Variational Information Bottleneck Model for Accurate Indoor Position Recognition

Weizhu Qian, Franck Gechter

Responsive image

Auto-TLDR; Variational Information Bottleneck for Indoor Positioning with WiFi Fingerprints

Slides Poster

Recognizing user location with WiFi fingerprints is a popular method for accurate indoor positioning problems. In this work, we want to interpret WiFi fingerprints into actual user locations. However, the WiFi fingerprint data can be very high dimensional, we need to find a good representation of the input data for the learning task at first. Otherwise, the neural networks will suffer from sever overfitting problems. In this work, we solve this problem by combining the Information Bottleneck method and Variational Inference. Based on these two approaches, we propose a Variational Information Bottleneck model for accurate indoor positioning. The proposed model consists of an encoder structure and a predictor structure. The encoder is to find a good representation in the input data for the learning task. The predictor is to use the latent representation to predict the final output. To enhance the generalization of our model, we also adopt the Dropout technique for the each hidden layer of the decoder. We conduct the validation experiments on a real world dataset. We also compared the proposed model to other existing methods so as to quantify the performances of our method.

Similar papers

Variational Capsule Encoder

Harish Raviprakash, Syed Anwar, Ulas Bagci

Responsive image

Auto-TLDR; Bayesian Capsule Networks for Representation Learning in latent space

Slides Poster Similar

We propose a novel capsule network based variational encoder architecture, called Bayesian capsules (B-Caps), to modulate the mean and standard deviation of the sampling distribution in the latent space. We hypothesize that this approach can learn a better representation of features in the latent space than traditional approaches. Our hypothesis was tested by using the learned latent variables for image reconstruction task, where for MNIST and Fashion-MNIST datasets, different classes were separated successfully in the latent space using our proposed model. Our experimental results have shown improved reconstruction and classification performances for both datasets adding credence to our hypothesis. We also showed that by increasing the latent space dimension, the proposed B-Caps was able to learn a better representation when compared to the traditional variational auto-encoders (VAE). Hence our results indicate the strength of capsule networks in representation learning which has never been examined under the VAE settings before.

Epitomic Variational Graph Autoencoder

Rayyan Ahmad Khan, Muhammad Umer Anwaar, Martin Kleinsteuber

Responsive image

Auto-TLDR; EVGAE: A Generative Variational Autoencoder for Graph Data

Slides Poster Similar

Variational autoencoder (VAE) is a widely used generative model for learning latent representations. Burda et al. in their seminal paper showed that learning capacity of VAE is limited by over-pruning. It is a phenomenon where a significant number of latent variables fail to capture any information about the input data and the corresponding hidden units become inactive. This adversely affects learning diverse and interpretable latent representations. As variational graph autoencoder (VGAE) extends VAE for graph-structured data, it inherits the over-pruning problem. In this paper, we adopt a model based approach and propose epitomic VGAE (EVGAE),a generative variational framework for graph datasets which successfully mitigates the over-pruning problem and also boosts the generative ability of VGAE. We consider EVGAE to consist of multiple sparse VGAE models, called epitomes, that are groups of latent variables sharing the latent space. This approach aids in increasing active units as epitomes compete to learn better representation of the graph data. We verify our claims via experiments on three benchmark datasets. Our experiments show that EVGAE has a better generative ability than VGAE. Moreover, EVGAE outperforms VGAE on link prediction task in citation networks

Variational Deep Embedding Clustering by Augmented Mutual Information Maximization

Qiang Ji, Yanfeng Sun, Yongli Hu, Baocai Yin

Responsive image

Auto-TLDR; Clustering by Augmented Mutual Information maximization for Deep Embedding

Slides Poster Similar

Clustering is a crucial but challenging task in pattern analysis and machine learning. Recent many deep clustering methods combining representation learning with cluster techniques emerged. These deep clustering methods mainly focus on the correlation among samples and ignore the relationship between samples and their representations. In this paper, we propose a novel end-to-end clustering framework, namely variational deep embedding clustering by augmented mutual information maximization (VCAMI). From the perspective of VAE, we prove that minimizing reconstruction loss is equivalent to maximizing the mutual information of the input and its latent representation. This provides a theoretical guarantee for us to directly maximize the mutual information instead of minimizing reconstruction loss. Therefore we proposed the augmented mutual information which highlights the uniqueness of the representations while discovering invariant information among similar samples. Extensive experiments on several challenging image datasets show that the VCAMI achieves good performance. we achieve state-of-the-art results for clustering on MNIST (99.5%) and CIFAR-10 (65.4%) to the best of our knowledge.

Feature-Aware Unsupervised Learning with Joint Variational Attention and Automatic Clustering

Wang Ru, Lin Li, Peipei Wang, Liu Peiyu

Responsive image

Auto-TLDR; Deep Variational Attention Encoder-Decoder for Clustering

Slides Poster Similar

Deep clustering aims to cluster unlabeled real-world samples by mining deep feature representation. Most of existing methods remain challenging when handling high-dimensional data and simultaneously exploring the complementarity of deep feature representation and clustering. In this paper, we propose a novel Deep Variational Attention Encoder-decoder for Clustering (DVAEC). Our DVAEC improves the representation learning ability by fusing variational attention. Specifically, we design a feature-aware automatic clustering module to mitigate the unreliability of similarity calculation and guide network learning. Besides, to further boost the performance of deep clustering from a global perspective, we define a joint optimization objective to promote feature representation learning and automatic clustering synergistically. Extensive experimental results show the promising performance achieved by our DVAEC on six datasets comparing with several popular baseline clustering methods.

Aggregating Dependent Gaussian Experts in Local Approximation

Hamed Jalali, Gjergji Kasneci

Responsive image

Auto-TLDR; A novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence

Slides Poster Similar

Distributed Gaussian processes (DGPs) are prominent local approximation methods to scale Gaussian processes (GPs) to large datasets. Instead of a global estimation, they train local experts by dividing the training set into subsets, thus reducing the time complexity. This strategy is based on the conditional independence assumption, which basically means that there is a perfect diversity between the local experts. In practice, however, this assumption is often violated, and the aggregation of experts leads to sub-optimal and inconsistent solutions. In this paper, we propose a novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence. The dependency between experts is determined by using a Gaussian graphical model, which yields the precision matrix. The precision matrix encodes conditional dependencies between experts and is used to detect strongly dependent experts and construct an improved aggregation. Using both synthetic and real datasets, our experimental evaluations illustrate that our new method outperforms other state-of-the-art (SOTA) DGP approaches while being substantially more time-efficient than SOTA approaches, which build on independent experts.

Separation of Aleatoric and Epistemic Uncertainty in Deterministic Deep Neural Networks

Denis Huseljic, Bernhard Sick, Marek Herde, Daniel Kottke

Responsive image

Auto-TLDR; AE-DNN: Modeling Uncertainty in Deep Neural Networks

Slides Poster Similar

Despite the success of deep neural networks (DNN) in many applications, their ability to model uncertainty is still significantly limited. For example, in safety-critical applications such as autonomous driving, it is crucial to obtain a prediction that reflects different types of uncertainty to address life-threatening situations appropriately. In such cases, it is essential to be aware of the risk (i.e., aleatoric uncertainty) and the reliability (i.e., epistemic uncertainty) that comes with a prediction. We present AE-DNN, a model allowing the separation of aleatoric and epistemic uncertainty while maintaining a proper generalization capability. AE-DNN is based on deterministic DNN, which can determine the respective uncertainty measures in a single forward pass. In analyses with synthetic and image data, we show that our method improves the modeling of epistemic uncertainty while providing an intuitively understandable separation of risk and reliability.

Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference

Jiansheng Fang, Xiaoqing Zhang, Yan Hu, Yanwu Xu, Ming Yang, Jiang Liu

Responsive image

Auto-TLDR; Bayesian Latent Factor Model for Collaborative Filtering

Slides Similar

Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually in pattern recognition, LFM models user-item interactions as inner products of factor vectors of user and item in that space and can be efficiently solved by least square methods with optimal estimation. However, such optimal estimation methods are prone to overfitting due to the extreme sparsity of user-item interactions. In this paper, we propose a Bayesian treatment for LFM, named Bayesian Latent Factor Model (BLFM). Based on observed user-item interactions, we build a probabilistic factor model in which the regularization is introduced via placing prior constraint on latent factors, and the likelihood function is established over observations and parameters. Then we draw samples of latent factors from the posterior distribution with Variational Inference (VI) to predict expected value. We further make an extension to BLFM, called BLFMBias, incorporating user-dependent and item-dependent biases into the model for enhancing performance. Extensive experiments on the movie rating dataset show the effectiveness of our proposed models by compared with several strong baselines.

Local Clustering with Mean Teacher for Semi-Supervised Learning

Zexi Chen, Benjamin Dutton, Bharathkumar Ramachandra, Tianfu Wu, Ranga Raju Vatsavai

Responsive image

Auto-TLDR; Local Clustering for Semi-supervised Learning

Slides Similar

The Mean Teacher (MT) model of Tarvainen and Valpola has shown favorable performance on several semi-supervised benchmark datasets. MT maintains a teacher model's weights as the exponential moving average of a student model's weights and minimizes the divergence between their probability predictions under diverse perturbations of the inputs. However, MT is known to suffer from confirmation bias, that is, reinforcing incorrect teacher model predictions. In this work, we propose a simple yet effective method called Local Clustering (LC) to mitigate the effect of confirmation bias. In MT, each data point is considered independent of other points during training; however, data points are likely to be close to each other in feature space if they share similar features. Motivated by this, we cluster data points locally by minimizing the pairwise distance between neighboring data points in feature space. Combined with a standard classification cross-entropy objective on labeled data points, the misclassified unlabeled data points are pulled towards high-density regions of their correct class with the help of their neighbors, thus improving model performance. We demonstrate on semi-supervised benchmark datasets SVHN and CIFAR-10 that adding our LC loss to MT yields significant improvements compared to MT and performance comparable to the state of the art in semi-supervised learning.

Deep Transformation Models: Tackling Complex Regression Problems with Neural Network Based Transformation Models

Beate Sick, Torsten Hothorn, Oliver Dürr

Responsive image

Auto-TLDR; A Deep Transformation Model for Probabilistic Regression

Slides Poster Similar

We present a deep transformation model for probabilistic regression. Deep learning is known for outstandingly accurate predictions on complex data but in regression tasks it is predominantly used to just predict a single number. This ignores the non-deterministic character of most tasks. Especially if crucial decisions are based on the predictions, like in medical applications, it is essential to quantify the prediction uncertainty. The presented deep learning transformation model estimates the whole conditional probability distribution, which is the most thorough way to capture uncertainty about the outcome. We combine ideas from a statistical transformation model (most likely transformation) with recent transformation models from deep learning (normalizing flows) to predict complex outcome distributions. The core of the method is a parameterized transformation function which can be trained with the usual maximum likelihood framework using gradient descent. The method can be combined with existing deep learning architectures. For small machine learning benchmark datasets, we report state of the art performance for most dataset and partly even outperform it. Our method works for complex input data, which we demonstrate by employing a CNN architecture on image data.

Mutual Information Based Method for Unsupervised Disentanglement of Video Representation

Aditya Sreekar P, Ujjwal Tiwari, Anoop Namboodiri

Responsive image

Auto-TLDR; MIPAE: Mutual Information Predictive Auto-Encoder for Video Prediction

Slides Poster Similar

Video Prediction is an interesting and challenging task of predicting future frames from a given set context frames that belong to a video sequence. Video prediction models have found prospective applications in Maneuver Planning, Health care, Autonomous Navigation and Simulation. One of the major challenges in future frame generation is due to the high dimensional nature of visual data. In this work, we propose Mutual Information Predictive Auto-Encoder (MIPAE) framework, that reduces the task of predicting high dimensional video frames by factorising video representations into content and low dimensional pose latent variables that are easy to predict. A standard LSTM network is used to predict these low dimensional pose representations. Content and the predicted pose representations are decoded to generate future frames. Our approach leverages the temporal structure of the latent generative factors of a video and a novel mutual information loss to learn disentangled video representations. We also propose a metric based on mutual information gap (MIG) to quantitatively access the effectiveness of disentanglement on DSprites and MPI3D-real datasets. MIG scores corroborate with the visual superiority of frames predicted by MIPAE. We also compare our method quantitatively on evaluation metrics LPIPS, SSIM and PSNR.

Reducing the Variance of Variational Estimates of Mutual Information by Limiting the Critic's Hypothesis Space to RKHS

Aditya Sreekar P, Ujjwal Tiwari, Anoop Namboodiri

Responsive image

Auto-TLDR; Mutual Information Estimation from Variational Lower Bounds Using a Critic's Hypothesis Space

Slides Similar

Mutual information (MI) is an information-theoretic measure of dependency between two random variables. Several methods to estimate MI, from samples of two random variables with unknown underlying probability distributions have been proposed in the literature. Recent methods realize parametric probability distributions or critic as a neural network to approximate unknown density ratios. The approximated density ratios are used to estimate different variational lower bounds of MI. While these methods provide reliable estimation when the true MI is low, they produce high variance estimates in cases of high MI. We argue that the high variance characteristic is due to the uncontrolled complexity of the critic's hypothesis space. In support of this argument, we use the data-driven Rademacher complexity of the hypothesis space associated with the critic's architecture to analyse generalization error bound of variational lower bound estimates of MI. In the proposed work, we show that it is possible to negate the high variance characteristics of these estimators by constraining the critic's hypothesis space to Reproducing Hilbert Kernel Space (RKHS), which corresponds to a kernel learned using Automated Spectral Kernel Learning (ASKL). By analysing the aforementioned generalization error bounds, we augment the overall optimisation objective with effective regularisation term. We empirically demonstrate the efficacy of this regularization in enforcing proper bias variance tradeoff on four variational lower bounds, namely NWJ, MINE, JS and SMILE.

AVAE: Adversarial Variational Auto Encoder

Antoine Plumerault, Hervé Le Borgne, Celine Hudelot

Responsive image

Auto-TLDR; Combining VAE and GAN for Realistic Image Generation

Slides Poster Similar

Among the wide variety of image generative models, two models stand out: Variational Auto Encoders (VAE) and Generative Adversarial Networks (GAN). GANs can produce realistic images, but they suffer from mode collapse and do not provide simple ways to get the latent representation of an image. On the other hand, VAEs do not have these problems, but they often generate images less realistic than GANs. In this article, we explain that this lack of realism is partially due to a common underestimation of the natural image manifold dimensionality. To solve this issue we introduce a new framework that combines VAE and GAN in a novel and complementary way to produce an auto-encoding model that keeps VAEs properties while generating images of GAN-quality. We evaluate our approach both qualitatively and quantitatively on five image datasets.

Quantifying Model Uncertainty in Inverse Problems Via Bayesian Deep Gradient Descent

Riccardo Barbano, Chen Zhang, Simon Arridge, Bangti Jin

Responsive image

Auto-TLDR; Bayesian Neural Networks for Inverse Reconstruction via Bayesian Knowledge-Aided Computation

Slides Poster Similar

Recent advances in reconstruction methods for inverse problems leverage powerful data-driven models, e.g., deep neural networks. These techniques have demonstrated state-of-the-art performances for several imaging tasks, but they often do not provide uncertainty on the obtained reconstructions. In this work, we develop a novel scalable data-driven knowledge-aided computational framework to quantify the model uncertainty via Bayesian neural networks. The approach builds on and extends deep gradient descent, a recently developed greedy iterative training scheme, and recasts it within a probabilistic framework. Scalability is achieved by being hybrid in the architecture: only the last layer of each block is Bayesian, while the others remain deterministic, and by being greedy in training. The framework is showcased on one representative medical imaging modality, viz. computed tomography with either sparse view or limited view data, and exhibits competitive performance with respect to state-of-the-art benchmarks, e.g., total variation, deep gradient descent and learned primal-dual.

Ancient Document Layout Analysis: Autoencoders Meet Sparse Coding

Homa Davoudi, Marco Fiorucci, Arianna Traviglia

Responsive image

Auto-TLDR; Unsupervised Unsupervised Representation Learning for Document Layout Analysis

Slides Poster Similar

Layout analysis of historical handwritten documents is a key pre-processing step in document image analysis that, by segmenting the image into its homogeneous regions, facilitates subsequent procedures such as optical character recognition and automatic transcription. Learning-based approaches have shown promising performances in layout analysis, however, the majority of them requires tedious pixel-wise labelled training data to achieve generalisation capabilities, this limitation preventing their application due to the lack of large labelled datasets. This paper proposes a novel unsupervised representation learning method for documents’ layout analysis that reduces the need for labelled data: a sparse autoencoder is first trained in an unsupervised manner on a historical text document’s image; representation of image patches, computed by the sparse encoder, is then used to classify pixels into various region categories of the document using a feed-forward neural network. A new training method, inspired by the ISTA algorithm, is also introduced here to train the sparse encoder. Experimental results on DIVA-HisDB dataset demonstrate that the proposed method outperforms previous approaches based on unsupervised representation learning while achieving performances comparable to the state-of-the-art fully supervised methods.

Single-Modal Incremental Terrain Clustering from Self-Supervised Audio-Visual Feature Learning

Reina Ishikawa, Ryo Hachiuma, Akiyoshi Kurobe, Hideo Saito

Responsive image

Auto-TLDR; Multi-modal Variational Autoencoder for Terrain Type Clustering

Slides Poster Similar

The key to an accurate understanding of terrain is to extract the informative features from the multi-modal data obtained from different devices. Sensors, such as RGB cameras, depth sensors, vibration sensors, and microphones, are used as the multi-modal data. Many studies have explored ways to use them, especially in the robotics field. Some papers have successfully introduced single-modal or multi-modal methods. However, in practice, robots can be faced with extreme conditions; microphones do not work well in the crowded scenes, and an RGB camera cannot capture terrains well in the dark. In this paper, we present a novel framework using the multi-modal variational autoencoder and the Gaussian mixture model clustering algorithm on image data and audio data for terrain type clustering. Our method enables the terrain type clustering even if one of the modalities (either image or audio) is missing at the test-time. We evaluated the clustering accuracy with a conventional multi-modal terrain type clustering method and we conducted ablation studies to show the effectiveness of our approach.

Switching Dynamical Systems with Deep Neural Networks

Cesar Ali Ojeda Marin, Kostadin Cvejoski, Bogdan Georgiev, Ramses J. Sanchez

Responsive image

Auto-TLDR; Variational RNN for Switching Dynamics

Slides Poster Similar

The problem of uncovering different dynamicalregimes is of pivotal importance in time series analysis. Switchingdynamical systems provide a solution for modeling physical phe-nomena whose time series data exhibit different dynamical modes.In this work we propose a novel variational RNN model forswitching dynamics allowing for both non-Markovian and non-linear dynamical behavior between and within dynamic modes.Attention mechanisms are provided to inform the switchingdistribution. We evaluate our model on synthetic and empiricaldatasets of diverse nature and successfully uncover differentdynamical regimes and predict the switching dynamics.

Image Representation Learning by Transformation Regression

Xifeng Guo, Jiyuan Liu, Sihang Zhou, En Zhu, Shihao Dong

Responsive image

Auto-TLDR; Self-supervised Image Representation Learning using Continuous Parameter Prediction

Slides Poster Similar

Self-supervised learning is a thriving research direction since it can relieve the burden of human labeling for machine learning by seeking for supervision from data instead of human annotation. Although demonstrating promising performance in various applications, we observe that the existing methods usually model the auxiliary learning tasks as classification tasks with finite discrete labels, leading to insufficient supervisory signals, which in turn restricts the representation quality. In this paper, to solve the above problem and make full use of the supervision from data, we design a regression model to predict the continuous parameters of a group of transformations, i.e., image rotation, translation, and scaling. Surprisingly, this naive modification stimulates tremendous potential from data and the resulting supervisory signal has largely improved the performance of image representation learning. Extensive experiments on four image datasets, including CIFAR10, CIFAR100, STL10, and SVHN, indicate that our proposed algorithm outperforms the state-of-the-art unsupervised learning methods by a large margin in terms of classification accuracy. Crucially, we find that with our proposed training mechanism as an initialization, the performance of the existing state-of-the-art classification deep architectures can be preferably improved.

Wireless Localisation in WiFi Using Novel Deep Architectures

Peizheng Li, Han Cui, Aftab Khan, Usman Raza, Robert Piechocki, Angela Doufexi, Tim Farnham

Responsive image

Auto-TLDR; Deep Neural Network for Indoor Localisation of WiFi Devices in Indoor Environments

Slides Poster Similar

This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding. First, we present a novel shallow neural network (SNN) in which features are extracted from the channel state information (CSI) corresponding to WiFi subcarriers received on different antennas and used to train the model. The single layer architecture of this localisation neural network makes it lightweight and easy-to-deploy on devices with stringent constraints on computational resources. We further investigate for localisation the use of deep learning models and design novel architectures for convolutional neural network (CNN) and long-short term memory (LSTM). We extensively evaluate these localisation algorithms for continuous tracking in indoor environments. Experimental results prove that even an SNN model, after a careful handcrafted feature extraction, can achieve accurate localisation. Meanwhile, using a well-organised architecture, the neural network models can be trained directly with raw data from the CSI and localisation features can be automatically extracted to achieve accurate position estimates. We also found that the performance of neural network-based methods are directly affected by the number of anchor access points (APs) regardless of their structure. With three APs, all neural network models proposed in this paper can obtain localisation accuracy of around 0.5 metres. In addition the proposed deep NN architecture reduces the data pre-processing time by 6.5 hours compared with a shallow NN using the data collected in our testbed. In the deployment phase, the inference time is also significantly reduced to 0.1 ms per sample. We also demonstrate the generalisation capability of the proposed method by evaluating models using different target movement characteristics to the ones in which they were trained.

Map-Based Temporally Consistent Geolocalization through Learning Motion Trajectories

Bing Zha, