Deep Topic Modeling by Multilayer Bootstrap Network and Lasso

Jian-Yu Wang, Xiao-Lei Zhang

Responsive image

Auto-TLDR; Unsupervised Deep Topic Modeling with Multilayer Bootstrap Network and Lasso

Slides Poster

Topic modeling is widely studied for the dimension reduction and analysis of documents. However, it is formulated as a difficult optimization problem. Current approximate solutions also suffer from inaccurate model- or data-assumptions. To deal with the above problems, we propose a polynomial-time deep topic model with no model and data assumptions. Specifically, we first apply multilayer bootstrap network (MBN), which is an unsupervised deep model, to reduce the dimension of documents, and then use the low-dimensional data representations or their clustering results as the target of supervised Lasso for topic word discovery. To our knowledge, this is the first time that MBN and Lasso are applied to unsupervised topic modeling. Experimental comparison results with five representative topic models on the 20-newsgroups and TDT2 corpora illustrate the effectiveness of the proposed algorithm.

Similar papers

An Empirical Bayes Approach to Topic Modeling

Anirban Gangopadhyay

Responsive image

Auto-TLDR; An Empirical Bayes Based Framework for Topic Modeling in Documents

Slides Similar

Given a corpus of documents, we consider the problem of finding latent topics, and introduce a novel Empirical Bayes based framework that allows us to choose the optimal topic modeling algorithm given observed variables in the data. We specifically consider three disparate algorithms - LDA, graph clustering, and non-negative matrix factorization - and provide a standardized framework that compares statistical and generative assumptions each algorithm makes. We then provide a model selection algorithm that quantifies each model based on how well assumptions match the data. We illustrate the efficacy of our approach by applying our framework to different sets of document corpuses and empirically measuring results.

Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference

Jiansheng Fang, Xiaoqing Zhang, Yan Hu, Yanwu Xu, Ming Yang, Jiang Liu

Responsive image

Auto-TLDR; Bayesian Latent Factor Model for Collaborative Filtering

Slides Similar

Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually in pattern recognition, LFM models user-item interactions as inner products of factor vectors of user and item in that space and can be efficiently solved by least square methods with optimal estimation. However, such optimal estimation methods are prone to overfitting due to the extreme sparsity of user-item interactions. In this paper, we propose a Bayesian treatment for LFM, named Bayesian Latent Factor Model (BLFM). Based on observed user-item interactions, we build a probabilistic factor model in which the regularization is introduced via placing prior constraint on latent factors, and the likelihood function is established over observations and parameters. Then we draw samples of latent factors from the posterior distribution with Variational Inference (VI) to predict expected value. We further make an extension to BLFM, called BLFMBias, incorporating user-dependent and item-dependent biases into the model for enhancing performance. Extensive experiments on the movie rating dataset show the effectiveness of our proposed models by compared with several strong baselines.

Feature-Aware Unsupervised Learning with Joint Variational Attention and Automatic Clustering

Wang Ru, Lin Li, Peipei Wang, Liu Peiyu

Responsive image

Auto-TLDR; Deep Variational Attention Encoder-Decoder for Clustering

Slides Poster Similar

Deep clustering aims to cluster unlabeled real-world samples by mining deep feature representation. Most of existing methods remain challenging when handling high-dimensional data and simultaneously exploring the complementarity of deep feature representation and clustering. In this paper, we propose a novel Deep Variational Attention Encoder-decoder for Clustering (DVAEC). Our DVAEC improves the representation learning ability by fusing variational attention. Specifically, we design a feature-aware automatic clustering module to mitigate the unreliability of similarity calculation and guide network learning. Besides, to further boost the performance of deep clustering from a global perspective, we define a joint optimization objective to promote feature representation learning and automatic clustering synergistically. Extensive experimental results show the promising performance achieved by our DVAEC on six datasets comparing with several popular baseline clustering methods.

Video Episode Boundary Detection with Joint Episode-Topic Model

Shunyao Wang, Ye Tian, Ruidong Wang, Yang Du, Han Yan, Ruilin Yang, Jian Ma

Responsive image

Auto-TLDR; Unsupervised Video Episode Boundary Detection for Bullet Screen Comment Video

Slides Poster Similar

Social online video has emerged as one of the most popular application, where "bullet screen comment" is one of the favorite features of Asian users. User behavior report finds that most people are used to quickly navigate and locate his concerned video clip according to its corresponding video labels. Traditional scene segmentation algorithms are mostly based on the analysis of frames, which cannot automatically generate labels. Since time-synchronized comments can reflect the episode of current moment, this paper proposed an unsupervised video episode boundary detection model (VEBD) for bullet screen comment video. It could not only automatically identify each episode boundary, but also detect the topic for video tagging. Specifically, a Joint Episode-Topic model is first constructed to detect the hidden topic in initial partitioned time slices. Then, based on the detected topics, temporal and semantic relevancy between adjacent time slices are measured to refine the boundary detection accuracy. Experiments based on real data show that our model outperforms the existing algorithms in both boundary detection and semantic tagging quality.

Double Manifolds Regularized Non-Negative Matrix Factorization for Data Representation

Jipeng Guo, Shuai Yin, Yanfeng Sun, Yongli Hu

Responsive image

Auto-TLDR; Double Manifolds Regularized Non-negative Matrix Factorization for Clustering

Slides Poster Similar

Non-negative matrix factorization (NMF) is an important method in learning latent data representation. The local geometrical structure can make the learned representation more effectively and significantly improve the performance of NMF. However, most of existing graph-based learning methods are determined by a predefined similarity graph which may be not optimal for specific tasks. To solve the above the problem, we propose the Double Manifolds Regularized NMF (DMR-NMF) model which jointly learns an adaptive affinity matrix with the non-negative matrix factorization. The learned affinity matrix can guide the NMF to fit the clustering task. Moreover, we develop the iterative updating optimization schemes for DMR-NMF, and provide the strict convergence proof of our optimization strategy. Empirical experiments on four different real-world data sets demonstrate the state-of-the-art performance of DMR-NMF in comparison with the other related algorithms.

Low Rank Representation on Product Grassmann Manifolds for Multi-viewSubspace Clustering

Jipeng Guo, Yanfeng Sun, Junbin Gao, Yongli Hu, Baocai Yin

Responsive image

Auto-TLDR; Low Rank Representation on Product Grassmann Manifold for Multi-View Data Clustering

Slides Poster Similar

Clustering high dimension multi-view data with complex intrinsic properties and nonlinear manifold structure is a challenging task since these data are always embedded in low dimension manifolds. Inspired by Low Rank Representation (LRR), some researchers extended classic LRR on Grassmann manifold or Product Grassmann manifold to represent data with non-linear metrics. However, most of these methods utilized convex nuclear norm to leverage a low-rank structure, which was over-relaxation of true rank and would lead to the results deviated from the true underlying ones. And, the computational complexity of singular value decomposition of matrix is high for nuclear norm minimization. In this paper, we propose a new low rank model for high-dimension multi-view data clustering on Product Grassmann Manifold with the matrix tri-factorization which is used to control the upper bound of true rank of representation matrix. And, the original problem can be transformed into the nuclear norm minimization with smaller scale matrices. An effective solution and theoretical analysis are also provided. The experimental results show that the proposed method obviously outperforms other state-of-the-art methods on several multi-source human/crowd action video datasets.

N2D: (Not Too) Deep Clustering Via Clustering the Local Manifold of an Autoencoded Embedding

Ryan Mcconville, Raul Santos-Rodriguez, Robert Piechocki, Ian Craddock

Responsive image

Auto-TLDR; Local Manifold Learning for Deep Clustering on Autoencoded Embeddings

Slides Similar

Deep clustering has increasingly been demonstrating superiority over conventional shallow clustering algorithms. Deep clustering algorithms usually combine representation learning with deep neural networks to achieve this performance, typically optimizing a clustering and non-clustering loss. In such cases, an autoencoder is typically connected with a clustering network, and the final clustering is jointly learned by both the autoencoder and clustering network. Instead, we propose to learn an autoencoded embedding and then search this further for the underlying manifold. For simplicity, we then cluster this with a shallow clustering algorithm, rather than a deeper network. We study a number of local and global manifold learning methods on both the raw data and autoencoded embedding, concluding that UMAP in our framework is able to find the best clusterable manifold of the embedding. This suggests that local manifold learning on an autoencoded embedding is effective for discovering higher quality clusters. We quantitatively show across a range of image and time-series datasets that our method has competitive performance against the latest deep clustering algorithms, including out-performing current state-of-the-art on several. We postulate that these results show a promising research direction for deep clustering. The code can be found at https://github.com/rymc/n2d.

Variational Deep Embedding Clustering by Augmented Mutual Information Maximization

Qiang Ji, Yanfeng Sun, Yongli Hu, Baocai Yin

Responsive image

Auto-TLDR; Clustering by Augmented Mutual Information maximization for Deep Embedding

Slides Poster Similar

Clustering is a crucial but challenging task in pattern analysis and machine learning. Recent many deep clustering methods combining representation learning with cluster techniques emerged. These deep clustering methods mainly focus on the correlation among samples and ignore the relationship between samples and their representations. In this paper, we propose a novel end-to-end clustering framework, namely variational deep embedding clustering by augmented mutual information maximization (VCAMI). From the perspective of VAE, we prove that minimizing reconstruction loss is equivalent to maximizing the mutual information of the input and its latent representation. This provides a theoretical guarantee for us to directly maximize the mutual information instead of minimizing reconstruction loss. Therefore we proposed the augmented mutual information which highlights the uniqueness of the representations while discovering invariant information among similar samples. Extensive experiments on several challenging image datasets show that the VCAMI achieves good performance. we achieve state-of-the-art results for clustering on MNIST (99.5%) and CIFAR-10 (65.4%) to the best of our knowledge.

Constrained Spectral Clustering Network with Self-Training

Xinyue Liu, Shichong Yang, Linlin Zong

Responsive image

Auto-TLDR; Constrained Spectral Clustering Network: A Constrained Deep spectral clustering network

Slides Poster Similar

Deep spectral clustering networks have shown their superiorities due to the integration of feature learning and cluster assignment, and the ability to deal with non-convex clusters. Nevertheless, deep spectral clustering is still an ill-posed problem. Specifically, the affinity learned by the most remarkable SpectralNet is not guaranteed to be consistent with local invariance and thus hurts the final clustering performance. In this paper, we propose a novel framework of Constrained Spectral Clustering Network (CSCN) by incorporating pairwise constraints and clustering oriented fine-tuning to deal with the ill-posedness. To the best of our knowledge, this is the first constrained deep spectral clustering method. Another advantage of CSCN over existing constrained deep clustering networks is that it propagates pairwise constraints throughout the entire dataset. In addition, we design a clustering oriented loss by self-training to simultaneously finetune feature representations and perform cluster assignments, which further improve the quality of clustering. Extensive experiments on benchmark datasets demonstrate that our approach outperforms the state-of-the-art clustering methods.

Subspace Clustering Via Joint Unsupervised Feature Selection

Wenhua Dong, Xiaojun Wu, Hui Li, Zhenhua Feng, Josef Kittler

Responsive image

Auto-TLDR; Unsupervised Feature Selection for Subspace Clustering

Poster Similar

Any high-dimensional data arising from practical applications usually contains irrelevant features, which may impact on the performance of existing subspace clustering methods. This paper proposes a novel subspace clustering method, which reconstructs the feature matrix by the means of unsupervised feature selection (UFS) to achieve a better dictionary for subspace clustering (SC). Different from most existing clustering methods, the proposed approach uses a reconstructed feature matrix as the dictionary rather than the original data matrix. As the feature matrix reconstructed by representative features is more discriminative and closer to the ground-truth, it results in improved performance. The corresponding non-convex optimization problem is effectively solved using the half-quadratic and augmented Lagrange multiplier methods. Extensive experiments on four real datasets demonstrate the effectiveness of the proposed method.

Aggregating Dependent Gaussian Experts in Local Approximation

Hamed Jalali, Gjergji Kasneci

Responsive image

Auto-TLDR; A novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence

Slides Poster Similar

Distributed Gaussian processes (DGPs) are prominent local approximation methods to scale Gaussian processes (GPs) to large datasets. Instead of a global estimation, they train local experts by dividing the training set into subsets, thus reducing the time complexity. This strategy is based on the conditional independence assumption, which basically means that there is a perfect diversity between the local experts. In practice, however, this assumption is often violated, and the aggregation of experts leads to sub-optimal and inconsistent solutions. In this paper, we propose a novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence. The dependency between experts is determined by using a Gaussian graphical model, which yields the precision matrix. The precision matrix encodes conditional dependencies between experts and is used to detect strongly dependent experts and construct an improved aggregation. Using both synthetic and real datasets, our experimental evaluations illustrate that our new method outperforms other state-of-the-art (SOTA) DGP approaches while being substantially more time-efficient than SOTA approaches, which build on independent experts.

Deep Convolutional Embedding for Digitized Painting Clustering

Giovanna Castellano, Gennaro Vessio

Responsive image

Auto-TLDR; A Deep Convolutional Embedding Model for Clustering Artworks

Slides Poster Similar

Clustering artworks is difficult because of several reasons. On one hand, recognizing meaningful patterns in accordance with domain knowledge and visual perception is extremely hard. On the other hand, the application of traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, we propose to use a deep convolutional embedding model for digitized painting clustering, in which the task of mapping the input raw data to an abstract, latent space is jointly optimized with the task of finding a set of cluster centroids in this latent feature space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. The model is also able to outperform other state-of-the-art deep clustering approaches to the same problem. The proposed method may be beneficial to several art-related tasks, particularly visual link retrieval and historical knowledge discovery in painting datasets.

