Video Episode Boundary Detection with Joint Episode-Topic Model

Shunyao Wang, Ye Tian, Ruidong Wang, Yang Du, Han Yan, Ruilin Yang, Jian Ma

Responsive image

Auto-TLDR; Unsupervised Video Episode Boundary Detection for Bullet Screen Comment Video

Slides Poster

Social online video has emerged as one of the most popular application, where "bullet screen comment" is one of the favorite features of Asian users. User behavior report finds that most people are used to quickly navigate and locate his concerned video clip according to its corresponding video labels. Traditional scene segmentation algorithms are mostly based on the analysis of frames, which cannot automatically generate labels. Since time-synchronized comments can reflect the episode of current moment, this paper proposed an unsupervised video episode boundary detection model (VEBD) for bullet screen comment video. It could not only automatically identify each episode boundary, but also detect the topic for video tagging. Specifically, a Joint Episode-Topic model is first constructed to detect the hidden topic in initial partitioned time slices. Then, based on the detected topics, temporal and semantic relevancy between adjacent time slices are measured to refine the boundary detection accuracy. Experiments based on real data show that our model outperforms the existing algorithms in both boundary detection and semantic tagging quality.

Similar papers

Segmenting Messy Text: Detecting Boundaries in Text Derived from Historical Newspaper Images

Carol Anderson, Phil Crone

Responsive image

Auto-TLDR; Text Segmentation of Marriage Announcements Using Deep Learning-based Models

Slides Poster Similar

Text segmentation, the task of dividing a document into sections, is often a prerequisite for performing additional natural language processing tasks. Existing text segmentation methods have typically been developed and tested using clean, narrative-style text with segments containing distinct topics. Here we consider a challenging text segmentation task: dividing newspaper marriage announcement lists into units of one couple each. In many cases the information is not structured into sentences, and adjacent segments are not topically distinct from each other. In addition, the text of the announcements, which is derived from images of historical newspapers via optical character recognition, contains many typographical errors. Because of these properties, these announcements are not amenable to segmentation with existing techniques. We present a novel deep learning-based model for segmenting such text and show that it significantly outperforms an existing state-of-the-art method on our task.

Deep Topic Modeling by Multilayer Bootstrap Network and Lasso

Jian-Yu Wang, Xiao-Lei Zhang

Responsive image

Auto-TLDR; Unsupervised Deep Topic Modeling with Multilayer Bootstrap Network and Lasso

Slides Poster Similar

Topic modeling is widely studied for the dimension reduction and analysis of documents. However, it is formulated as a difficult optimization problem. Current approximate solutions also suffer from inaccurate model- or data-assumptions. To deal with the above problems, we propose a polynomial-time deep topic model with no model and data assumptions. Specifically, we first apply multilayer bootstrap network (MBN), which is an unsupervised deep model, to reduce the dimension of documents, and then use the low-dimensional data representations or their clustering results as the target of supervised Lasso for topic word discovery. To our knowledge, this is the first time that MBN and Lasso are applied to unsupervised topic modeling. Experimental comparison results with five representative topic models on the 20-newsgroups and TDT2 corpora illustrate the effectiveness of the proposed algorithm.

Cross-Supervised Joint-Event-Extraction with Heterogeneous Information Networks

Yue Wang, Zhuo Xu, Yao Wan, Lu Bai, Lixin Cui, Qian Zhao, Edwin Hancock, Philip Yu

Responsive image

Auto-TLDR; Joint-Event-extraction from Unstructured corpora using Structural Information Network

Slides Poster Similar

Joint-event-extraction, which extracts structural information (i.e., entities or triggers of events) from unstructured real-world corpora, has attracted more and more research attention in natural language processing. \revised{Most existing works do not fully address the sparse co-occurred relationships between entities and triggers. This exacerbates the error-propagation problem} which may degrade the extraction performance. To mitigate this issue, we first define the joint-event-extraction as a sequence-to-sequence labeling task with a tag set which is composed of tags of triggers and entities. Then, to incorporate the missing information in the aforementioned co-occurred relationships, we propose a \underline{C}ross-\underline{S}upervised \underline{M}echanism (CSM) to alternately supervise the extraction of either triggers or entities based on the type distribution of each other. Moreover, since the connected entities and triggers naturally form a heterogeneous information network (HIN), we leverage the latent pattern along meta-paths for a given corpus to further improve the performance of our proposed method. To verify the effectiveness of our proposed method, we conduct extensive experiments on real-world datasets as well as compare our method with state-of-the-art methods. Empirical results and analysis show that our approach outperforms the state-of-the-art methods in both entity and trigger extraction.

An Empirical Bayes Approach to Topic Modeling

Anirban Gangopadhyay

Responsive image

Auto-TLDR; An Empirical Bayes Based Framework for Topic Modeling in Documents

Slides Similar

Given a corpus of documents, we consider the problem of finding latent topics, and introduce a novel Empirical Bayes based framework that allows us to choose the optimal topic modeling algorithm given observed variables in the data. We specifically consider three disparate algorithms - LDA, graph clustering, and non-negative matrix factorization - and provide a standardized framework that compares statistical and generative assumptions each algorithm makes. We then provide a model selection algorithm that quantifies each model based on how well assumptions match the data. We illustrate the efficacy of our approach by applying our framework to different sets of document corpuses and empirically measuring results.

Text Synopsis Generation for Egocentric Videos

Aidean Sharghi, Niels Lobo, Mubarak Shah

Responsive image

Auto-TLDR; Egocentric Video Summarization Using Multi-task Learning for End-to-End Learning

Slides Similar

Mass utilization of body-worn cameras has led to a huge corpus of available egocentric video. Existing video summarization algorithms can accelerate browsing such videos by selecting (visually) interesting shots from them. Nonetheless, since the system user still has to watch the summary videos, browsing large video databases remain a challenge. Hence, in this work, we propose to generate a textual synopsis, consisting of a few sentences describing the most important events in a long egocentric videos. Users can read the short text to gain insight about the video, and more importantly, efficiently search through the content of a large video database using text queries. Since egocentric videos are long and contain many activities and events, using video-to-text algorithms results in thousands of descriptions, many of which are incorrect. Therefore, we propose a multi-task learning scheme to simultaneously generate descriptions for video segments and summarize the resulting descriptions in an end-to-end fashion. We Input a set of video shots and the network generates a text description for each shot. Next, visual-language content matching unit that is trained with a weakly supervised objective, identifies the correct descriptions. Finally, the last component of our network, called purport network, evaluates the descriptions all together to select the ones containing crucial information. Out of thousands of descriptions generated for the video, a few informative sentences are returned to the user. We validate our framework on the challenging UT Egocentric video dataset, where each video is between 3 to 5 hours long, associated with over 3000 textual descriptions on average. The generated textual summaries, including only 5 percent (or less) of the generated descriptions, are compared to groundtruth summaries in text domain using well-established metrics in natural language processing.

Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network

Tengfei Liu, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin

Responsive image

Auto-TLDR; Semantically Extended Graph Convolutional Network for Zero-shot Text Classification

Slides Poster Similar

As a challenging task of Natural Language Processing(NLP), zero-shot text classification has attracted more and more attention recently. It aims to detect classes that the model has never seen in the training set. For this purpose, a feasible way is to construct connection between the seen and unseen classes by semantic extension and classify the unseen classes by information propagation over the connection. Although many related zero-shot text classification methods have been exploited, how to realize semantic extension properly and propagate information effectively is far from solved. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Graph Convolutional Network (SEGCN). In the proposed method, the semantic category knowledge from ConceptNet is utilized to semantic extension for linking seen classes to unseen classes and constructing a graph of all classes. Then, we build upon Graph Convolutional Network (GCN) for predicting the textual classifier for each category, which transfers the category knowledge by the convolution operators on the constructed graph and is trained in a semi-supervised manner using the samples of the seen classes. The experimental results on Dbpedia and 20newsgroup datasets show that our method outperforms the state of the art zero-shot text classification methods.

Context Visual Information-Based Deliberation Network for Video Captioning

Min Lu, Xueyong Li, Caihua Liu

Responsive image

Auto-TLDR; Context visual information-based deliberation network for video captioning

Slides Poster Similar

Video captioning is to automatically and accurately generate a textual description for a video. The typical methods following the encoder-decoder architecture directly utilized hidden states to predict words. Nevertheless, these methods did not amend the inaccurate hidden states before feeding those states into word prediction. This led to a cascade of errors on generating word by word. In this paper, the context visual information-based deliberation network is proposed, abbreviated as CVI-DelNet. Its key idea is to introduce the deliberator into the encoder-decoder framework. The encoder-decoder firstly generates a raw hidden state sequence. Unlike the existing methods, the raw hidden state is no more directly used for word prediction but is fed into the deliberator to generate the refined hidden state. The words are then predicted according to the refined hidden states and the contextual visual features. Results on two datasets shows that the proposed method significantly outperforms the baselines.

Enriching Video Captions with Contextual Text

Philipp Rimle, Pelin Dogan, Markus Gross

Responsive image

Auto-TLDR; Contextualized Video Captioning Using Contextual Text

Slides Poster Similar

Understanding video content and generating caption with context is an important and challenging task. Unlike prior methods that typically attempt to generate generic video captions without context, our architecture contextualizes captioning by infusing extracted information from relevant text data. We propose an end-to-end sequence-to-sequence model which generates video captions based on visual input, and mines relevant knowledge such as names and locations from contextual text. In contrast to previous approaches, we do not preprocess the text further, and let the model directly learn to attend over it. Guided by the visual input, the model is able to copy words from the contextual text via a pointer-generator network, allowing to produce more specific video captions. We show competitive performance on the News Video Dataset and, through ablation studies, validate the efficacy of contextual video captioning as well as individual design choices in our model architecture.

Automatic Annotation of Corpora for Emotion Recognition through Facial Expressions Analysis

Alex Mircoli, Claudia Diamantini, Domenico Potena, Emanuele Storti

Responsive image

Auto-TLDR; Automatic annotation of video subtitles on the basis of facial expressions using machine learning algorithms

Slides Poster Similar

The recent diffusion of social networks has made available an unprecedented amount of user-generated content, which may be analyzed in order to determine people's opinions and emotions about a large variety of topics. Research has made many efforts in defining accurate algorithms for analyzing emotions expressed by users in texts; however, their performance often rely on the existence of large annotated datasets, whose current scarcity represents a major issue. The manual creation of such datasets represents a costly and time-consuming activity and hence there is an increasing demand for techniques for the automatic annotation of corpora. In this work we present a methodology for the automatic annotation of video subtitles on the basis of the analysis of facial expressions of people in videos, with the goal of creating annotated corpora that may be used to train emotion recognition algorithms. Facial expressions are analyzed through machine learning algorithms, on the basis of a set of manually-engineered facial features that are extracted from video frames. The soundness of the proposed methodology has been evaluated through an extensive experimentation aimed at determining the performance on real datasets of each methodological step.

Label Incorporated Graph Neural Networks for Text Classification

Yuan Xin, Linli Xu, Junliang Guo, Jiquan Li, Xin Sheng, Yuanyuan Zhou

Responsive image

Auto-TLDR; Graph Neural Networks for Semi-supervised Text Classification

Slides Poster Similar

Graph Neural Networks (GNNs) have achieved great success on graph-structured data, and their applications on traditional data structures such as natural language processing and semi-supervised text classification have been extensively explored in recent years. While previous works only consider the text information while building the graph, heterogeneous information such as labels is ignored. In this paper, we consider to incorporate the label information while building the graph by adding text-label-text paths, through which the supervision information will propagate among the graph more directly. Specifically, we treat labels as nodes in the graph which also contains text and word nodes, and then connect labels with texts belonging to that label. Through graph convolutions, label embeddings are jointly learned with text embeddings in the same latent semantic space. The newly incorporated label nodes will facilitate learning more accurate text embeddings by introducing the label information, and thus benefit the downstream text classification tasks. Extensive results on several benchmark datasets show that the proposed framework outperforms baseline methods by a significant margin.

Learning Neural Textual Representations for Citation Recommendation

Thanh Binh Kieu, Inigo Jauregi Unanue, Son Bao Pham, Xuan-Hieu Phan, M. Piccardi

Responsive image

Auto-TLDR; Sentence-BERT cascaded with Siamese and triplet networks for citation recommendation

Slides Poster Similar

With the rapid growth of the scientific literature, manually selecting appropriate citations for a paper is becoming increasingly challenging and time-consuming. While several approaches for automated citation recommendation have been proposed in the recent years, effective document representations for citation recommendation are still elusive to a large extent. For this reason, in this paper we propose a novel approach to citation recommendation which leverages a deep sequential representation of the documents (Sentence-BERT) cascaded with Siamese and triplet networks in a submodular scoring function. To the best of our knowledge, this is the first approach to combine deep representations and submodular selection for a task of citation recommendation. Experiments have been carried out using a popular benchmark dataset -- the ACL Anthology Network corpus -- and evaluated against baselines and a state-of-the-art approach using metrics such as the MRR and F1@k score. The results show that the proposed approach has been able to outperform all the compared approaches in every measured metric.

Moto: Enhancing Embedding with Multiple Joint Factors for Chinese Text Classification

Xunzhu Tang, Rujie Zhu, Tiezhu Sun

Responsive image

Auto-TLDR; Moto: Enhancing Embedding with Multiple J\textbf{o}int Fac\textBF{to}rs

Slides Poster Similar

Recently, language representation techniques have achieved great performances in text classification. However, most existing representation models are specifically designed for English materials, which may fail in Chinese because of the huge difference between these two languages. Actually, few existing methods for Chinese text classification process texts at a single level. However, as a special kind of hieroglyphics, radicals of Chinese characters are good semantic carriers. In addition, Pinyin codes carry the semantic of tones, and Wubi reflects the stroke structure information, \textit{etc}. Unfortunately, previous researches neglected to find an effective way to distill the useful parts of these four factors and to fuse them. In our works, we propose a novel model called Moto: Enhancing Embedding with \textbf{M}ultiple J\textbf{o}int Fac\textbf{to}rs. Specifically, we design an attention mechanism to distill the useful parts by fusing the four-level information above more effectively. We conduct extensive experiments on four popular tasks. The empirical results show that our Moto achieves SOTA 0.8316 ($F_1$-score, 2.11\% improvement) on Chinese news titles, 96.38 (1.24\% improvement) on Fudan Corpus and 0.9633 (3.26\% improvement) on THUCNews.

Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference

Jiansheng Fang, Xiaoqing Zhang, Yan Hu, Yanwu Xu, Ming Yang, Jiang Liu

Responsive image

Auto-TLDR; Bayesian Latent Factor Model for Collaborative Filtering

Slides Similar

Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually in pattern recognition, LFM models user-item interactions as inner products of factor vectors of user and item in that space and can be efficiently solved by least square methods with optimal estimation. However, such optimal estimation methods are prone to overfitting due to the extreme sparsity of user-item interactions. In this paper, we propose a Bayesian treatment for LFM, named Bayesian Latent Factor Model (BLFM). Based on observed user-item interactions, we build a probabilistic factor model in which the regularization is introduced via placing prior constraint on latent factors, and the likelihood function is established over observations and parameters. Then we draw samples of latent factors from the posterior distribution with Variational Inference (VI) to predict expected value. We further make an extension to BLFM, called BLFMBias, incorporating user-dependent and item-dependent biases into the model for enhancing performance. Extensive experiments on the movie rating dataset show the effectiveness of our proposed models by compared with several strong baselines.

Enhanced User Interest and Expertise Modeling for Expert Recommendation

Tongze He, Caili Guo, Yunfei Chu

Responsive image

Auto-TLDR; A Unified Framework for Expert Recommendation in Community Question Answering

Slides Poster Similar

The rapid development of Community Question Answering (CQA) satisfies users' request for professional and personal knowledge. In CQA, one key issue is to recommend users with high expertise and willingness to answer the given questions, namely expert recommendation. However, most of existing methods for expert recommendation ignore some key information, such as time information and historical feedback information, degrading the performance. On the one hand, users' interest are changing over time. It is biased if we don't consider the dynamics. On the other hand, feedback information is critical to estimate users' expertise. To solve these problems, we propose a unified framework for expert recommendation to exploit user interest and expertise more precisely. Considering the inconsistency between them, we propose to learn their embeddings separately. We leverage Long Short-Term Memory (LSTM) to model user's short-term interest and combine it with long-term interest. The user expertise is learned by the designed user expertise network, which explicitly models feedback on users' historical behavior. The extensive experiments on a large-scale dataset from a real-world CQA site demonstrate the superior performance of our method than state-of-the-art solutions to the problem.

Multi-Modal Identification of State-Sponsored Propaganda on Social Media

Xiaobo Guo, Soroush Vosoughi

Responsive image

Auto-TLDR; A balanced dataset for detecting state-sponsored Internet propaganda

Slides Poster Similar

The prevalence of state-sponsored propaganda on the Internet has become a cause for concern in the recent years. While much effort has been made to identify state-sponsored Internet propaganda, the problem remains far from being solved because the ambiguous definition of propaganda leads to unreliable data labelling, and the huge amount of potential predictive features causes the models to be inexplicable. This paper is the first attempt to build a balanced dataset for this task. The dataset is comprised of propaganda by three different organizations across two time periods. A multi-model framework for detecting propaganda messages solely based on the visual and textual content is proposed which achieves a promising performance on detecting propaganda by the three organizations both for the same time period (training and testing on data from the same time period) (F1=0.869) and for different time periods (training on past, testing on future) (F1=0.697). To reduce the influence of false positive predictions, we change the threshold to test the relationship between the false positive and true positive rates and provide explanations for the predictions made by our models with visualization tools to enhance the interpretability of our framework. Our new dataset and general framework provide a strong benchmark for the task of identifying state-sponsored Internet propaganda and point out a potential path for future work on this task.

Automated Whiteboard Lecture Video Summarization by Content Region Detection and Representation

Bhargava Urala Kota, Alexander Stone, Kenny Davila, Srirangaraj Setlur, Venu Govindaraju

Responsive image

Auto-TLDR; A Framework for Summarizing Whiteboard Lecture Videos Using Feature Representations of Handwritten Content Regions

Poster Similar

Lecture videos are rapidly becoming an invaluable source of information for students across the globe. Given the large number of online courses currently available, it is important to condense the information within these videos into a compact yet representative summary that can be used for search-based applications. We propose a framework to summarize whiteboard lecture videos by finding feature representations of detected handwritten content regions to determine unique content. We investigate multi-scale histogram of gradients and embeddings from deep metric learning for feature representation. We explicitly handle occluded, growing and disappearing handwritten content. Our method is capable of producing two kinds of lecture video summaries - the unique regions themselves or so-called key content and keyframes (which contain all unique content in a video segment). We use weighted spatio-temporal conflict minimization to segment the lecture and produce keyframes from detected regions and features. We evaluate both types of summaries and find that we obtain state-of-the-art peformance in terms of number of summary keyframes while our unique content recall and precision are comparable to state-of-the-art.

Scientific Document Summarization using Citation Context and Multi-objective Optimization

Naveen Saini, Sushil Kumar, Sriparna Saha, Pushpak Bhattacharyya

Responsive image

Auto-TLDR; SciSumm Summarization using Multi-Objective Optimization

Slides Poster Similar

The rate of publishing scientific articles is ever increasing which has created difficulty for the researchers to learn about the recent advancements in a faster way. Also, relying on the abstract of these published articles is not a good idea as they cover only broad idea of the article. The summarization of scientific documents (SDS) addresses this challenge. In this paper, we propose a system for SDS having two components: identifying the relevant sentences in the article using citation context; generation of the summary by posing SDS as a binary optimization problem. For the purpose of optimization, a meta-heuristic evolutionary algorithm is utilized. In order to improve the quality of summary, various aspects measuring the relevance of sentences are simultaneously optimized using the concept of multi-objective optimization. Inspired by the popularity of graph-based algorithms like LexRank which is popularly used in solving summarization problems of different real-life applications, its impact is studied in fusion with our optimization framework. An ablation study is also performed to identify the most contributing aspects for the summary generation. We investigated the performance of our proposed framework on two datasets related to the computational linguistic domain, CL-SciSumm 2016 and CL-SciSumm 2017, in terms of ROUGE measures. The results obtained show that our framework effectively improves other existing methods. Further, results are validated using the statistical paired t-test.

Hierarchical Multimodal Attention for Deep Video Summarization

Melissa Sanabria, Frederic Precioso, Thomas Menguy

Responsive image

Auto-TLDR; Automatic Summarization of Professional Soccer Matches Using Event-Stream Data and Multi- Instance Learning

Slides Poster Similar

The way people consume sports on TV has drastically evolved in the last years, particularly under the combined effects of the legalization of sport betting and the huge increase of sport analytics. Several companies are nowadays sending observers in the stadiums to collect live data of all the events happening on the field during the match. Those data contain meaningful information providing a very detailed description of all the actions occurring during the match to feed the coaches and staff, the fans, the viewers, and the gamblers. Exploiting all these data, sport broadcasters want to generate extra content such as match highlights, match summaries, players and teams analytics, etc., to appeal subscribers. This paper explores the problem of summarizing professional soccer matches as automatically as possible using both the aforementioned event-stream data collected from the field and the content broadcasted on TV. We have designed an architecture, introducing first (1) a Multiple Instance Learning method that takes into account the sequential dependency among events and then (2) a hierarchical multimodal attention layer that grasps the importance of each event in an action. We evaluate our approach on matches from two professional European soccer leagues, showing its capability to identify the best actions for automatic summarization by comparing with real summaries made by human operators.

PICK: Processing Key Information Extraction from Documents Using Improved Graph Learning-Convolutional Networks

Wenwen Yu, Ning Lu, Xianbiao Qi, Ping Gong, Rong Xiao

Responsive image

Auto-TLDR; PICK: A Graph Learning Framework for Key Information Extraction from Documents

Slides Poster Similar

Computer vision with state-of-the-art deep learning models have achieved huge success in the field of Optical Character Recognition (OCR) including text detection and recognition tasks recently. However, Key Information Extraction (KIE) from documents as the downstream task of OCR, having a large number of use scenarios in real-world, remains a challenge because documents not only have textual features extracting from OCR systems but also have semantic visual features that are not fully exploited and play a critical role in KIE. Too little work has been devoted to efficiently make full use of both textual and visual features of the documents. In this paper, we introduce PICK, a framework that is effective and robust in handling complex documents layout for KIE by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Extensive experiments on real-world datasets have been conducted to show that our method outperforms baselines methods by significant margins.

Assessing the Severity of Health States Based on Social Media Posts

Shweta Yadav, Joy Prakash Sain, Amit Sheth, Asif Ekbal, Sriparna Saha, Pushpak Bhattacharyya

Responsive image

Auto-TLDR; A Multiview Learning Framework for Assessment of Health State in Online Health Communities

Slides Poster Similar

The unprecedented growth of Internet users has resulted in an abundance of unstructured information on social media including health forums, where patients request health-related information or opinions from other users. Previous studies have shown that online peer support has limited effectiveness without expert intervention. Therefore, a system capable of assessing the severity of health state from the patients' social media posts can help health professionals (HP) in prioritizing the user’s post. In this study, we inspect the efficacy of different aspects of Natural Language Understanding (NLU) to identify the severity of the user’s health state in relation to two perspectives(tasks) (a) Medical Condition (i.e., Recover, Exist, Deteriorate, Other) and (b) Medication (i.e., Effective, Ineffective, Serious Adverse Effect, Other) in online health communities. We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user’s health state. Specifically, our model utilizes the NLU views such as sentiment, emotions, personality, and use of figurative language to extract the contextual information. The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user’s health.

Multi-Scale 2D Representation Learning for Weakly-Supervised Moment Retrieval

Ding Li, Rui Wu, Zhizhong Zhang, Yongqiang Tang, Wensheng Zhang

Responsive image

Auto-TLDR; Multi-scale 2D Representation Learning for Weakly Supervised Video Moment Retrieval

Slides Poster Similar

Video moment retrieval aims to search the moment most relevant to a given language query. However, most existing methods in this community often require temporal boundary annotations which are expensive and time-consuming to label. Hence weakly supervised methods have been put forward recently by only using coarse video-level label. Despite effectiveness, these methods usually process moment candidates independently, while ignoring a critical issue that the natural temporal dependencies between candidates in different temporal scales. To cope with this issue, we propose a Multi-scale 2D Representation Learning method for weakly supervised video moment retrieval. Specifically, we first construct a two-dimensional map for each temporal scale to capture the temporal dependencies between candidates. Two dimensions in this map indicate the start and end time points of these candidates. Then, we select top-K candidates from each scale-varied map with a learnable convolutional neural network. With a newly designed Moments Evaluation Module, we obtain the alignment scores of the selected candidates. At last, the similarity between captions and language query is served as supervision for further training the candidates' selector. Experiments on two benchmark datasets Charades-STA and ActivityNet Captions demonstrate that our approach achieves superior performance to state-of-the-art results.

PIN: A Novel Parallel Interactive Network for Spoken Language Understanding

Peilin Zhou, Zhiqi Huang, Fenglin Liu, Yuexian Zou

Responsive image

Auto-TLDR; Parallel Interactive Network for Spoken Language Understanding

Slides Poster Similar

Spoken Language Understanding (SLU) is an essential part of the spoken dialogue system, which typically consists of intent detection (ID) and slot filling (SF) tasks. Recently, recurrent neural networks (RNNs) based methods achieved the state-of-the-art for SLU. It is noted that, in the existing RNN-based approaches, ID and SF tasks are often jointly modeled to utilize the correlation information between them. However, we noted that, so far, the efforts to obtain better performance by supporting bidirectional and explicit information exchange between ID and SF are not well studied. In addition, few studies attempt to capture the local context information to enhance the performance of SF. Motivated by these findings, in this paper, Parallel Interactive Network (PIN) is proposed to model the mutual guidance between ID and SF. Specifically, given an utterance, a Gaussian self-attentive encoder is introduced to generate the context-aware feature embedding of the utterance which is able to capture local context information. Taking the feature embedding of the utterance, Slot2Intent module and Intent2Slot module are developed to capture the bidirectional information flow for ID and SF tasks. Finally, a cooperation mechanism is constructed to fuse the information obtained from Slot2Intent and Intent2Slot modules to further reduce the prediction bias. The experiments on two benchmark datasets, i.e., SNIPS and ATIS, demonstrate the effectiveness of our approach, which achieves a competitive result with state-of-the-art models. More encouragingly, by using the feature embedding of the utterance generated by the pre-trained language model BERT, our method achieves the state-of-the-art among all comparison approaches.

RWF-2000: An Open Large Scale Video Database for Violence Detection

Ming Cheng, Kunjing Cai, Ming Li

Responsive image

Auto-TLDR; Flow Gated Network for Violence Detection in Surveillance Cameras

Slides Poster Similar

In recent years, surveillance cameras are widely deployed in public places, and the general crime rate has been reduced significantly due to these ubiquitous devices. Usually, these cameras provide cues and evidence after crimes were conducted, while they are rarely used to prevent or stop criminal activities in time. It is both time and labor consuming to manually monitor a large amount of video data from surveillance cameras. Therefore, automatically recognizing violent behaviors from video signals becomes essential. In this paper, we summarize several existing video datasets for violence detection and propose a new video dataset with 2,000 videos all captured by surveillance cameras in real-world scenes. Also, we present a new method that utilizes both the merits of 3D-CNNs and optical flow, namely Flow Gated Network. The proposed approach obtains an accuracy of 87.25% on the test set of our proposed RWF-2000 database. The proposed database and source codes of this paper are currently open to access.

Audio-Based Near-Duplicate Video Retrieval with Audio Similarity Learning

Pavlos Avgoustinakis, Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Andreas L. Symeonidis, Ioannis Kompatsiaris

Responsive image

Auto-TLDR; AuSiL: Audio Similarity Learning for Near-duplicate Video Retrieval

Slides Poster Similar

In this work, we address the problem of audio-based near-duplicate video retrieval. We propose the Audio Similarity Learning (AuSiL) approach that effectively captures temporal patterns of audio similarity between video pairs. For the robust similarity calculation between two videos, we first extract representative audio-based video descriptors by leveraging transfer learning based on a Convolutional Neural Network (CNN) trained on a large scale dataset of audio events, and then we calculate the similarity matrix derived from the pairwise similarity of these descriptors. The similarity matrix is subsequently fed to a CNN network that captures the temporal structures existing within its content. We train our network following a triplet generation process and optimizing the triplet loss function. To evaluate the effectiveness of the proposed approach, we have manually annotated two publicly available video datasets based on the audio duplicity between their videos. The proposed approach achieves very competitive results compared to three state-of-the-art methods. Also, unlike the competing methods, it is very robust for the retrieval of audio duplicates generated with speed transformations.

Attentive Visual Semantic Specialized Network for Video Captioning

Jesus Perez-Martin, Benjamin Bustos, Jorge Pérez

Responsive image

Auto-TLDR; Adaptive Visual Semantic Specialized Network for Video Captioning

Slides Poster Similar

As an essential high-level task of video understanding topic, automatically describing a video with natural language has recently gained attention as a fundamental challenge in computer vision. Previous models for video captioning have several limitations, such as the existence of gaps in current semantic representations and the inexpressibility of the generated captions. To deal with these limitations, in this paper, we present a new architecture that we callAttentive Visual Semantic Specialized Network(AVSSN), which is an encoder-decoder model based on our Adaptive Attention Gate and Specialized LSTM layers. This architecture can selectively decide when to use visual or semantic information into the text generation process. The adaptive gate makes the decoder to automatically select the relevant information for providing a better temporal state representation than the existing decoders. Besides, the model is capable of learning to improve the expressiveness of generated captions attending to their length, using a sentence-length-related loss function. We evaluate the effectiveness of the proposed approach on the Microsoft Video Description(MSVD) and the Microsoft Research Video-to-Text (MSR-VTT) datasets, achieving state-of-the-art performance with several popular evaluation metrics: BLEU-4, METEOR, CIDEr, and ROUGE_L.

Three-Dimensional Lip Motion Network for Text-Independent Speaker Recognition

Jianrong Wang, Tong Wu, Shanyu Wang, Mei Yu, Qiang Fang, Ju Zhang, Li Liu

Responsive image

Auto-TLDR; Lip Motion Network for Text-Independent and Text-Dependent Speaker Recognition

Slides Poster Similar

Lip motion reflects behavior characteristics of speakers, and thus can be used as a new kind of biometrics in speaker recognition. In the literature, lots of works used two dimensional (2D) lip images to recognize speaker in a text-dependent context. However, 2D lip easily suffers from face orientations. To this end, in this work, we present a novel end-to-end 3D lip motion Network (3LMNet) by utilizing the sentence-level 3D lip motion (S3DLM) to recognize speakers in both the text-independent and text-dependent contexts. A novel regional feedback module (RFM) is proposed to explore attentions in different lip regions. Besides, prior knowledge of lip motion is investigated to complement RFM, where landmark-level and frame-level features are merged to form a better feature representation. Moreover, we present two methods, i.e., coordinate transformation and face posture correction to pre-process the LSD-AV dataset, which contains 68 speakers and 146 sentences per speaker. The evaluation results on this dataset demonstrate that our proposed 3LMNet is superior to the baseline models, i.e., LSTM, VGG-16 and ResNet-34, and outperforms the state-of-the-art using 2D lip image as well as the 3D face. The code of this work is released at https://github.com/wutong18/Three-Dimensional-Lip-Motion-Ne twork-for-Text-Independent-Speaker-Recognition.

Visual Oriented Encoder: Integrating Multimodal and Multi-Scale Contexts for Video Captioning

Bang Yang, Yuexian Zou

Responsive image

Auto-TLDR; Visual Oriented Encoder for Video Captioning

Slides Poster Similar

Video captioning is a challenging task which aims at automatically generating a natural language description of a given video. Recent researches have shown that exploiting the intrinsic multi-modalities of videos significantly promotes captioning performance. However, how to integrate multi-modalities to generate effective semantic representations for video captioning is still an open issue. Some researchers proposed to learn multimodal features in parallel during the encoding stage. The downside of these methods lies in the neglect of the interaction among multi-modalities and their rich contextual information. In this study, inspired by the fact that visual contents are generally more important for comprehending videos, we propose a novel Visual Oriented Encoder (VOE) to integrate multimodal features in an interactive manner. Specifically, VOE is designed as a hierarchical structure, where bottom layers are utilized to extract multi-scale contexts from auxiliary modalities while the top layer is exploited to generate joint representations by considering both visual and contextual information. Following the encoder-decoder framework, we systematically develop a VOE-LSTM model and evaluate it on two mainstream benchmarks: MSVD and MSR-VTT. Experimental results show that the proposed VOE surpasses conventional encoders and our VOE-LSTM model achieves competitive results compared with state-of-the-art approaches.

GCNs-Based Context-Aware Short Text Similarity Model

Xiaoqi Sun

Responsive image

Auto-TLDR; Context-Aware Graph Convolutional Network for Text Similarity

Slides Poster Similar

Semantic textual similarity is a fundamental task in text mining and natural language processing (NLP), which has profound research value. The essential step for text similarity is text representation learning. Recently, researches have explored the graph convolutional network (GCN) techniques on text representation, since GCN does well in handling complex structures and preserving syntactic information. However, current GCN models are usually limited to very shallow layers due to the vanishing gradient problem, which cannot capture non-local dependency information of sentences. In this paper, we propose a GCNs-based context-aware (GCSTS) model that applies iterated GCN blocks to train deeper GCNs. Recurrently employing the same GCN block prevents over-fitting and provides broad effective input width. Combined with dense connections, GCSTS can be trained more deeply. Besides, we use dynamic graph structures in the block, which further extend the receptive field of each vertex in graphs, learning better sentence representations. Experiments show that our model outperforms existing models on several text similarity datasets, while also verify that GCNs-based text representation models can be trained in a deeper manner, rather than being trained in two or three layers.

An Integrated Approach of Deep Learning and Symbolic Analysis for Digital PDF Table Extraction

Mengshi Zhang, Daniel Perelman, Vu Le, Sumit Gulwani

Responsive image

Auto-TLDR; Deep Learning and Symbolic Reasoning for Unstructured PDF Table Extraction

Slides Poster Similar

Deep learning has shown great success at interpreting unstructured data such as object recognition in images. Symbolic/logical-reasoning techniques have shown great success in interpreting structured data such as table extraction in webpages, custom text files, spreadsheets. The tables in PDF documents are often generated from such structured sources (text-based Word/Latex documents, spreadsheets, webpages) but end up being unstructured. We thus explore novel combinations of deep learning and symbolic reasoning techniques to build an effective solution for PDF table extraction. We evaluate effectiveness without granting partial credit for matching part of a table (which may cause silent errors in downstream data processing). Our method achieves a 0.725 F1 score (vs. 0.339 for the state-of-the-art) on detecting correct table bounds---a much stricter metric than the common one of detecting characters within tables---in a well known public benchmark (ICDAR 2013) and a 0.404 F1 score (vs. 0.144 for the state-of-the-art) on our private benchmark with more widely varied table structures.

To Honor Our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII

Marc Cheong, Mark Alfano

Responsive image

Auto-TLDR; Obituaries of World War I and World War II: A Map of Values and Virtues attributed to Australian Military Personnel

Slides Poster Similar

Obituaries represent a prominent way of expressing the human universal of grief. According to philosophers, obituaries are a ritualized way of evaluating both individuals who have passed away and the communities that helped to shape them. The basic idea is that you can tell what it takes to count as a good person of a particular type in a particular community by seeing how persons of that type are described and celebrated in their obituaries. Obituaries of those killed in conflict, in particular, are rich repositories of communal values, as they reflect the values and virtues that are admired and respected in individuals who are considered to be heroes in their communities. In this paper, we use natural language processing techniques to map the patterns of values and virtues attributed to Australian military personnel who were killed in action during World War I and World War II. Doing so reveals several clusters of values and virtues that tend to be attributed together. In addition, we use named entity recognition and geotagging the track the movements of these soldiers to various theatres of the wars, including North Africa, Europe, and the Pacific.

EasiECG: A Novel Inter-Patient Arrhythmia Classification Method Using ECG Waves

Chuanqi Han, Ruoran Huang, Fang Yu, Xi Huang, Li Cui

Responsive image

Auto-TLDR; EasiECG: Attention-based Convolution Factorization Machines for Arrhythmia Classification

Slides Poster Similar

Abstract—In an ECG record, the PQRST waves are of important medical significance which provide ample information reflecting heartbeat activities. In this paper, we propose a novel arrhythmia classification method namely EasiECG, characterized by simplicity and accuracy. Compared with other works, the EasiECG takes the configuration of these five key waves into account and does not require complicated feature engineering. Meanwhile, an additional encoding of the extracted features makes the EasiECG applicable even on samples with missing waves. To automatically capture interactions that contribute to the classification among the processed features, a novel adapted classification model named Attention-based Convolution Factorization Machines (ACFM) is proposed. In detail, the ACFM can learn both linear and high-order interactions from linear regression and convolution on outer-product feature interaction maps, respectively. After that, an attention mechanism implemented in the model can further assign different importance of these interactions when predicting certain types of heartbeats. To validate the effectiveness and practicability of our EasiECG, extensive experiments of inter-patient paradigm on the benchmark MIT-BIH arrhythmia database are conducted. To tackle the imbalanced sample problem in this dataset, an ingenious loss function: focal loss is adopted when training. The experiment results show that our method is competitive compared with other state-of-the-arts, especially in classifying the Supraventricular ectopic beats. Besides, the EasiECG achieves an overall accuracy of 87.6% on samples with a missing wave in the related experiment, demonstrating the robustness of our proposed method.

Feature Embedding Based Text Instance Grouping for Largely Spaced and Occluded Text Detection

Pan Gao, Qi Wan, Renwu Gao, Linlin Shen

Responsive image

Auto-TLDR; Text Instance Embedding Based Feature Embeddings for Multiple Text Instance Grouping

Slides Poster Similar

A text instance can be easily detected as multiple ones due to the large space between texts/characters, curved shape and partial occlusion. In this paper, a feature embedding based text instance grouping algorithm is proposed to solve this problem. To learn the feature space, a TIEM (Text Instance Embedding Module) is trained to minimize the within instance scatter and maximize the between instance scatter. Similarity between different text instances are measured in the feature space and merged if they meet certain conditions. Experimental results show that our approach can effectively connect text regions that belong to the same text instance. Competitive performance of our approach has been achieved on CTW1500, Total-Text, IC15 and a subset consists of texts selected from the three datasets, with large spacing and occlusions.

ActionSpotter: Deep Reinforcement Learning Framework for Temporal Action Spotting in Videos

Guillaume Vaudaux-Ruth, Adrien Chan-Hon-Tong, Catherine Achard

Responsive image

Auto-TLDR; ActionSpotter: A Reinforcement Learning Algorithm for Action Spotting in Video

Slides Poster Similar

Action spotting has recently been proposed as an alternative to action detection and key frame extraction. However, the current state-of-the-art method of action spotting requires an expensive ground truth composed of the search sequences employed by human annotators spotting actions - a critical limitation. In this article, we propose to use a reinforcement learning algorithm to perform efficient action spotting using only the temporal segments from the action detection annotations, thus opening an interesting solution for video understanding. Experiments performed on THUMOS14 and ActivityNet datasets show that the proposed method, named ActionSpotter, leads to good results and outperforms state-of-the-art detection outputs redrawn for this application. In particular, the spotting mean Average Precision on THUMOS14 is significantly improved from 59.7% to 65.6% while skipping 23% of video.

Fused 3-Stage Image Segmentation for Pleural Effusion Cell Clusters

Sike Ma, Meng Zhao, Hao Wang, Fan Shi, Xuguo Sun, Shengyong Chen, Hong-Ning Dai

Responsive image

Auto-TLDR; Coarse Segmentation of Stained and Stained Unstained Cell Clusters in pleural effusion using 3-stage segmentation method

Slides Poster Similar

The appearance of tumor cell clusters in pleural effusion is usually a vital sign of cancer metastasis. Segmentation, as an indispensable basis, is of crucial importance for diagnosing, chemical treatment, and prognosis in patients. However, accurate segmentation of unstained cell clusters containing more detailed features than the fluorescent staining images remains to be a challenging problem due to the complex background and the unclear boundary. Therefore, in this paper, we propose a fused 3-stage image segmentation algorithm, namely Coarse segmentation-Mapping-Fine segmentation (CMF) to achieve unstained cell clusters from whole slide images. Firstly, we establish a tumor cell cluster dataset consisting of 107 sets of images, with each set containing one unstained image, one stained image, and one ground-truth image. Then, according to the features of the unstained and stained cell clusters, we propose a three-stage segmentation method: 1) Coarse segmentation on stained images to extract suspicious cell regions-Region of Interest (ROI); 2) Mapping this ROI to the corresponding unstained image to get the ROI of the unstained image (UI-ROI); 3) Fine Segmentation using improved automatic fuzzy clustering framework (AFCF) on the UI-ROI to get precise cell cluster boundaries. Experimental results on 107 sets of images demonstrate that the proposed algorithm can achieve better performance on unstained cell clusters with an F1 score of 90.40%.

The HisClima Database: Historical Weather Logs for Automatic Transcription and Information Extraction

Verónica Romero, Joan Andreu Sánchez

Responsive image

Auto-TLDR; Automatic Handwritten Text Recognition and Information Extraction from Historical Weather Logs

Slides Poster Similar

Knowing the weather and atmospheric conditions from the past can help weather researchers to generate models like the ones used to predict how weather conditions are likely to change as global temperatures continue to rise. Many historical weather records are available from the past registered on a systemic basis. Historical weather logs were registered in ships, when they were on the high seas, recording daily weather conditions such as: wind speed, temperature, coordinates, etc. These historical documents represent an important source of knowledge with valuable information to extract climatic information of several centuries ago. Such information is usually collected by experts that devote a lot of time. This paper presents a new database, compiled from a ship log mainly composed by handwritten tables that contain mainly numerical information, to support research in automatic handwriting recognition and information extraction. In addition, a study is presented about the capability of state-of-the-art handwritten text recognition systems and information extraction techniques, when applied to the presented database. Baseline results are reported for reference in future studies.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

Textual-Content Based Classification of Bundles of Untranscribed of Manuscript Images

José Ramón Prieto Fontcuberta, Enrique Vidal, Vicente Bosch, Carlos Alonso, Carmen Orcero, Lourdes Márquez

Responsive image

Auto-TLDR; Probabilistic Indexing for Text-based Classification of Manuscripts

Slides Poster Similar

Content-based classification of manuscripts is an important task that is generally performed in archives and libraries by experts with a wealth of knowledge on the manuscripts contents. Unfortunately, many manuscript collections are so vast that it is not feasible to rely solely on experts to perform this task. Current approaches for textual-content-based manuscript classification generally require the handwritten images to be first transcribed into text -- but achieving sufficiently accurate transcripts is generally unfeasible for large sets of historical manuscripts. We propose a new approach to automatically perform this classification task which does not rely on any explicit image transcripts. It is based on ``probabilistic indexing'', a relatively novel technology which allows to effectively represent the intrinsic word-level uncertainty generally exhibited by handwritten text images. We assess the performance of this approach on a large collection of complex manuscripts from the Spanish Archivo General de Indias, with promising results.

Trajectory-User Link with Attention Recurrent Networks

Tao Sun, Yongjun Xu, Fei Wang, Lin Wu, 塘文 钱, Zezhi Shao

Responsive image

Auto-TLDR; TULAR: Trajectory-User Link with Attention Recurrent Neural Networks

Slides Poster Similar

The prevalent adoptions of GPS-enabled devices have witnessed an explosion of various location-based services which produces a huge amount of trajectories monitoring the individuals' movements. In this paper, we tackle Trajectory-User Link (TUL) problem, which identifies humans' movement patterns and links trajectories to the users who generated them. Existing solutions on TUL problem employ recurrent neural networks and variational autoencoder methods, which face the bottlenecks in the case of excessively long trajectories and fragmentary users' movements. However, these are common characteristics of trajectory data in reality, leading to performance degradation of the existing models. In this paper, we propose an end-to-end attention recurrent neural learning framework, called TULAR (Trajectory-User Link with Attention Recurrent Networks), which focus on selected parts of the source trajectories when linking. TULAR introduce the Trajectory Semantic Vector (TSV) via unsupervised location representation learning and recurrent neural networks, by which to reckon the weight of parts of source trajectory. Further, we employ three attention scores for the weight measurements. Experiments are conducted on two real world datasets and compared with several existing methods, and the results show that TULAR yields a new state-of-the-art performance. Source code is public available at GitHub: https://github.com/taos123/TULAR.

Dual Path Multi-Modal High-Order Features for Textual Content Based Visual Question Answering

Yanan Li, Yuetan Lin, Hongrui Zhao, Donghui Wang

Responsive image

Auto-TLDR; TextVQA: An End-to-End Visual Question Answering Model for Text-Based VQA

Slides Similar

As a typical cross-modal problem, visual question answering (VQA) has received increasing attention from the communities of computer vision and natural language processing. Reading and reasoning about texts and visual contents in the images is a burgeoning and important research topic in VQA, especially for the visually impaired assistance applications. Given an image, it aims to predict an answer to a provided natural language question closely related to its textual contents. In this paper, we propose a novel end-to-end textual content based VQA model, which grounds question answering both on the visual and textual information. After encoding the image, question and recognized text words, it uses multi-modal factorized high-order modules and the attention mechanism to fuse question-image and question-text features respectively. The complex correlations among different features can be captured efficiently. To ensure the model's extendibility, it embeds candidate answers and recognized texts in a semantic embedding space and adopts semantic embedding based classifier to perform answer prediction. Extensive experiments on the newly proposed benchmark TextVQA demonstrate that the proposed model can achieve promising results.

A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata

Tobia Tesan, Pasquale Coscia, Lamberto Ballan

Responsive image

Auto-TLDR; Context-Based Image Annotation with Multiple Semantic Embeddings and Recurrent Neural Networks

Slides Poster Similar

Images represent a commonly used form of visual communication among people. Nevertheless, image classification may be a challenging task when dealing with unclear or non-common images needing more context to be correctly annotated. Metadata accompanying images on social-media represent an ideal source of additional information for retrieving proper neighborhoods easing image annotation task. To this end, we blend visual features extracted from neighbors and their metadata to jointly leverage context and visual cues. Our models use multiple semantic embeddings to achieve the dual objective of being robust to vocabulary changes between train and test sets and decoupling the architecture from the low-level metadata representation. Convolutional and recurrent neural networks (CNNs-RNNs) are jointly adopted to infer similarity among neighbors and query images. We perform comprehensive experiments on the NUS-WIDE dataset showing that our models outperform state-of-the-art architectures based on images and metadata, and decrease both sensory and semantic gaps to better annotate images.

Cross-Lingual Text Image Recognition Via Multi-Task Sequence to Sequence Learning

Zhuo Chen, Fei Yin, Xu-Yao Zhang, Qing Yang, Cheng-Lin Liu

Responsive image

Auto-TLDR; Cross-Lingual Text Image Recognition with Multi-task Learning

Slides Poster Similar

This paper considers recognizing texts shown in a source language and translating into a target language, without generating the intermediate source language text image recognition results. We call this problem Cross-Lingual Text Image Recognition (CLTIR). To solve this problem, we propose a multi-task system containing a main task of CLTIR and an auxiliary task of Mono-Lingual Text Image Recognition (MLTIR) simultaneously. Two different sequence to sequence learning methods, a convolution based attention model and a BLSTM model with CTC, are adopted for these tasks respectively. We evaluate the system on a newly collected Chinese-English bilingual movie subtitle image dataset. Experimental results demonstrate the multi-task learning framework performs superiorly in both languages.

A Benchmark Dataset for Segmenting Liver, Vasculature and Lesions from Large-Scale Computed Tomography Data

Bo Wang, Zhengqing Xu, Wei Xu, Qingsen Yan, Liang Zhang, Zheng You

Responsive image

Auto-TLDR; The Biggest Treatment-Oriented Liver Cancer Dataset for Segmentation

Slides Poster Similar

How to build a high-performance liver-related computer assisted diagnosis system is an open question of great interest. However, the performance of the state-of-art algorithm is always limited by the amount of data and quality of the label. To address this problem, we propose the biggest treatment-oriented liver cancer dataset for liver surgery and treatment planning. This dataset provides 216 cases (totally about 268K frames) scanned images in contrast-enhanced computed tomography (CT). We labeled all the CT images with the liver, liver vasculature and liver tumor segmentation ground truth for train and tune segmentation algorithms in advance. Based on that, we evaluate several recent and state-of-the-art segmentation algorithms, including 7 deep learning methods, on CT sequences. All results are compared to reference segmentations five error metrics that highlight different aspects of segmentation accuracy. In general, compared with previous datasets, our dataset is really a challenging dataset. To our knowledge, the proposed dataset and benchmark allow for the first time systematic exploration of such issues, and will be made available to allow for further research in this field.

Recognizing American Sign Language Nonmanual Signal Grammar Errors in Continuous Videos

Elahe Vahdani, Longlong Jing, Ying-Li Tian, Matt Huenerfauth

Responsive image

Auto-TLDR; ASL-HW-RGBD: Recognizing Grammatical Errors in Continuous Sign Language

Slides Poster Similar

As part of the development of an educational tool that can help students achieve fluency in American Sign Language (ASL) through independent and interactive practice with immediate feedback, this paper introduces a near real-time system to recognize grammatical errors in continuous signing videos without necessarily identifying the entire sequence of signs. Our system automatically recognizes if a performance of ASL sentences contains grammatical errors made by ASL students. We first recognize the ASL grammatical elements including both manual gestures and nonmanual signals independently from multiple modalities (i.e. hand gestures, facial expressions, and head movements) by 3D-ResNet networks. Then the temporal boundaries of grammatical elements from different modalities are examined to detect ASL grammatical mistakes by using a sliding window-based approach. We have collected a dataset of continuous sign language, ASL-HW-RGBD, covering different aspects of ASL grammars for training and testing. Our system is able to recognize grammatical elements on ASL-HW-RGBD from manual gestures, facial expressions, and head movements and successfully detect 8 ASL grammatical mistakes.

Information Graphic Summarization Using a Collection of Multimodal Deep Neural Networks

Edward Kim, Connor Onweller, Kathleen F. Mccoy

Responsive image

Auto-TLDR; A multimodal deep learning framework that can generate summarization text supporting the main idea of an information graphic for presentation to blind or visually impaired

Slides Similar

We present a multimodal deep learning framework that can generate summarization text supporting the main idea of an information graphic for presentation to a person who is blind or visually impaired. The framework utilizes the visual, textual, positional, and size characteristics extracted from the image to create the summary. Different and complimentary neural architectures are optimized for each task using crowdsourced training data. From our quantitative experiments and results, we explain the reasoning behind our framework and show the effectiveness of our models. Our qualitative results showcase text generated from our framework and show that Mechanical Turk participants favor them to other automatic and human generated summarizations. We describe the design and of of an experiment to evaluate the utility of our system for people who have visual impairments in the context of understanding Twitter Tweets containing line graphs.

Cross-People Mobile-Phone Based Airwriting Character Recognition

Yunzhe Li, Hui Zheng, He Zhu, Haojun Ai, Xiaowei Dong

Responsive image

Auto-TLDR; Cross-People Airwriting Recognition via Motion Sensor Signal via Deep Neural Network

Slides Poster Similar

Airwriting using mobile phones has many applications in human-computer interaction. However, the recognition of airwriting character needs a lot of training data from user, which brings great difficulties to the pratical application. The model learnt from a specific person often cannot yield satisfied results when used on another person. The data gap between people is mainly caused by the following factors: personal writing styles, mobile phone sensors, and ways to hold mobile phones. To address the cross-people problem, we propose a deep neural network(DNN) that combines convolutional neural network(CNN) and bilateral long short-term memory(BLSTM). In each layer of the network, we also add an AdaBN layer which is able to increase the generalization ability of the DNN. Different from the original AdaBN method, we explore the feasibility for semi-supervised learning. We implement it to our design and conduct comprehensive experiments. The evaluation results show that our system can achieve an accuracy of 99% for recognition and an improvement of 10% on average for transfer learning between various factors such as people, devices and postures. To the best of our knowledge, our work is the first to implement cross-people airwriting recognition via motion sensor signal, which is a fundamental step towards ubiquitous sensing.

An Accurate Threshold Insensitive Kernel Detector for Arbitrary Shaped Text

Xijun Qian, Yifan Liu, Yu-Bin Yang

Responsive image

Auto-TLDR; TIKD: threshold insensitive kernel detector for arbitrary shaped text

Slides Similar

Recently, segmentation-based methods are popular in scene text detection due to the segmentation results can easily represent scene text of arbitrary shapes. However, previous works segment text instances the same as normal objects. It is obvious that the edge of the text instance differs from normal objects. In this paper, we propose a threshold insensitive kernel detector for arbitrary shaped text called TIKD, which includes a simple but stable base model and a new loss weight called Decay Loss Weight (DLW). By suppressing outlier pixels in a gradual way, the DLW can lead the network to detect more accurate text instances. Our method shows great power in accuracy and stability. It is worth mentioning that we achieve the precision, recall, f-measure of 88.7%, 83.7%, 86.1% respectively on the Total-Text dataset, with a fast speed of 16.3 frames per second. What’s more, even if we set the threshold in an extreme situation range from 0.1 to 0.9, our method can always achieve a stable f-measure over 79.9% on the Total-Text dataset.

Toward Text-Independent Cross-Lingual Speaker Recognition Using English-Mandarin-Taiwanese Dataset

Yi-Chieh Wu, Wen-Hung Liao

Responsive image

Auto-TLDR; Cross-lingual Speech for Biometric Recognition

Poster Similar

Over 40% of the world's population is bilingual. Existing speaker identification/verification systems, however, assume the same language type for both enrollment and recognition stages. In this work, we investigate the feasibility of employing multilingual speech for biometric application. We establish a dataset containing audio recorded in English, Mandarin and Taiwanese. Three acoustic features, namely, i-vector, d-vector and x-vector have been evaluated for both speaker verification (SV) and identification (SI) tasks. Preliminary experimental results indicate that x-vector achieves the best overall performance. Additionally, model trained with hybrid data demonstrates highest accuracy associated with the cost of data collection efforts. In SI tasks, we obtained over 91\% cross-lingual accuracy all models using 3-second audio. In SV tasks, the EER among cross-lingual test is at most 6.52\%, which is observed on the model trained by English corpus. The outcome suggests the feasibility of adopting cross-lingual speech in building text-independent speaker recognition systems.

Feature Pyramid Hierarchies for Multi-Scale Temporal Action Detection

Jiayu He, Guohui Li, Jun Lei

Responsive image

Auto-TLDR; Temporal Action Detection using Pyramid Hierarchies and Multi-scale Feature Maps

Slides Poster Similar

Temporal action detection is a challenging but promising task in video content analysis. It is in great demand in the field of public safety. The main difficulty of the task is precisely localizing activities in the video especially those short duration activities. And most of the existing methods can not achieve a satisfactory detection result. Our method addresses a key point to improve detection accuracy, which is to use multi-scale feature maps for regression and classification. In this paper, we introduce a novel network based on classification following proposal framework. In our network, a 3D feature pyramid hierarchies is built to enhance the ability of detecting short duration activities. The input RGB/Flow frames are first encoded by a 3D feature pyramid hierarchies, and this subnet produces multi-level feature maps. Then temporal proposal subnet uses these features to pick out proposals which might contain activity segments. Finally a pyramid region of interest (RoI) pooling pipeline and two fully connected layers reuse muti-level feature maps to refine the temporal boundaries of proposals and classify them. We use late feature fusion scheme to combine RGB and Flow information. The network is trained end-to-end and we evaluate it in THUMOS'14 dataset. Our network achieves a good result among typical methods. A further ablation test demonstrate that pyramid hierarchies is effective to improve detecting short duration activity segments.