNN model outperforms previous methods and also takes 26.2% less runtime. Based on this model, we explore addressing two critical challenges in high-level computer vision: optical character recognition of low-resolution texts, and extremely tiny face detection. We demonstrate that CAJNN can serve as an effective image preprocessing method and improve the accuracy for real-scene text recognition (from 85.30% to 85.75%) and the average precision for tiny face detection (from 0.317 to 0.611).

Wavelet Attention Embedding Networks for Video Super-Resolution

Young-Ju Choi, Young-Woon Lee, Byung-Gyu Kim

Responsive image

Auto-TLDR; Wavelet Attention Embedding Network for Video Super-Resolution

Slides Poster Similar

Recently, Video super-resolution (VSR) has become more crucial as the resolution of display has been grown. The majority of deep learning-based VSR methods combine the convolutional neural networks (CNN) with motion compensation or alignment module to estimate high-resolution (HR) frame from low-resolution (LR) frames. However, most of previous methods deal with the spatial features equally and may result in the misaligned temporal features by pixel-based motion compensation and alignment module. It can lead to the damaging effect on the accuracy of the estimated HR feature. In this paper, we propose a wavelet attention embedding network (WAEN), including wavelet embedding network (WENet) and attention embedding network (AENet), to fully exploit the spatio-temporal informative features. The WENet is operated as a spatial feature extractor of individual low and high-frequency information based on 2-D Haar discrete wavelet transform. The meaningful temporal feature is extracted in the AENet through utilizing the weighted attention map between frames. Experimental results demonstrate that the proposed method achieves superior performance compared with state-of-the-art methods.

Cross-Layer Information Refining Network for Single Image Super-Resolution

Hongyi Zhang, Wen Lu, Xiaopeng Sun

Responsive image

Auto-TLDR; Interlaced Spatial Attention Block for Single Image Super-Resolution

Slides Poster Similar

Recently, deep learning-based image super-resolution (SR) has made a remarkable progress. However, previous SR methods rarely focus on the correlation between adjacent layers, which leads to underutilization of the information extracted by each convolutional layer. To address these problem, we design a simple and efficient cross-layer information refining network (CIRN) for single image super-resolution. Concretely, we propose the interlaced spatial attention block (ISAB) to measure the correlation between the adjacent layers feature maps and adaptively rescale spatial-wise features for refining the information. Owing to the two stage information propagation strategy, the CIRN can distill the primary information of adjacent layers without introducing too many parameters. Extensive experiments on benchmark datasets illustrate that our method achieves better accuracy than state-of-the-art methods even in 16× scale, spcifically it has a better banlance between performance and parameters.

Deep Iterative Residual Convolutional Network for Single Image Super-Resolution

Rao Muhammad Umer, Gian Luca Foresti, Christian Micheloni

Responsive image

Auto-TLDR; ISRResCNet: Deep Iterative Super-Resolution Residual Convolutional Network for Single Image Super-resolution

Slides Similar

Deep convolutional neural networks (CNNs) have recently achieved great success for single image super-resolution (SISR) task due to their powerful feature representation capabilities. Most recent deep learning based SISR methods focus on designing deeper / wider models to learn the non-linear mapping between low-resolution (LR) inputs and the high-resolution (HR) outputs. These existing SR methods do not take into account the image observation (physical) model and thus require a large number of network's trainable parameters with a huge volume of training data. To address these issues, we propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet) that exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach. Extensive experimental results on various super-resolution benchmarks demonstrate that our method with a few trainable parameters improves results for different scaling factors in comparison with the state-of-art methods.

Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search

Chu Xiangxiang, Bo Zhang, Micheal Ma Hailong, Ruijun Xu, Jixiang Li, Qingyuan Li

Responsive image

Auto-TLDR; Multi-Objective Neural Architecture Search for Super-Resolution

Slides Poster Similar

Deep convolutional neural networks demonstrate impressive results in the super-resolution domain. A series of studies concentrate on improving peak signal noise ratio (PSNR) by using much deeper layers, which are not friendly to constrained resources. Pursuing a trade-off between the restoration capacity and the simplicity of models is still non-trivial. Recent contributions are struggling to manually maximize this balance, while our work achieves the same goal automatically with neural architecture search. Specifically, we handle super-resolution with a multi-objective approach. We also propose an elastic search tactic at both micro and macro level, based on a hybrid controller that profits from evolutionary computation and reinforcement learning. Quantitative experiments help us to draw a conclusion that our generated models dominate most of the state-of-the-art methods with respect to the individual FLOPS.

On-Device Text Image Super Resolution

Dhruval Jain, Arun Prabhu, Gopi Ramena, Manoj Goyal, Debi Mohanty, Naresh Purre, Sukumar Moharana

Responsive image

Auto-TLDR; A Novel Deep Neural Network for Super-Resolution on Low Resolution Text Images

Slides Poster Similar

Recent research on super-resolution (SR) has wit- nessed major developments with the advancements of deep convolutional neural networks. There is a need for information extraction from scenic text images or even document images on device, most of which are low-resolution (LR) images. Therefore, SR becomes an essential pre-processing step as Bicubic Upsampling, which is conventionally present in smartphones, performs poorly on LR images. To give the user more control over his privacy, and to reduce the carbon footprint by reducing the overhead of cloud computing and hours of GPU usage, executing SR models on the edge is a necessity in the recent times. There are various challenges in running and optimizing a model on resource-constrained platforms like smartphones. In this paper, we present a novel deep neural network that reconstructs sharper character edges and thus boosts OCR confidence. The proposed architecture not only achieves significant improvement in PSNR over bicubic upsampling on various benchmark datasets but also runs with an average inference time of 11.7 ms per image. We have outperformed state-of-the-art on the Text330 dataset. We also achieve an OCR accuracy of 75.89% on the ICDAR 2015 TextSR dataset, where ground truth has an accuracy of 78.10%.

Face Super-Resolution Network with Incremental Enhancement of Facial Parsing Information

Shuang Liu, Chengyi Xiong, Zhirong Gao

Responsive image

Auto-TLDR; Learning-based Face Super-Resolution with Incremental Boosting Facial Parsing Information

Slides Poster Similar

Recently, facial priors based face super-resolution (SR) methods have obtained significant performance gains in dealing with extremely degraded facial images, and facial priors have also been proved useful in facilitating the inference of face images. Based on this, how to fully fuse facial priors into deep features to improve face SR performance has attracted a major attention. In this paper, we propose a learning-based face SR approach with incremental boosting facial parsing information (IFPSR) for high-magnification of low-resolution faces. The proposed IFPSR method consists of three main parts: i) a three-stage parsing map embedded features upsampling network, in which image recovery and prior estimation processes are performed simultaneously and progressively to improve the image resolution; ii) a progressive training method and a joint facial attention and heatmap loss to obtain better facial attributes; iii) the channel attention strategy in residual dense blocks to adaptively learn facial features. Extensive experimental results show that compared with the state-of-the-art methods in terms of quantitative and qualitative metrics, our approach can achieve an outstanding balance between SR image quality and low network complexity.

Deep Universal Blind Image Denoising

Jae Woong Soh, Nam Ik Cho

Responsive image

Auto-TLDR; Image Denoising with Deep Convolutional Neural Networks

Slides Similar

Image denoising is an essential part of many image processing and computer vision tasks due to inevitable noise corruption during image acquisition. Traditionally, many researchers have investigated image priors for the denoising, within the Bayesian perspective based on image properties and statistics. Recently, deep convolutional neural networks (CNNs) have shown great success in image denoising by incorporating large-scale synthetic datasets. However, they both have pros and cons. While the deep CNNs are powerful for removing the noise with known statistics, they tend to lack flexibility and practicality for the blind and real-world noise. Moreover, they cannot easily employ explicit priors. On the other hand, traditional non-learning methods can involve explicit image priors, but they require considerable computation time and cannot exploit large-scale external datasets. In this paper, we present a CNN-based method that leverages the advantages of both methods based on the Bayesian perspective. Concretely, we divide the blind image denoising problem into sub-problems and conquer each inference problem separately. As the CNN is a powerful tool for inference, our method is rooted in CNNs and propose a novel design of network for efficient inference. With our proposed method, we can successfully remove blind and real-world noise, with a moderate number of parameters of universal CNN.

OCT Image Segmentation Using NeuralArchitecture Search and SRGAN

Saba Heidari, Omid Dehzangi, Nasser M. Nasarabadi, Ali Rezai

Responsive image

Auto-TLDR; Automatic Segmentation of Retinal Layers in Optical Coherence Tomography using Neural Architecture Search

Poster Similar

Alzheimer’s disease (AD) diagnosis is one of the major research areas in computational medicine. Optical coherence tomography (OCT) is a non-invasive, inexpensive, and timely efficient method that scans the human’s retina with depth. It has been hypothesized that the thickness of the retinal layers extracted from OCTs could be an efficient and effective biomarker for early diagnosis of AD. In this work, we aim to design a self-training model architecture for the task of segmenting the retinal layers in OCT scans. Neural architecture search (NAS) is a subfield of AutoML domain, which has a significant impact on improving the accuracy of machine vision tasks. We integrate the NAS algorithm with a Unet auto-encoder architecture as its backbone. Then, we employ our proposed model to segment the retinal nerve fiber layer in our preprocessed OCT images with the aim of AD diagnosis. In this work, we trained a super-resolution generative adversarial network on the raw OCT scans to improve the quality of the images before the modeling stage. In our architecture search strategy, different primitive operations suggested to find down- \& up-sampling Unet cell blocks and the binary gate method has been applied to make the search strategy more practical. Our architecture search method is empirically evaluated by training on the Unet and NAS-Unet from scratch. Specifically, the proposed NAS-Unet training significantly outperforms the baseline human-designed architecture by achieving 95.1\% in the mean Intersection over Union metric and 79.1\% in the Dice similarity coefficient.

Context-Aware Residual Module for Image Classification

Jing Bai, Ran Chen

Responsive image

Auto-TLDR; Context-Aware Residual Module for Image Classification

Slides Poster Similar

Attention module has achieved great success in numerous vision tasks. However, existing visual attention modules generally consider the features of a single-scale, and cannot make full use of their multi-scale contextual information. Meanwhile, the multi-scale spatial feature representation has demonstrated its outstanding performance in a wide range of applications. However, the multi-scale features are always represented in a layer-wise manner, i.e. it is impossible to know their contextual information at a granular level. Focusing on the above issue, a context-aware residual module for image classification is proposed in this paper. It consists of a novel multi-scale channel attention module MSCAM to learn refined channel weights by considering the visual features of its own scale and its surrounding fields, and a multi-scale spatial aware module MSSAM to further capture more spatial information. Either or both of the two modules can be plugged into any CNN-based backbone image classification architecture with a short residual connection to obtain the context-aware enhanced features. The experiments on public image recognition datasets including CIFAR10, CIFAR100,Tiny-ImageNet and ImageNet consistently demonstrate that our proposed modules significantly outperforms a wide-used state-of-the-art methods, e.g., ResNet and the lightweight networks of MobileNet and SqueezeeNet.

Single Image Deblurring Using Bi-Attention Network

Yaowei Li, Ye Luo, Jianwei Lu

Responsive image

Auto-TLDR; Bi-Attention Neural Network for Single Image Deblurring

Poster Similar

Recently, deep convolutional neural networks have been extensively applied into image deblurring and have achieved remarkable performance. However, most CNN-based image deblurring methods focus on simply increasing network depth, neglecting the contextual information of the blurred image and the reconstructed image. Meanwhile, most encoder-decoder based methods rarely exploit encoder's multi-layer features. To address these issues, we propose a bi-attention neural network for single image deblurring, which mainly consists of a bi-attention network and a feature fusion network. Specifically, two criss-cross attention modules are plugged before and after the encoder-decoder to capture long-range spatial contextual information in the blurred image and the reconstructed image simultaneously, and the feature fusion network combines multi-layer features from encoder to enable the decoder reconstruct the image with multi-scale features. The whole network is end-to-end trainable. Quantitative and qualitative experiment results validate that the proposed network outperforms state-of-the-art methods in terms of PSNR and SSIM on benchmark datasets.

Small Object Detection Leveraging on Simultaneous Super-Resolution

Hong Ji, Zhi Gao, Xiaodong Liu, Tiancan Mei

Responsive image

Auto-TLDR; Super-Resolution via Generative Adversarial Network for Small Object Detection

Poster Similar

Despite the impressive advancement achieved in object detection, the detection performance of small object is still far from satisfactory due to the lack of sufficient detailed appearance to distinguish it from similar objects. Inspired by the positive effects of super-resolution for object detection, we propose a general framework that can be incorporated with most available detector networks to significantly improve the performance of small object detection, in which the low-resolution image is super-resolved via generative adversarial network (GAN) in an unsupervised manner. In our method, the super-resolution network and the detection network are trained jointly and alternately with each other fixed. In particular, the detection loss is back-propagated into the super-resolution network during training to facilitate detection. Compared with available simultaneous super-resolution and detection methods which heavily rely on low-/high-resolution image pairs, our work breaks through such restriction via applying the CycleGAN strategy, achieving increased generality and applicability, while remaining an elegant structure. Extensive experiments on datasets from both computer vision and remote sensing communities demonstrate that our method works effectively on a wide range of complex scenarios, resulting in best performance that significantly outperforms many state-of-the-art approaches.

TinyVIRAT: Low-Resolution Video Action Recognition

Ugur Demir, Yogesh Rawat, Mubarak Shah

Responsive image

Auto-TLDR; TinyVIRAT: A Progressive Generative Approach for Action Recognition in Videos

Slides Poster Similar

The existing research in action recognition is mostly focused on high-quality videos where the action is distinctly visible. In real-world surveillance environments, the actions in videos are captured at a wide range of resolutions. Most activities occur at a distance with a small resolution and recognizing such activities is a challenging problem. In this work, we focus on recognizing tiny actions in videos. We introduce a benchmark dataset, TinyVIRAT, which contains natural low-resolution activities. The actions in TinyVIRAT videos have multiple labels and they are extracted from surveillance videos which makes them realistic and more challenging. We propose a novel method for recognizing tiny actions in videos which utilizes a progressive generative approach to improve the quality of low-resolution actions. The proposed method also consists of a weakly trained attention mechanism which helps in focusing on the activity regions in the video. We perform extensive experiments to benchmark the proposed TinyVIRAT dataset and observe that the proposed method significantly improves the action recognition performance over baselines. We also evaluate the proposed approach on synthetically resized action recognition datasets and achieve state-of-the-art results when compared with existing methods. The dataset and code will be publicly available.

Attention As Activation

Yimian Dai, Stefan Oehmcke, Fabian Gieseke, Yiquan Wu, Kobus Barnard

Responsive image

Auto-TLDR; Attentional Activation Units for Convolutional Networks

Slides Similar

Activation functions and attention mechanisms are typically treated as having different purposes and have evolved differently. However, both concepts can be formulated as a non-linear gating function. Inspired by their similarity, we propose a novel type of activation units called attentional activation~(ATAC) units as a unification of activation functions and attention mechanisms. In particular, we propose a local channel attention module for the simultaneous non-linear activation and element-wise feature refinement, which locally aggregates point-wise cross-channel feature contexts. By replacing the well-known rectified linear units by such ATAC units in convolutional networks, we can construct fully attentional networks that perform significantly better with a modest number of additional parameters. We conducted detailed ablation studies on the ATAC units using several host networks with varying network depths to empirically verify the effectiveness and efficiency of the units. Furthermore, we compared the performance of the ATAC units against existing activation functions as well as other attention mechanisms on the CIFAR-10, CIFAR-100, and ImageNet datasets. Our experimental results show that networks constructed with the proposed ATAC units generally yield performance gains over their competitors given a comparable number of parameters.

Deep Residual Attention Network for Hyperspectral Image Reconstruction

Kohei Yorimoto, Xian-Hua Han

Responsive image

Auto-TLDR; Deep Convolutional Neural Network for Hyperspectral Image Reconstruction from a Snapshot

Slides Poster Similar

Coded aperture snapshot spectral imaging (CASSI) captures a full frame spectral image as a single compressive image and is mandatory to reconstruct the underlying hyperspectral image (HSI) from the snapshot as the post-processing, which is challenge inverse problem due to its ill-posed nature. Existing methods for HSI reconstruction from a snapshot usually employs optimization for solving the formulated image degradation model regularized with the empirically designed priors, and still cannot achieve enough reconstruction accuracy for real HS image analysis systems. Motivated by the recent advances of deep learning for different inverse problems, deep learning based HSI reconstruction method has attracted a lot of attention, and can boost the reconstruction performance. This study proposes a novel deep convolutional neural network (DCNN) based framework for effectively learning the spatial structure and spectral attribute in the underlying HSI with the reciprocal spatial and spectral modules. Further, to adaptively leverage the useful learned feature for better HSI image reconstruction, we integrate residual attention modules into our DCNN via exploring both spatial and spectral attention maps. Experimental results on two benchmark HSI datasets show that our method outperforms state-of-the-art methods in both quantitative values and visual effect.

Multi-Laplacian GAN with Edge Enhancement for Face Super Resolution

Shanlei Ko, Bi-Ru Dai

Responsive image

Auto-TLDR; Face Image Super-Resolution with Enhanced Edge Information

Slides Poster Similar

Face image super-resolution has become a research hotspot in the field of image processing. Nowadays, more and more researches add additional information, such as landmark, identity, to reconstruct high resolution images from low resolution ones, and have a good performance in quantitative terms and perceptual quality. However, these additional information is hard to obtain in many cases. In this work, we focus on reconstructing face images by extracting useful information from face images directly rather than using additional information. By observing edge information in each scale of face images, we propose a method to reconstruct high resolution face images with enhanced edge information. In additional, with the proposed training procedure, our method reconstructs photo-realistic images in upscaling factor 8x and outperforms state-of-the-art methods both in quantitative terms and perceptual quality.

Dynamic Guided Network for Monocular Depth Estimation

Xiaoxia Xing, Yinghao Cai, Yiping Yang, Dayong Wen

Responsive image

Auto-TLDR; DGNet: Dynamic Guidance Upsampling for Self-attention-Decoding for Monocular Depth Estimation

Slides Poster Similar

Self-attention or encoder-decoder structure has been widely used in deep neural networks for monocular depth estimation tasks. The former mechanism are capable to capture long-range information by computing the representation of each position by a weighted sum of the features at all positions, while the latter networks can capture structural details information by gradually recovering the spatial information. In this work, we combine the advantages of both methods. Specifically, our proposed model, DGNet, extends EMANet Network by adding an effective decoder module to refine the depth results. In the decoder stage, we further design dynamic guidance upsampling which uses local neighboring information of low-level features guide coarser depth to upsample. In this way, dynamic guidance upsampling generates content-dependent and spatially-variant kernels for depth upsampling which makes full use of spatial details information from low-level features. Experimental results demonstrate that our method obtains higher accuracy and generates the desired depth map.

Dynamic Multi-Path Neural Network

Yingcheng Su, Yichao Wu, Ken Chen, Ding Liang, Xiaolin Hu

Responsive image

Auto-TLDR; Dynamic Multi-path Neural Network

Slides Similar

Although deeper and larger neural networks have achieved better performance, due to overwhelming burden on computation, they cannot meet the demands of deployment on resource-limited devices. An effective strategy to address this problem is to make use of dynamic inference mechanism, which changes the inference path for different samples at runtime. Existing methods only reduce the depth by skipping an entire specific layer, which may lose important information in this layer. In this paper, we propose a novel method called Dynamic Multi-path Neural Network (DMNN), which provides more topology choices in terms of both width and depth on the fly. For better modelling the inference path selection, we further introduce previous state and object category information to guide the training process. Compared to previous dynamic inference techniques, the proposed method is more flexible and easier to incorporate into most modern network architectures. Experimental results on ImageNet and CIFAR-100 demonstrate the superiority of our method on both efficiency and classification accuracy.

Slimming ResNet by Slimming Shortcut

Donggyu Joo, Doyeon Kim, Junmo Kim

Responsive image

Auto-TLDR; SSPruning: Slimming Shortcut Pruning on ResNet Based Networks

Slides Poster Similar

Conventional network pruning methods on convolutional neural networks (CNNs) reduce the number of input or output channels of convolution layers. With these approaches, the channels in the plain network can be pruned without any restrictions. However, in case of the ResNet based networks which have shortcuts (skip connections), the channel slimming of existing pruning methods is limited to the inside of each residual block. Since the number of Flops and parameters are also highly related to the number of channels in the shortcuts, more investigation on pruning channels in shortcuts is required. In this paper, we propose a novel pruning method, Slimming Shortcut Pruning (SSPruning), for pruning channels in shortcuts on ResNet based networks. First, we separate the long shortcut in individual regions that can be pruned independently without considering its long connections. Then, by applying our Importance Learning Gate (ILG) which learns the importance of channels globally regardless of channel type and location (i.e., in the shortcut or inside of the block), we can finally achieve an optimally pruned model. Through various experiments, we have confirmed that our method yields outstanding results when we prune the shortcuts and inside of the block together.

Improving Low-Resolution Image Classification by Super-Resolution with Enhancing High-Frequency Content

Liguo Zhou, Guang Chen, Mingyue Feng, Alois Knoll

Responsive image

Auto-TLDR; Super-resolution for Low-Resolution Image Classification

Slides Poster Similar

With the prosperous development of Convolutional Neural Networks, currently they can perform excellently on visual understanding tasks when the input images are high quality and common quality images. However, large degradation in performance always occur when the input images are low quality images. In this paper, we propose a new super-resolution method in order to improve the classification performance for low-resolution images. In an image, the regions in which pixel values vary dramatically contain more abundant high frequency contents compared to other parts. Based on this fact, we design a weight map and integrate it with a super-resolution CNN training framework. During the process of training, this weight map can find out positions of the high frequency pixels in ground truth high-resolution images. After that, the pixel-level loss function takes effect only at these found positions to minimize the difference between reconstructed high-resolution images and ground truth high-resolution images. Compared with other state-of-the-art super-resolution methods, the experiment results show that our method can recover more high-frequency contents in high-resolution image reconstructing, and better improve the classification accuracy after low-resolution image preprocessing.

SIDGAN: Single Image Dehazing without Paired Supervision

Pan Wei, Xin Wang, Lei Wang, Ji Xiang, Zihan Wang

Responsive image

Auto-TLDR; DehazeGAN: An End-to-End Generative Adversarial Network for Image Dehazing

Slides Poster Similar

Single image dehazing is challenging without scene airlight and transmission map. Most of existing dehazing algorithms tend to estimate key parameters based on manual designed priors or statistics, which may be invalid in some scenarios. Although deep learning-based dehazing methods provide an effective solution, most of them rely on paired training datasets, which are prohibitively difficult to be collected in real world. In this paper, we propose an effective end-to-end generative adversarial network for image dehazing, named DehazeGAN. The proposed DehazeGAN adopts a U-net architecture with a novel color-consistency loss derived from dark channel prior and perceptual loss, which can be trained in an unsupervised fashion without paired synthetic datasets. We create a RealHaze dataset for network training, including 4,000 outdoor hazy images and 4,000 haze-free images. Extensive experiments demonstrate that our proposed DehazeGAN achieves better performance than existing state-of-the-art methods on both synthetic datasets and real-world datasets in terms of PSNR, SSIM, and subjective visual experience.

Efficient-Receptive Field Block with Group Spatial Attention Mechanism for Object Detection

Jiacheng Zhang, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; E-RFB: Efficient-Receptive Field Block for Deep Neural Network for Object Detection

Slides Poster Similar

Object detection has been paid rising attention in computer vision field. Convolutional Neural Networks (CNNs) extract high-level semantic features of images, which directly determine the performance of object detection. As a common solution, embedding integration modules into CNNs can enrich extracted features and thereby improve the performance. However, the instability and inconsistency of internal multiple branches exist in these modules. To address this problem, we propose a novel multibranch module called Efficient-Receptive Field Block (E-RFB), in which multiple levels of features are combined for network optimization. Specifically, by downsampling and increasing depth, the E-RFB provides sufficient RF. Second, in order to eliminate the inconsistency across different branches, a novel spatial attention mechanism, namely, Group Spatial Attention Module (GSAM) is proposed. The GSAM gradually narrows a feature map by channel grouping; thus it encodes the information between spatial and channel dimensions into the final attention heat map. Third, the proposed module can be easily joined in various CNNs to enhance feature representation as a plug-and-play component. With SSD-style detectors, our method halves the parameters of the original detection head and achieves high accuracy on the PASCAL VOC and MS COCO datasets. Moreover, the proposed method achieves superior performance compared with state-of-the-art methods based on similar framework.

Free-Form Image Inpainting Via Contrastive Attention Network

Xin Ma, Xiaoqiang Zhou, Huaibo Huang, Zhenhua Chai, Xiaolin Wei, Ran He

Responsive image

Auto-TLDR; Self-supervised Siamese inference for image inpainting

Slides Similar

Most deep learning based image inpainting approaches adopt autoencoder or its variants to fill missing regions in images. Encoders are usually utilized to learn powerful representational spaces, which are important for dealing with sophisticated learning tasks. Specifically, in the image inpainting task, masks with any shapes can appear anywhere in images (i.e., free-form masks) forming complex patterns. It is difficult for encoders to capture such powerful representations under this complex situation. To tackle this problem, we propose a self-supervised Siamese inference network to improve the robustness and generalization. Moreover, the restored image usually can not be harmoniously integrated into the exiting content, especially in the boundary area. To address this problem, we propose a novel Dual Attention Fusion module (DAF), which can combine both the restored and known regions in a smoother way and be inserted into decoder layers in a plug-and-play way. DAF is developed to not only adaptively rescale channel-wise features by taking interdependencies between channels into account but also force deep convolutional neural networks (CNNs) focusing more on unknown regions. In this way, the unknown region will be naturally filled from the outside to the inside. Qualitative and quantitative experiments on multiple datasets, including facial and natural datasets (i.e., Celeb-HQ, Pairs Street View, Places2 and ImageNet), demonstrate that our proposed method outperforms against state-of-the-arts in generating high-quality inpainting results.

Operation and Topology Aware Fast Differentiable Architecture Search

Shahid Siddiqui, Christos Kyrkou, Theocharis Theocharides

Responsive image

Auto-TLDR; EDARTS: Efficient Differentiable Architecture Search with Efficient Optimization

Slides Poster Similar

Differentiable architecture search (DARTS) has gained significant attention amongst neural architecture search approaches due to its effectiveness in finding competitive network architectures with reasonable computational complexity. DARTS' search space however is designed such that even a randomly picked architecture is very competitive and due to the complexity of search architectural building block or cell, it is unclear whether these are certain operations or the cell topology that contributes most to achieving higher final accuracy. In this work, we dissect the DARTS's search space as to understand which components are most effective in producing better architectures. Our experiments show that: (1) Good architectures can be found regardless of the search network depth; (2) Seperable convolution is the most effective operation in the search space; and (3) The cell topology also has substantial effect on the accuracy. Based on these insights, we propose an efficient search approach based referred to as eDARTS, that searches on a pre-specified cell with a good topology with increased attention to important operations using a shallow supernet. Moreover, we propose some optimizations for eDARTS which significantly speed up the search as well as alleviate the well known skip connection aggregation problem of DARTS. eDARTS achieves an error rate of 2.53% on CIFAR-10 using a 3.1M parameters model; while the search cost is less than 30 minutes.

Detail-Revealing Deep Low-Dose CT Reconstruction

Xinchen Ye, Yuyao Xu, Rui Xu, Shoji Kido, Noriyuki Tomiyama

Responsive image

Auto-TLDR; A Dual-branch Aggregation Network for Low-Dose CT Reconstruction

Slides Poster Similar

Low-dose CT imaging emerges with low radiation risk due to the reduction of radiation dose, but brings negative impact on the imaging quality. This paper addresses the problem of low-dose CT reconstruction. Previous methods are unsatisfactory due to the inaccurate recovery of image details under the strong noise generated by the reduction of radiation dose, which directly affects the final diagnosis. To suppress the noise effectively while retain the structures well, we propose a detail-revealing dual-branch aggregation network to effectively reconstruct the degraded CT image. Specifically, the main reconstruction branch iteratively exploits and compensates the reconstruction errors to gradually refine the CT image, while the prior branch is to learn the structure details as prior knowledge to help recover the CT image. A sophisticated detail-revealing loss is designed to fuse the information from both branches and guide the learning to obtain better performance from pixel-wise and holistic perspectives respectively. Experimental results show that our method outperforms the state-of-art methods in both PSNR and SSIM metrics.

Super-Resolution Guided Pore Detection for Fingerprint Recognition

Syeda Nyma Ferdous, Ali Dabouei, Jeremy Dawson, Nasser M. Nasarabadi

Responsive image

Auto-TLDR; Super-Resolution Generative Adversarial Network for Fingerprint Recognition Using Pore Features

Slides Poster Similar

Performance of fingerprint recognition algorithms substantially rely on fine features extracted from fingerprints. Apart from minutiae and ridge patterns, pore features have proven to be usable for fingerprint recognition. Although features from minutiae and ridge patterns are quite attainable from low-resolution images, using pore features is practical only if the fingerprint image is of high resolution which necessitates a model that enhances the image quality of the conventional 500 ppi legacy fingerprints preserving the fine details. To find a solution for recovering pore information from low-resolution fingerprints, we adopt a joint learning-based approach that combines both super-resolution and pore detection networks. Our modified single image Super-Resolution Generative Adversarial Network (SRGAN) framework helps to reliably reconstruct high-resolution fingerprint samples from low-resolution ones assisting the pore detection network to identify pores with a high accuracy. The network jointly learns a distinctive feature representation from a real low-resolution fingerprint sample and successfully synthesizes a high-resolution sample from it. To add discriminative information and uniqueness for all the subjects, we have integrated features extracted from a deep fingerprint verifier with the SRGAN quality discriminator. We also add ridge reconstruction loss, utilizing ridge patterns to make the best use of extracted features. Our proposed method solves the recognition problem by improving the quality of fingerprint images. High recognition accuracy of the synthesized samples that is close to the accuracy achieved using the original high-resolution images validate the effectiveness of our proposed model.

Thermal Image Enhancement Using Generative Adversarial Network for Pedestrian Detection

Mohamed Amine Marnissi, Hajer Fradi, Anis Sahbani, Najoua Essoukri Ben Amara

Responsive image

Auto-TLDR; Improving Visual Quality of Infrared Images for Pedestrian Detection Using Generative Adversarial Network

Slides Poster Similar

Infrared imaging has recently played an important role in a wide range of applications including surveillance, robotics and night vision. However, infrared cameras often suffer from some limitations, essentially about low-contrast and blurred details. These problems contribute to the loss of observation of target objects in infrared images, which could limit the feasibility of different infrared imaging applications. In this paper, we mainly focus on the problem of pedestrian detection on thermal images. Particularly, we emphasis the need for enhancing the visual quality of images beforehand performing the detection step. % to ensure effective results. To address that, we propose a novel thermal enhancement architecture based on Generative Adversarial Network, and composed of two modules contrast enhancement and denoising modules with a post-processing step for edge restoration in order to improve the overall quality. The effectiveness of the proposed architecture is assessed by means of visual quality metrics and better results are obtained compared to the original thermal images and to the obtained results by other existing enhancement methods. These results have been conduced on a subset of KAIST dataset. Using the same dataset, the impact of the proposed enhancement architecture has been demonstrated on the detection results by obtaining better performance with a significant margin using YOLOv3 detector.

Tarsier: Evolving Noise Injection inSuper-Resolution GANs

Baptiste Roziere, Nathanaël Carraz Rakotonirina, Vlad Hosu, Rasoanaivo Andry, Hanhe Lin, Camille Couprie, Olivier Teytaud

Responsive image

Auto-TLDR; Evolutionary Super-Resolution using Diagonal CMA

Slides Poster Similar

Super-resolution aims at increasing the resolution and level of detail within an image. The current state of the art in general single-image super-resolution is held by nESRGAN+,which injects a Gaussian noise after each residual layer at training time. In this paper, we harness evolutionary methods to improve nESRGAN+ by optimizing the noise injection at inference time. More precisely, we use Diagonal CMA to optimize the injected noise according to a novel criterion combining quality assessment and realism. Our results are validated by the PIRM perceptual score and a human study. Our method outperforms nESRGAN+ on several standard super-resolution datasets. More generally, our approach can be used to optimize any method based on noise injection.

CURL: Neural Curve Layers for Global Image Enhancement

Sean Moran, Steven Mcdonagh, Greg Slabaugh

Responsive image

Auto-TLDR; CURL: Neural CURve Layers for Image Enhancement

Slides Poster Similar

We present a novel approach to adjust global image properties such as colour, saturation, and luminance using human-interpretable image enhancement curves, inspired by the Photoshop curves tool. Our method, dubbed neural CURve Layers (CURL), is designed as a multi-colour space neural retouching block trained jointly in three different colour spaces (HSV, CIELab, RGB) guided by a novel multi-colour space loss. The curves are fully differentiable and are trained end-to-end for different computer vision problems including photo enhancement (RGB-to-RGB) and as part of the image signal processing pipeline for image formation (RAW-to-RGB). To demonstrate the effectiveness of CURL we combine this global image transformation block with a pixel-level (local) image multi-scale encoder-decoder backbone network. In an extensive experimental evaluation we show that CURL produces state-of-the-art image quality versus recently proposed deep learning approaches in both objective and perceptual metrics, setting new state-of-the-art performance on multiple public datasets.

Selective Kernel and Motion-Emphasized Loss Based Attention-Guided Network for HDR Imaging of Dynamic Scenes

Yipeng Deng, Qin Liu, Takeshi Ikenaga

Responsive image

Auto-TLDR; SK-AHDRNet: A Deep Network with attention module and motion-emphasized loss function to produce ghost-free HDR images

Slides Poster Similar

Ghost-like artifacts caused by ill-exposed and motion areas is one of the most challenging problems in high dynamic range (HDR) image reconstruction.When the motion range is small, previous methods based on optical flow or patch-match can suppress ghost-like artifacts by first aligning input images before merging them.However, they are not robust enough and still produce artifacts for challenging scenes where large foreground motions exist.To this end, we propose a deep network with attention module and motion-emphasized loss function to produce ghost-free HDR images. In attention module, we use channel and spatial attention to guide network to emphasize important components such as motion and saturated areas automatically. With the purpose of being robust to images with different resolutions and objects with distinct scale, we adopt the selective kernel network as the basic framework for channel attention. In addition to the attention module, the motion-emphasized loss function based on the motion and ill-exposed areas mask is designed to help network reconstruct motion areas. Experiments on the public dataset indicate that the proposed SK-AHDRNet produces ghost-free results where detail in ill-exposed areas is well recovered. The proposed method scores 43.17 with PSNR metric and 61.02 with HDR-VDP-2 metric on test which outperforms all conventional works. According to quantitative and qualitative evaluations, the proposed method can achieve state-of-the-art performance.

Fast and Accurate Real-Time Semantic Segmentation with Dilated Asymmetric Convolutions

Leonel Rosas-Arias, Gibran Benitez-Garcia, Jose Portillo-Portillo, Gabriel Sanchez-Perez, Keiji Yanai

Responsive image

Auto-TLDR; FASSD-Net: Dilated Asymmetric Pyramidal Fusion for Real-Time Semantic Segmentation

Slides Poster Similar

Recent works have shown promising results applied to real-time semantic segmentation tasks. To maintain fast inference speed, most of the existing networks make use of light decoders, or they simply do not use them at all. This strategy helps to maintain a fast inference speed; however, their accuracy performance is significantly lower in comparison to non-real-time semantic segmentation networks. In this paper, we introduce two key modules aimed to design a high-performance decoder for real-time semantic segmentation for reducing the accuracy gap between real-time and non-real-time segmentation networks. Our first module, Dilated Asymmetric Pyramidal Fusion (DAPF), is designed to substantially increase the receptive field on the top of the last stage of the encoder, obtaining richer contextual features. Our second module, Multi-resolution Dilated Asymmetric (MDA) module, fuses and refines detail and contextual information from multi-scale feature maps coming from early and deeper stages of the network. Both modules exploit contextual information without excessively increasing the computational complexity by using asymmetric convolutions. Our proposed network entitled “FASSD-Net” reaches 78.8% of mIoU accuracy on the Cityscapes validation dataset at 41.1 FPS on full resolution images (1024x2048). Besides, with a light version of our network, we reach 74.1% of mIoU at 133.1 FPS (full resolution) on a single NVIDIA GTX 1080Ti card with no additional acceleration techniques. The source code and pre-trained models are available at https://github.com/GibranBenitez/FASSD-Net.

Adaptive Image Compression Using GAN Based Semantic-Perceptual Residual Compensation

Ruojing Wang, Zitang Sun, Sei-Ichiro Kamata, Weili Chen

Responsive image

Auto-TLDR; Adaptive Image Compression using GAN based Semantic-Perceptual Residual Compensation

Slides Poster Similar

Image compression is a basic task in image processing. In this paper, We present an adaptive image compression algorithm that relies on GAN based semantic-perceptual residual compensation, which is available to offer visually pleasing reconstruction at a low bitrate. Our method adopt an U-shaped encoding and decoding structure accompanied by a well-designed dense residual connection with strip pooling module to improve the original auto-encoder. Besides, we introduce the idea of adversarial learning by introducing a discriminator thus constructed a complete GAN. To improve the coding efficiency, we creatively designed an adaptive semantic-perception residual compensation block based on Grad-CAM algorithm. In the improvement of the quantizer, we embed the method of soft-quantization so as to solve the problem to some extent that back propagation process is irreversible. Simultaneously, we use the latest FLIF lossless compression algorithm and BPG vector compression algorithm to perform deeper compression on the image. More importantly experimental results including PSNR, MS-SSIM demonstrate that the proposed approach outperforms the current state-of-the-art image compression methods.

PSDNet: A Balanced Architecture of Accuracy and Parameters for Semantic Segmentation

Yue Liu, Zhichao Lian

Responsive image

Auto-TLDR; Pyramid Pooling Module with SE1Cblock and D2SUpsample Network (PSDNet)

Slides Poster Similar

Abstract—In this paper, we present our Pyramid Pooling Module (PPM) with SE1Cblock and D2SUpsample Network (PSDNet), a novel architecture for accurate semantic segmentation. Started from the known work called Pyramid Scene Parsing Network (PSPNet), PSDNet takes advantage of pyramid pooling structure with channel attention module and feature transform module in Pyramid Pooling Module (PPM). The enhanced PPM with these two components can strengthen context information flowing in the network instead of damaging it. The channel attention module we mentioned is an improved “Squeeze and Excitation with 1D Convolution” (SE1C) block which can explicitly model interrelationship between channels with fewer number of parameters. We propose a feature transform module named “Depth to Space Upsampling” (D2SUpsample) in the PPM which keeps integrity of features by transforming features while interpolating features, at the same time reducing parameters. In addition, we introduce a joint strategy in SE1Cblock which combines two variants of global pooling without increasing parameters. Compared with PSPNet, our work achieves higher accuracy on public datasets with 73.97% mIoU and 82.89% mAcc accuracy on Cityscapes Dataset based on ResNet50 backbone.

VPU Specific CNNs through Neural Architecture Search

Ciarán Donegan, Hamza Yous, Saksham Sinha, Jonathan Byrne

Responsive image

Auto-TLDR; Efficient Convolutional Neural Networks for Edge Devices using Neural Architecture Search

Slides Poster Similar

The success of deep learning at computer vision tasks has led to an ever-increasing number of applications on edge devices. Often with the use of edge AI hardware accelerators like the Intel Movidius Vision Processing Unit (VPU). Performing computer vision tasks on edge devices is challenging. Many Convolutional Neural Networks (CNNs) are too complex to run on edge devices with limited computing power. This has created large interest in designing efficient CNNs and one promising way of doing this is through Neural Architecture Search (NAS). NAS aims to automate the design of neural networks. NAS can also optimize multiple different objectives together, like accuracy and efficiency, which is difficult for humans. In this paper, we use a differentiable NAS method to find efficient CNNs for VPU that achieves state-of-the-art classification accuracy on ImageNet. Our NAS designed model outperforms MobileNetV2, having almost 1\% higher top-1 accuracy while being 13\% faster on MyriadX VPU. To the best of our knowledge, this is the first time a VPU specific CNN has been designed using a NAS algorithm. Our results also reiterate the fact that efficient networks must be designed for each specific hardware. We show that efficient networks targeted at different devices do not perform as well on the VPU.

MBD-GAN: Model-Based Image Deblurring with a Generative Adversarial Network

Li Song, Edmund Y. Lam

Responsive image

Auto-TLDR; Model-Based Deblurring GAN for Inverse Imaging

Slides Poster Similar

This paper presents a methodology to tackle inverse imaging problems by leveraging the synergistic power of imaging model and deep learning. The premise is that while learning-based techniques have quickly become the methods of choice in various applications, they often ignore the prior knowledge embedded in imaging models. Incorporating the latter has the potential to improve the image estimation. Specifically, we first provide a mathematical basis of using generative adversarial network (GAN) in inverse imaging through considering an optimization framework. Then, we develop the specific architecture that connects the generator and discriminator networks with the imaging model. While this technique can be applied to a variety of problems, from image reconstruction to super-resolution, we take image deblurring as the example here, where we show in detail the implementation and experimental results of what we call the model-based deblurring GAN (MBD-GAN).

Automatical Enhancement and Denoising of Extremely Low-Light Images

Yuda Song, Yunfang Zhu, Xin Du

Responsive image

Auto-TLDR; INSNet: Illumination and Noise Separation Network for Low-Light Image Restoring

Slides Poster Similar

Deep convolutional neural networks (DCNN) based methodologies have achieved remarkable performance on various low-level vision tasks recently. Restoring images captured at night is one of the trickiest low-level vision tasks due to its high-level noise and low-level intensity. We propose a DCNN-based methodology, Illumination and Noise Separation Network (INSNet), which performs both denoising and enhancement on these extremely low-light images. INSNet fully utilizes global-ware features and local-ware features using the modified network structure and image sampling scheme. Compared to well-designed complex neural networks, our proposed methodology only needs to add a bypass network to the existing network. However, it can boost the quality of recovered images dramatically but only increase the computational cost by less than 0.1%. Even without any manual settings, INSNet can stably restore the extremely low-light images to desired high-quality images.

Feature-Dependent Cross-Connections in Multi-Path Neural Networks

Dumindu Tissera, Kasun Vithanage, Rukshan Wijesinghe, Kumara Kahatapitiya, Subha Fernando, Ranga Rodrigo

Responsive image

Auto-TLDR; Multi-path Networks for Adaptive Feature Extraction

Slides Poster Similar

Learning a particular task from a dataset, samples in which originate from diverse contexts, is challenging, and usually addressed by deepening or widening standard neural networks. As opposed to conventional network widening, multi-path architectures restrict the quadratic increment of complexity to a linear scale. However, existing multi-column/path networks or model ensembling methods do not consider any feature-dependant allocation of parallel resources, and therefore, tend to learn redundant features. Given a layer in a multi-path network, if we restrict each path to learn a context-specific set of features and introduce a mechanism to intelligently allocate incoming feature maps to such paths, each path can specialize in a certain context, reducing the redundancy and improving the quality of extracted features. This eventually leads to better-optimized usage of parallel resources. To do this, we propose inserting feature-dependant cross-connections between parallel sets of feature maps in successive layers. The weights of these cross-connections are learned based on the input features of the particular layer. Our multi-path networks show improved image recognition accuracy at a similar complexity compared to conventional and state-of-the-art methods for deepening, widening and adaptive feature extracting, in both small and large scale datasets.

Small Object Detection by Generative and Discriminative Learning

Yi Gu, Jie Li, Chentao Wu, Weijia Jia, Jianping Chen

Responsive image

Auto-TLDR; Generative and Discriminative Learning for Small Object Detection

Slides Poster Similar

With the development of deep convolutional neural networks (CNNs), the object detection accuracy has been greatly improved. But the performance of small object detection is still far from satisfactory, mainly because small objects are so tiny that the information contained in the feature map is limited. Existing methods focus on improving classification accuracy but still suffer from the limitation of bounding box prediction. To solve this issue, we propose a detection framework by generative and discriminative learning. First, a reconstruction generator network is designed to reconstruct the mapping from low frequency to high frequency for anchor box prediction. Then, a detector module extracts the regions of interest (ROIs) from generated results and implements a RoI-Head to predict object category and refine bounding box. In order to guide the reconstructed image related to the corresponding one, a discriminator module is adopted to tell from the generated result and the original image. Extensive evaluations on the challenging MS-COCO dataset demonstrate that our model outperforms most state-of-the-art models in detecting small objects, especially the reconstruction module improves the average precision for small object (APs) by 7.7%.

VGG-Embedded Adaptive Layer-Normalized Crowd Counting Net with Scale-Shuffling Modules

Dewen Guo, Jie Feng, Bingfeng Zhou

Responsive image

Auto-TLDR; VadaLN: VGG-embedded Adaptive Layer Normalization for Crowd Counting

Slides Poster Similar

Crowd counting is widely used in real-time congestion monitoring and public security. Due to the limited data, many methods have little ability to be generalized because the differences between feature domains are not taken into consideration. We propose VGG-embedded adaptive layer normalization (VadaLN) to filter the features that irrelevant to the counting tasks in order that the counting results should not be affected by the image quality, color or illumination. VadaLN is implemented on the pretrained VGG-16 backbone. There is no additional learning parameters required through our method. VadaLN incoporates the proposed scale-shuffling modules (SSM) to relax the distortions in upsampling operations. Besides, non-aligned training methdology for the estimation of density maps is leveraged by an adversarial contextual loss (ACL) to improve the counting performance. Based on the proposed method, we construct an end-to-end trainable baseline model without bells and whistles, namely VadaLNet, which outperforms several recent state-of-the-art methods on commonly used challenging standard benchmarks. The intermediate scale-shuffled results are combined to formulate a scale-complementary strategy as a more powerful network, namely as VadaLNeSt. We implement VadaLNeSt on standard benchmarks, e.g. ShanghaiTech (Part A & Part B), UCF_CC_50, and UCF_QNRF, to show the superiority of our method.

Transitional Asymmetric Non-Local Neural Networks for Real-World Dirt Road Segmentation

Yooseung Wang, Jihun Park

Responsive image

Auto-TLDR; Transitional Asymmetric Non-Local Neural Networks for Semantic Segmentation on Dirt Roads

Slides Poster Similar

Understanding images by predicting pixel-level semantic classes is a fundamental task in computer vision and is one of the most important techniques for autonomous driving. Recent approaches based on deep convolutional neural networks have dramatically improved the speed and accuracy of semantic segmentation on paved road datasets, however, dirt roads have yet to be systematically studied. Dirt roads do not contain clear boundaries between drivable and non-drivable regions; and thus, this difficulty must be overcome for the realization of fully autonomous vehicles. The key idea of our approach is to apply lightweight non-local blocks to reinforce stage-wise long-range dependencies in encoder-decoder style backbone networks. Experiments on 4,687 images of a dirt road dataset show that our transitional asymmetric non-local neural networks present a higher accuracy with lower computational costs compared to state-of-the-art models.