JECL: Joint Embedding and Cluster Learning for Image-Text Pairs

Sean Yang, Kuan-Hao Huang, Bill Howe

Responsive image

Auto-TLDR; JECL: Clustering Image-Caption Pairs with Parallel Encoders and Regularized Clusters

Poster Similar

We propose JECL, a method for clustering image-caption pairs by training parallel encoders with regularized clustering and alignment objectives, simultaneously learning both representations and cluster assignments. These image-caption pairs arise frequently in high-value applications where structured training data is expensive to produce, but free-text descriptions are common. JECL trains by minimizing the Kullback-Leibler divergence between the distribution of the images and text to that of a combined joint target distribution and optimizing the Jensen-Shannon divergence between the soft cluster assignments of the images and text. Regularizers are also applied to JECL to prevent trivial solutions. Experiments show that JECL outperforms both single-view and multi-view methods on large benchmark image-caption datasets, and is remarkably robust to missing captions and varying data sizes.

A Multi-Task Multi-View Based Multi-Objective Clustering Algorithm

Sayantan Mitra, Sriparna Saha

Responsive image

Auto-TLDR; MTMV-MO: Multi-task multi-view multi-objective optimization for multi-task clustering

Slides Poster Similar

In recent years, multi-view multi-task clustering has received much attention. There are several real-life problems that involve both multi-view clustering and multi-task clustering, i.e., the tasks are closely related, and each task can be analyzed using multiple views. Traditional multi-task multi-view clustering algorithms use single-objective optimization-based approaches and cannot apply too-many regularization terms. However, these problems are inherently some multi-objective optimization problems because conflict may be between different views within a given task and also between different tasks, necessitating a trade-off. Based on these observations, in this paper, we have proposed a novel multi-task multi-view multi-objective optimization (MTMV-MO) algorithm which simultaneously optimizes three objectives, i.e., within-view task relation, within-task view relation and the quality of the clusters obtained. The proposed methodology (MTMV-MO) is evaluated on four different datasets and the results are compared with five state-of-the-art algorithms in terms of Adjusted Rand Index (ARI) and Classification Accuracy (%CoA). MTMV-MO illustrates an improvement of 1.5-2% in terms of ARI and 4-5% in terms of %CoA compared to the state-of-the-art algorithms.

Wasserstein k-Means with Sparse Simplex Projection

Takumi Fukunaga, Hiroyuki Kasai

Responsive image

Auto-TLDR; SSPW $k$-means: Sparse Simplex Projection-based Wasserstein $ k$-Means Algorithm

Slides Poster Similar

This paper presents a proposal of a faster Wasserstein $k$-means algorithm for histogram data by reducing Wasserstein distance computations exploiting sparse simplex projection. We shrink data samples, centroids and ground cost matrix, which enables significant reduction of the computations to solve optimal transport problems without loss of clustering quality. Furthermore, we dynamically reduce computational complexity by removing lower-valued data samples harnessing sparse simplex projection while keeping degradation of clustering quality lower. We designate this proposed algorithm as sparse simplex projection-based Wasserstein $k$-means, for short, SSPW $k$-means. Numerical evaluations against Wasserstein $k$-means algorithm demonstrate the effectiveness of the proposed SSPW $k$-means on real-world datasets.

Fast Subspace Clustering Based on the Kronecker Product

Lei Zhou, Xiao Bai, Liang Zhang, Jun Zhou, Edwin Hancock

Responsive image

Auto-TLDR; Subspace Clustering with Kronecker Product for Large Scale Datasets

Slides Poster Similar

Subspace clustering is a useful technique for many computer vision applications in which the intrinsic dimension of high-dimensional data is often smaller than the ambient dimension. Spectral clustering, as one of the main approaches to subspace clustering, often takes on a sparse representation or a low-rank representation to learn a block diagonal self-representation matrix for subspace generation. However, existing methods require solving a large scale convex optimization problem with a large set of data, with computational complexity reaches O(N^3) for N data points. Therefore, the efficiency and scalability of traditional spectral clustering methods can not be guaranteed for large scale datasets. In this paper, we propose a subspace clustering model based on the Kronecker product. Due to the property that the Kronecker product of a block diagonal matrix with any other matrix is still a block diagonal matrix, we can efficiently learn the representation matrix which is formed by the Kronecker product of k smaller matrices. By doing so, our model significantly reduces the computational complexity to O(kN^{3/k}). Furthermore, our model is general in nature, and can be adapted to different regularization based subspace clustering methods. Experimental results on two public datasets show that our model significantly improves the efficiency compared with several state-of-the-art methods. Moreover, we have conducted experiments on synthetic data to verify the scalability of our model for large scale datasets.

Sketch-Based Community Detection Via Representative Node Sampling

Mahlagha Sedghi, Andre Beckus, George Atia

Responsive image

Auto-TLDR; Sketch-based Clustering of Community Detection Using a Small Sketch

Slides Poster Similar

This paper proposes a sketch-based approach to the community detection problem which clusters the full graph through the use of an informative and concise sketch. The reduced sketch is built through an effective sampling approach which selects few nodes that best represent the complete graph and operates on a pairwise node similarity measure based on the average commute time. After sampling, the proposed algorithm clusters the nodes in the sketch, and then infers the cluster membership of the remaining nodes in the full graph based on their aggregate similarity to nodes in the partitioned sketch. By sampling nodes with strong representation power, our approach can improve the success rates over full graph clustering. In challenging cases with large node degree variation, our approach not only maintains competitive accuracy with full graph clustering despite using a small sketch, but also outperforms existing sampling methods. The use of a small sketch allows considerable storage savings, and computational and timing improvements for further analysis such as clustering and visualization. We provide numerical results on synthetic data based on the homogeneous, heterogeneous and degree corrected versions of the stochastic block model, as well as experimental results on real-world data.

Epitomic Variational Graph Autoencoder

Rayyan Ahmad Khan, Muhammad Umer Anwaar, Martin Kleinsteuber

Responsive image

Auto-TLDR; EVGAE: A Generative Variational Autoencoder for Graph Data

Slides Poster Similar

Variational autoencoder (VAE) is a widely used generative model for learning latent representations. Burda et al. in their seminal paper showed that learning capacity of VAE is limited by over-pruning. It is a phenomenon where a significant number of latent variables fail to capture any information about the input data and the corresponding hidden units become inactive. This adversely affects learning diverse and interpretable latent representations. As variational graph autoencoder (VGAE) extends VAE for graph-structured data, it inherits the over-pruning problem. In this paper, we adopt a model based approach and propose epitomic VGAE (EVGAE),a generative variational framework for graph datasets which successfully mitigates the over-pruning problem and also boosts the generative ability of VGAE. We consider EVGAE to consist of multiple sparse VGAE models, called epitomes, that are groups of latent variables sharing the latent space. This approach aids in increasing active units as epitomes compete to learn better representation of the graph data. We verify our claims via experiments on three benchmark datasets. Our experiments show that EVGAE has a better generative ability than VGAE. Moreover, EVGAE outperforms VGAE on link prediction task in citation networks

Variational Information Bottleneck Model for Accurate Indoor Position Recognition

Weizhu Qian, Franck Gechter

Responsive image

Auto-TLDR; Variational Information Bottleneck for Indoor Positioning with WiFi Fingerprints

Slides Poster Similar

Recognizing user location with WiFi fingerprints is a popular method for accurate indoor positioning problems. In this work, we want to interpret WiFi fingerprints into actual user locations. However, the WiFi fingerprint data can be very high dimensional, we need to find a good representation of the input data for the learning task at first. Otherwise, the neural networks will suffer from sever overfitting problems. In this work, we solve this problem by combining the Information Bottleneck method and Variational Inference. Based on these two approaches, we propose a Variational Information Bottleneck model for accurate indoor positioning. The proposed model consists of an encoder structure and a predictor structure. The encoder is to find a good representation in the input data for the learning task. The predictor is to use the latent representation to predict the final output. To enhance the generalization of our model, we also adopt the Dropout technique for the each hidden layer of the decoder. We conduct the validation experiments on a real world dataset. We also compared the proposed model to other existing methods so as to quantify the performances of our method.

Supervised Feature Embedding for Classification by Learning Rank-Based Neighborhoods

Ghazaal Sheikhi, Hakan Altincay

Responsive image

Auto-TLDR; Supervised Feature Embedding with Representation Learning of Rank-based Neighborhoods

Slides Similar

In feature embedding, the recovery of associated discriminative information in the reduced subspace is critical for downstream classifiers. In this study, a supervised feature embedding method is proposed inspired by the well-known word embedding technique, word2vec. Proposed embedding method is implemented as representative learning of rank-based neighborhoods. The notion of context words in word2vec is extended into neighboring instances within a given window. Neighborship is defined using ranks of instances rather than their values so that regions with different densities are captured properly. Each sample is represented by a unique one-hot vector whereas its neighbors are encoded by several two-hot vectors. The two-hot vectors are identical for neighboring samples of the same class. A feed-forward neural network with a continuous projection layer, then learns the mapping from one-hot vectors to multiple two-hot vectors. The hidden layer determines the reduced subspace for the train samples. The obtained transformation is then applied on test data to find a lower-dimensional representation. Proposed method is tested in classification problems on 10 UCI data sets. Experimental results confirm that the proposed method is effective in finding a discriminative representation of the features and outperforms several supervised embedding approaches in terms of classification performance.

Scalable Direction-Search-Based Approach to Subspace Clustering

Yicong He, George Atia

Responsive image

Auto-TLDR; Fast Direction-Search-Based Subspace Clustering

Slides Similar

Subspace clustering finds a multi-subspace representation that best fits a high-dimensional dataset. The computational and storage complexities of existing algorithms limit their usefulness for large scale data. In this paper, we develop a novel scalable approach to subspace clustering termed Fast Direction-Search-Based Subspace Clustering (Fast DiSC). In sharp contrast to existing scalable solutions which are mostly based on the self-expressiveness property of the data, Fast DiSC rests upon a new representation obtained from projections on computed data-dependent directions. These directions are derived from a convex formulation for optimal direction search to gauge hidden similarity relations. The computational complexity is significantly reduced by performing direction search in partitions of sampled data, followed by a retrieval step to cluster out-of-sample data using projections on the computed directions. A theoretical analysis underscores the ability of the proposed formulation to construct local similarity relations for the different data points. Experiments on both synthetic and real data demonstrate that the proposed algorithm can often outperform the state-of-the-art clustering methods.

Textual-Content Based Classification of Bundles of Untranscribed of Manuscript Images

José Ramón Prieto Fontcuberta, Enrique Vidal, Vicente Bosch, Carlos Alonso, Carmen Orcero, Lourdes Márquez

Responsive image

Auto-TLDR; Probabilistic Indexing for Text-based Classification of Manuscripts

Slides Poster Similar

Content-based classification of manuscripts is an important task that is generally performed in archives and libraries by experts with a wealth of knowledge on the manuscripts contents. Unfortunately, many manuscript collections are so vast that it is not feasible to rely solely on experts to perform this task. Current approaches for textual-content-based manuscript classification generally require the handwritten images to be first transcribed into text -- but achieving sufficiently accurate transcripts is generally unfeasible for large sets of historical manuscripts. We propose a new approach to automatically perform this classification task which does not rely on any explicit image transcripts. It is based on ``probabilistic indexing'', a relatively novel technology which allows to effectively represent the intrinsic word-level uncertainty generally exhibited by handwritten text images. We assess the performance of this approach on a large collection of complex manuscripts from the Spanish Archivo General de Indias, with promising results.

Soft Label and Discriminant Embedding Estimation for Semi-Supervised Classification

Fadi Dornaika, Abdullah Baradaaji, Youssof El Traboulsi

Responsive image

Auto-TLDR; Semi-supervised Semi-Supervised Learning for Linear Feature Extraction and Label Propagation

Slides Poster Similar

In recent times, graph-based semi-supervised learning proved to be a powerful paradigm for processing and mining large datasets. The main advantage relies on the fact that these methods can be useful in propagating a small set of known labels to a large set of unlabeled data. The scarcity of labeled data may affect the performance of the semi-learning. This paper introduces a new semi-supervised framework for simultaneous linear feature extraction and label propagation. The proposed method simultaneously estimates a discriminant transformation and the unknown label by exploiting both labeled and unlabeled data. In addition, the unknowns of the learning model are estimated by integrating two types of graph-based smoothness constraints. The resulting semi-supervised model is expected to learn more discriminative information. Experiments are conducted on six public image datasets. These experimental results show that the performance of the proposed method can be better than that of many state-of-the-art graph-based semi-supervised algorithms.

Discriminative Multi-Level Reconstruction under Compact Latent Space for One-Class Novelty Detection

Jaewoo Park, Yoon Gyo Jung, Andrew Teoh

Responsive image

Auto-TLDR; Discriminative Compact AE for One-Class novelty detection and Adversarial Example Detection

Slides Similar

In one-class novelty detection, a model learns solely on the in-class data to single out out-class instances. Autoencoder (AE) variants aim to compactly model the in-class data to reconstruct it exclusively, thus differentiating the in-class from out-class by the reconstruction error. However, compact modeling in an improper way might collapse the latent representations of the in-class data and thus their reconstruction, which would lead to performance deterioration. Moreover, to properly measure the reconstruction error of high-dimensional data, a metric is required that captures high-level semantics of the data. To this end, we propose Discriminative Compact AE (DCAE) that learns both compact and collapse-free latent representations of the in-class data, thereby reconstructing them both finely and exclusively. In DCAE, (a) we force a compact latent space to bijectively represent the in-class data by reconstructing them through internal discriminative layers of generative adversarial nets. (b) Based on the deep encoder's vulnerability to open set risk, out-class instances are encoded into the same compact latent space and reconstructed poorly without sacrificing the quality of in-class data reconstruction. (c) In inference, the reconstruction error is measured by a novel metric that computes the dissimilarity between a query and its reconstruction based on the class semantics captured by the internal discriminator. Extensive experiments on public image datasets validate the effectiveness of our proposed model on both novelty and adversarial example detection, delivering state-of-the-art performance.

Learning Neural Textual Representations for Citation Recommendation

Thanh Binh Kieu, Inigo Jauregi Unanue, Son Bao Pham, Xuan-Hieu Phan, M. Piccardi

Responsive image

Auto-TLDR; Sentence-BERT cascaded with Siamese and triplet networks for citation recommendation

Slides Poster Similar

With the rapid growth of the scientific literature, manually selecting appropriate citations for a paper is becoming increasingly challenging and time-consuming. While several approaches for automated citation recommendation have been proposed in the recent years, effective document representations for citation recommendation are still elusive to a large extent. For this reason, in this paper we propose a novel approach to citation recommendation which leverages a deep sequential representation of the documents (Sentence-BERT) cascaded with Siamese and triplet networks in a submodular scoring function. To the best of our knowledge, this is the first approach to combine deep representations and submodular selection for a task of citation recommendation. Experiments have been carried out using a popular benchmark dataset -- the ACL Anthology Network corpus -- and evaluated against baselines and a state-of-the-art approach using metrics such as the MRR and F1@k score. The results show that the proposed approach has been able to outperform all the compared approaches in every measured metric.

An Intransitivity Model for Matchup and Pairwise Comparison

Yan Gu, Jiuding Duan, Hisashi Kashima

Responsive image

Auto-TLDR; Blade-Chest: A Low-Rank Matrix Approach for Probabilistic Ranking of Players

Slides Poster Similar

Ranking is a ubiquitous problem appearing in many real-world applications. The superior players or objects are oftentimes determined by a matchup or pairwise comparison. Various models have been developed to integrate the matchup results into a single ranking list of players and to further predict the results of future matchups. Amongst them, the Bradley-Terry model is a mainstream model that achieves the goals by constructing explicit probabilistic interpretation. However, the model suffers from its strong assumption of transitive relationships and becomes vulnerable in practices where intransitive relationships exist. Blade-Chest model is an alternative solution to this intransitivity challenge by allowing the multi-dimensional representation of players. In this paper, we propose a low-rank matrix approach to characterize all players and generalize the related works by introducing a unified framework. Our experimental results on synthetic datasets and real-world datasets show that the proposed model is stably competitive with the standard models in terms of the consistency of probabilistic model interpretation and the predictive performance in out-of-sample tests.

Feature Extraction by Joint Robust Discriminant Analysis and Inter-Class Sparsity

Fadi Dornaika, Ahmad Khoder

Responsive image

Auto-TLDR; Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS)

Slides Similar

Feature extraction methods have been successfully applied to many real-world applications. The classical Linear Discriminant Analysis (LDA) and its variants are widely used as feature extraction methods. Although they have been used for different classification tasks, these methods have some shortcomings. The main one is that the projection axes obtained are not informative about the relevance of original features. In this paper, we propose a linear embedding method that merges two interesting properties: Robust LDA and inter-class sparsity. Furthermore, the targeted projection transformation focuses on the most discriminant original features. The proposed method is called Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS). Two kinds of sparsity are explicitly included in the proposed model. The first kind is obtained by imposing the $\ell_{2,1}$ constraint on the projection matrix in order to perform feature ranking. The second kind is obtained by imposing the inter-class sparsity constraint used for getting a common sparsity structure in each class. Comprehensive experiments on five real-world image datasets demonstrate the effectiveness and advantages of our framework over existing linear methods.

A Spectral Clustering on Grassmann Manifold Via Double Low Rank Constraint

Xinglin Piao, Yongli Hu, Junbin Gao, Yanfeng Sun, Xin Yang, Baocai Yin

Responsive image

Auto-TLDR; Double Low Rank Representation for High-Dimensional Data Clustering on Grassmann Manifold

Slides Similar

High-dimension data clustering is a fundamental topic in machine learning and data mining areas. In recent year, researchers have proposed a series of effective methods based on Low Rank Representation (LRR) which could explore low-dimension subspace structure embedded in original data effectively. The traditional LRR methods usually treat original data as samples in Euclidean space. They generally adopt linear metric to measure the distance between two data. However, high-dimension data (such as video clip or imageset) are always considered as non-linear manifold data such as Grassmann manifold. Therefore, the traditional linear Euclidean metric would be no longer suitable for these special data. In addition, traditional LRR clustering method always adopt nuclear norm as low rank constraint which would lead to suboptimal solution and decrease the clustering accuracy. In this paper, we proposed a new low rank method on Grassmann manifold for high-dimension data clustering task. In the proposed method, a double low rank representation approach is proposed by combining the nuclear norm and bilinear representation for better construct the representation matrix. The experimental results on several public datasets show that the proposed method outperforms the state-of-the-art clustering methods.

Automatically Mining Relevant Variable Interactions Via Sparse Bayesian Learning

Ryoichiro Yafune, Daisuke Sakuma, Yasuo Tabei, Noritaka Saito, Hiroto Saigo

Responsive image

Auto-TLDR; Sparse Bayes for Interpretable Non-linear Prediction

Slides Poster Similar

With the rapid increase in the availability of large amount of data, prediction is becoming increasingly popular, and has widespread through our daily life. However, powerful non- linear prediction methods such as deep learning and SVM suffer from interpretability problem, making it hard to use in domains where the reason for decision making is required. In this paper, we develop an interpretable non-linear model called itemset Sparse Bayes (iSB), which builds a Bayesian probabilistic model, while simultaneously considering variable interactions. In order to suppress the resulting large number of variables, sparsity is imposed on regression weights by a sparsity inducing prior. As a subroutine to search for variable interactions, itemset enumeration algorithm is employed with a novel bounding condition. In computational experiments using real-world dataset, the proposed method performed better than decision tree by 10% in terms of r-squared . We also demonstrated the advantage of our method in Bayesian optimization setting, in which the proposed approach could successfully find the maximum of an unknown function faster than Gaussian process. The interpretability of iSB is naturally inherited to Bayesian optimization, thereby gives us a clue to understand which variables interactions are important in optimizing an unknown function.

MD-kNN: An Instance-Based Approach for Multi-Dimensional Classification

Bin-Bin Jia, Min-Ling Zhang

Responsive image

Auto-TLDR; MD-kNN: Adapting Instance-based Techniques for Multi-dimensional Classification

Slides Poster Similar

Multi-dimensional classification (MDC) deals with the problem where each instance is associated with multiple class variables, each of which corresponds to a specific class space. One of the mainstream solutions for MDC is to adapt traditional machine learning techniques to deal with MDC data. In this paper, a first attempt towards adapting instance-based techniques for MDC is investigated, and a new approach named MD-kNN is proposed. Specifically, MD-kNN identifies unseen instance's k nearest neighbors and obtains its corresponding kNN counting statistics for each class space, based on which maximum a posteriori (MAP) inference is made for each pair of class spaces. After that, the class label w.r.t. each class space is determined by synergizing predictions from the learned classifiers via consulting empirical kNN accuracy. Comparative studies over ten benchmark data sets clearly validate MD-kNN's effectiveness.

Label Self-Adaption Hashing for Image Retrieval

Jianglin Lu, Zhihui Lai, Hailing Wang, Jie Zhou

Responsive image

Auto-TLDR; Label Self-Adaption Hashing for Large-Scale Image Retrieval

Slides Poster Similar

Hashing has attracted widespread attention in image retrieval because of its fast retrieval speed and low storage cost. Compared with supervised methods, unsupervised hashing methods are more reasonable and suitable for large-scale image retrieval since it is always difficult and expensive to collect true labels of the massive data. Without label information, however, unsupervised hashing methods can not guarantee the quality of learned binary codes. To resolve this dilemma, this paper proposes a novel unsupervised hashing method called Label Self-Adaption Hashing (LSAH), which contains effective hashing function learning part and self-adaption label generation part. In the first part, we utilize anchor graph to keep the local structure of the data and introduce joint sparsity into the model to extract effective features for high-quality binary code learning. In the second part, a self-adaptive cluster label matrix is learned from the data under the assumption that the nearest neighbor points should have a large probability to be in the same cluster. Therefore, the proposed LSAH can make full use of the potential discriminative information of the data to guide the learning of binary code. It is worth noting that LSAH can learn effective binary codes, hashing function and cluster labels simultaneously in a unified optimization framework. To solve the resulting optimization problem, an Augmented Lagrange Multiplier based iterative algorithm is elaborately designed. Extensive experiments on three large-scale data sets indicate the promising performance of the proposed LSAH.

Feature Extraction and Selection Via Robust Discriminant Analysis and Class Sparsity

Ahmad Khoder, Fadi Dornaika

Responsive image

Auto-TLDR; Hybrid Linear Discriminant Embedding for supervised multi-class classification

Slides Poster Similar

The main goal of discriminant embedding is to extract features that can be compact and informative representations of the original set of features. This paper introduces a hybrid scheme for linear feature extraction for supervised multi-class classification. We introduce a unifying criterion that is able to retain the advantages of robust sparse LDA and Inter-class sparsity. Thus, the estimated transformation includes two types of discrimination which are the inter-class sparsity and robust Linear Discriminant Analysis with feature selection. In order to optimize the proposed objective function, we deploy an iterative alternating minimization scheme for estimating the linear transformation and the orthogonal matrix. The introduced scheme is generic in the sense that it can be used for combining and tuning many other linear embedding methods. In the lights of the experiments conducted on six image datasets including faces, objects, and digits, the proposed scheme was able to outperform competing methods in most of the cases.

Label Incorporated Graph Neural Networks for Text Classification

Yuan Xin, Linli Xu, Junliang Guo, Jiquan Li, Xin Sheng, Yuanyuan Zhou

Responsive image

Auto-TLDR; Graph Neural Networks for Semi-supervised Text Classification

Slides Poster Similar

Graph Neural Networks (GNNs) have achieved great success on graph-structured data, and their applications on traditional data structures such as natural language processing and semi-supervised text classification have been extensively explored in recent years. While previous works only consider the text information while building the graph, heterogeneous information such as labels is ignored. In this paper, we consider to incorporate the label information while building the graph by adding text-label-text paths, through which the supervision information will propagate among the graph more directly. Specifically, we treat labels as nodes in the graph which also contains text and word nodes, and then connect labels with texts belonging to that label. Through graph convolutions, label embeddings are jointly learned with text embeddings in the same latent semantic space. The newly incorporated label nodes will facilitate learning more accurate text embeddings by introducing the label information, and thus benefit the downstream text classification tasks. Extensive results on several benchmark datasets show that the proposed framework outperforms baseline methods by a significant margin.

Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network

Tengfei Liu, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin

Responsive image

Auto-TLDR; Semantically Extended Graph Convolutional Network for Zero-shot Text Classification

Slides Poster Similar

As a challenging task of Natural Language Processing(NLP), zero-shot text classification has attracted more and more attention recently. It aims to detect classes that the model has never seen in the training set. For this purpose, a feasible way is to construct connection between the seen and unseen classes by semantic extension and classify the unseen classes by information propagation over the connection. Although many related zero-shot text classification methods have been exploited, how to realize semantic extension properly and propagate information effectively is far from solved. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Graph Convolutional Network (SEGCN). In the proposed method, the semantic category knowledge from ConceptNet is utilized to semantic extension for linking seen classes to unseen classes and constructing a graph of all classes. Then, we build upon Graph Convolutional Network (GCN) for predicting the textual classifier for each category, which transfers the category knowledge by the convolution operators on the constructed graph and is trained in a semi-supervised manner using the samples of the seen classes. The experimental results on Dbpedia and 20newsgroup datasets show that our method outperforms the state of the art zero-shot text classification methods.

Progressive Cluster Purification for Unsupervised Feature Learning

Yifei Zhang, Chang Liu, Yu Zhou, Wei Wang, Weiping Wang, Qixiang Ye

Responsive image

Auto-TLDR; Progressive Cluster Purification for Unsupervised Feature Learning

Slides Poster Similar

In unsupervised feature learning, sample specificity based methods ignore the inter-class information, which deteriorates the discriminative capability of representation models. Clustering based methods are error-prone to explore the complete class boundary information due to the inevitable class inconsistent samples in each cluster. In this work, we propose a novel clustering based method, which, by iteratively excluding class inconsistent samples during progressive cluster formation, alleviates the impact of noise samples in a simple-yet-effective manner. Our approach, referred to as Progressive Cluster Purification (PCP), implements progressive clustering by gradually reducing the number of clusters during training, while the sizes of clusters continuously expand consistently with the growth of model representation capability. With a well-designed cluster purification mechanism, it further purifies clusters by filtering noise samples which facilitate the subsequent feature learning by utilizing the refined clusters as pseudo-labels. Experiments on commonly used benchmarks demonstrate that the proposed PCP improves baseline method with significant margins. Our code will be available at https://github.com/zhangyifei0115/PCP.

Segmenting Messy Text: Detecting Boundaries in Text Derived from Historical Newspaper Images

Carol Anderson, Phil Crone

Responsive image

Auto-TLDR; Text Segmentation of Marriage Announcements Using Deep Learning-based Models

Slides Poster Similar

Text segmentation, the task of dividing a document into sections, is often a prerequisite for performing additional natural language processing tasks. Existing text segmentation methods have typically been developed and tested using clean, narrative-style text with segments containing distinct topics. Here we consider a challenging text segmentation task: dividing newspaper marriage announcement lists into units of one couple each. In many cases the information is not structured into sentences, and adjacent segments are not topically distinct from each other. In addition, the text of the announcements, which is derived from images of historical newspapers via optical character recognition, contains many typographical errors. Because of these properties, these announcements are not amenable to segmentation with existing techniques. We present a novel deep learning-based model for segmenting such text and show that it significantly outperforms an existing state-of-the-art method on our task.

Uniform and Non-Uniform Sampling Methods for Sub-Linear Time K-Means Clustering

Yuanhang Ren, Ye Du

Responsive image

Auto-TLDR; Sub-linear Time Clustering with Constant Approximation Ratio for K-Means Problem

Slides Poster Similar

The $k$-means problem is arguably the most well-known clustering problem in machine learning, and lots of approximation algorithms have been proposed for it. However, many of these algorithms may become infeasible when data is huge. Sub-linear time algorithms with constant approximation ratios are desirable in this scenario. In this paper, we first improve the analysis of the algorithm proposed by \cite{Mohan:2017:BNA:3172077.3172235} by sharpening the approximation ratio from $4(\alpha+\beta)$ to $\alpha+\beta$. Moreover, on mild assumptions of the data, a constant approximation ratio can be achieved in poly-logarithmic time by the algorithm. Furthermore, we propose a novel sub-linear time clustering algorithm called {\it Double-K-M$\text{C}^2$ sampling} as well. Experiments on the data clustering task and the image segmentation task have validated the effectiveness of our algorithms.

Generative Deep-Neural-Network Mixture Modeling with Semi-Supervised MinMax+EM Learning

Nilay Pande, Suyash Awate

Responsive image

Auto-TLDR; Semi-supervised Deep Neural Networks for Generative Mixture Modeling and Clustering

Slides Poster Similar

Deep neural networks (DNNs) for generative mixture modeling typically rely on unsupervised learning that employs hard clustering schemes, or variational learning with loose / approximate bounds, or under-regularized modeling. We propose a novel statistical framework for a DNN mixture model using a single generative adversarial network. Our learning formulation proposes a novel data-likelihood term relying on a well-regularized / constrained Gaussian mixture model in the latent space along with a prior term on the DNN weights. Our min-max learning increases the data likelihood using a tight variational lower bound using expectation maximization (EM). We leverage our min-max EM learning scheme for semi-supervised learning. Results on three real-world datasets demonstrate the benefits of our compact modeling and learning formulation over the state of the art for mixture modeling and clustering.

Switching Dynamical Systems with Deep Neural Networks

Cesar Ali Ojeda Marin, Kostadin Cvejoski, Bogdan Georgiev, Ramses J. Sanchez

Responsive image

Auto-TLDR; Variational RNN for Switching Dynamics

Slides Poster Similar

The problem of uncovering different dynamicalregimes is of pivotal importance in time series analysis. Switchingdynamical systems provide a solution for modeling physical phe-nomena whose time series data exhibit different dynamical modes.In this work we propose a novel variational RNN model forswitching dynamics allowing for both non-Markovian and non-linear dynamical behavior between and within dynamic modes.Attention mechanisms are provided to inform the switchingdistribution. We evaluate our model on synthetic and empiricaldatasets of diverse nature and successfully uncover differentdynamical regimes and predict the switching dynamics.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

Learning Sign-Constrained Support Vector Machines

Kenya Tajima, Kouhei Tsuchida, Esmeraldo Ronnie Rey Zara, Naoya Ohta, Tsuyoshi Kato

Responsive image

Auto-TLDR; Constrained Sign Constraints for Learning Linear Support Vector Machine

Poster Similar

Domain knowledge is useful to improve the generalization performance of learning machines. Sign constraints are a handy representation to combine domain knowledge with learning machine. In this paper, we consider constraining the signs of the weight coefficients in learning the linear support vector machine, and develop two optimization algorithms for minimizing the empirical risk under the sign constraints. One of the two algorithms is based on the projected gradient method, in which each iteration of the projected gradient method takes O(nd) computational cost and the sublinear convergence of the objective error is guaranteed. The second algorithm is based on the Frank-Wolfe method that also converges sublinearly and possesses a clear termination criterion. We show that each iteration of the Frank-Wolfe also requires O(nd) cost. Furthermore, we derive the explicit expression for the minimal iteration number to ensure an epsilon-accurate solution by analyzing the curvature of the objective function. Finally, we empirically demonstrate that the sign constraints are a promising technique when similarities to the training examples compose the feature vector.

The eXPose Approach to Crosslier Detection

Antonio Barata, Frank Takes, Hendrik Van Den Herik, Cor Veenman

Responsive image

Auto-TLDR; EXPose: Crosslier Detection Based on Supervised Category Modeling

Slides Poster Similar

Transit of wasteful materials within the European Union is highly regulated through a system of permits. Waste processing costs vary greatly depending on the waste category of a permit. Therefore, companies may have a financial incentive to allege transporting waste with erroneous categorisation. Our goal is to assist inspectors in selecting potentially manipulated permits for further investigation, making their task more effective and efficient. Due to data limitations, a supervised learning approach based on historical cases is not possible. Standard unsupervised approaches, such as outlier detection and data quality-assurance techniques, are not suited since we are interested in targeting non-random modifications in both category and category-correlated features. For this purpose we (1) introduce the concept of crosslier: an anomalous instance of a category which lies across other categories; (2) propose eXPose: a novel approach to crosslier detection based on supervised category modelling; and (3) present the crosslier diagram: a visualisation tool specifically designed for domain experts to easily assess crossliers. We compare eXPose against traditional outlier detection methods in various benchmark datasets with synthetic crossliers and show the superior performance of our method in targeting these instances.

Temporal Pattern Detection in Time-Varying Graphical Models

Federico Tomasi, Veronica Tozzo, Annalisa Barla

Responsive image

Auto-TLDR; A dynamical network inference model that leverages on kernels to consider general temporal patterns

Slides Poster Similar

Graphical models allow to describe the interplay among variables of a system through a compact representation, suitable when relations evolve over time. For example, in a biological setting, genes interact differently depending on external environmental or metabolic factors. To incorporate this dynamics a viable strategy is to estimate a sequence of temporally related graphs assuming similarity among samples in different time points. While adjacent time points may direct the analysis towards a robust estimate of the underlying graph, the resulting model will not incorporate long-term or recurrent temporal relationships. In this work we propose a dynamical network inference model that leverages on kernels to consider general temporal patterns (such as circadian rhythms or seasonality). We show how our approach may also be exploited when the recurrent patterns are unknown, by coupling the network inference with a clustering procedure that detects possibly non-consecutive similar networks. Such clusters are then used to build similarity kernels. The convexity of the functional is determined by whether we impose or infer the kernel. In the first case, the optimisation algorithm exploits efficiently proximity operators with closed-form solutions. In the other case, we resort to an alternating minimisation procedure which jointly learns the temporal kernel and the underlying network. Extensive analysis on synthetic data shows the efficacy of our models compared to state-of-the-art methods. Finally, we applied our approach on two real-world applications to show how considering long-term patterns is fundamental to have insights on the behaviour of a complex system.

A General Model for Learning Node and Graph Representations Jointly

Chaofan Chen

Responsive image

Auto-TLDR; Joint Community Detection/Dynamic Routing for Graph Classification

Slides Poster Similar

This paper focuses on two fundamental graph recognition tasks: node classification and graph classification. Existing methods usually learn the node and graph representations for these two tasks separately, and ignore modeling the relations between the local and global structures. In this paper, we propose a general approach to learn the local and global features collaboratively: (1) in order to characterize the correlation among nodes and communities (a set of nodes), we employ the joint community detection/dynamic routing modules to generate the clustering assignment matrices at first and then utilize these matrices to cluster nodes to capture the global information of graphs (locally relevant graph representations). Inspired by the success of spectral clustering, we minimize the ratiocut loss to help optimize the learned assignment matrices. (2) We maximize the mutual information between local and global representations to help learn the globally relevant node representations. Experimental results on a variety of node and graph classification benchmarks show that our model can achieve superior performance over the state-of-the-art approaches.

Sparse-Dense Subspace Clustering

Shuai Yang, Wenqi Zhu, Yuesheng Zhu

Responsive image

Auto-TLDR; Sparse-Dense Subspace Clustering with Piecewise Correlation Estimation

Slides Poster Similar

Subspace clustering refers to the problem of clustering high-dimensional data into a union of low-dimensional subspaces. Current subspace clustering approaches are usually based on a two-stage framework. In the first stage, an affinity matrix is generated from data. In the second one, spectral clustering is applied on the affinity matrix. However, the affinity matrix produced by two-stage methods cannot fully reveal the similarity between data points from the same subspace, resulting in inaccurate clustering. Besides, most approaches fail to solve large-scale clustering problems due to poor efficiency. In this paper, we first propose a new scalable sparse method called Iterative Maximum Correlation (IMC) to learn the affinity matrix from data. Then we develop Piecewise Correlation Estimation (PCE) to densify the intra-subspace similarity produced by IMC. Finally we extend our work into a Sparse-Dense Subspace Clustering (SDSC) framework with a dense stage to optimize the affinity matrix for two-stage methods. We show that IMC is efficient for large-scale tasks, and PCE ensures better performance for IMC. We show the universality of our SDSC framework for current two-stage methods as well. Experiments on benchmark data sets demonstrate the effectiveness of our approaches.

Interactive Style Space of Deep Features and Style Innovation

Bingqing Guo, Pengwei Hao

Responsive image

Auto-TLDR; Interactive Style Space of Convolutional Neural Network Features

Slides Poster Similar

Stylizing images as paintings has been a popular computer vision technique for a long time. However, most studies only consider the art styles known today, and rarely have investigated styles that have not been painted yet. We fill this gap by projecting the high-dimensional style space of Convolutional Neural Network features to the latent low-dimensional style manifold space. It is worth noting that in our visualized space, simple style linear interpolation is enabled to generate new artistic styles that would revolutionize the future of art in technology. We propose a model of an Interactive Style Space (ISS) to prove that in a manifold style space, the unknown styles are obtainable through interpolation of known styles. We verify the correctness and feasibility of our Interactive Style Space (ISS) and validate style interpolation within the space.

Tensorized Feature Spaces for Feature Explosion

Ravdeep Pasricha, Pravallika Devineni, Evangelos Papalexakis, Ramakrishnan Kannan

Responsive image

Auto-TLDR; Tensor Rank Decomposition for Hyperspectral Image Classification

Slides Poster Similar

In this paper, we present a novel framework that uses tensor factorization to generate richer feature spaces for pixel classification in hyperspectral images. In particular, we assess the performance of different tensor rank decomposition methods as compared to the traditional kernel-based approaches for the hyperspectral image classification problem. We propose ORION, which takes as input a hyperspectral image tensor and a rank and outputs an enhanced feature space from the factor matrices of the decomposed tensor. Our method is a feature explosion technique that inherently maps low dimensional input space in R^K to high dimensional space in R^R, where R >> K, say in the order of 1000x, like a kernel. We show how the proposed method exploits the multi-linear structure of hyperspectral three-dimensional tensor. We demonstrate the effectiveness of our method with experiments on three publicly available hyperspectral datasets with labeled pixels and compare their classification performance against traditional linear and non-linear supervised learning methods such as SVM with Linear, Polynomial, RBF kernels, and the Multi-Layer Perceptron model. Finally, we explore the relationship between the rank of the tensor decomposition and the classification accuracy using several hyperspectral datasets with ground truth.

An Invariance-Guided Stability Criterion for Time Series Clustering Validation

Florent Forest, Alex Mourer, Mustapha Lebbah, Hanane Azzag, Jérôme Lacaille

Responsive image

Auto-TLDR; An invariance-guided method for clustering model selection in time series data

Slides Poster Similar

Time series clustering is a challenging task due to the specificities of this type of data. Temporal correlation and invariance to transformations such as shifting, warping or noise prevent the use of standard data mining methods. Time series clustering has been mostly studied under the angle of finding efficient algorithms and distance metrics adapted to the specific nature of time series data. Much less attention has been devoted to the general problem of model selection. Clustering stability has emerged as a universal and model-agnostic principle for clustering model selection. This principle can be stated as follows: an algorithm should find a structure in the data that is resilient to perturbation by sampling or noise. We propose to apply stability analysis to time series by leveraging prior knowledge on the nature and invariances of the data. These invariances determine the perturbation process used to assess stability. Based on a recently introduced criterion combining between-cluster and within-cluster stability, we propose an invariance-guided method for model selection, applicable to a wide range of clustering algorithms. Experiments conducted on artificial and benchmark data sets demonstrate the ability of our criterion to discover structure and select the correct number of clusters, whenever data invariances are known beforehand.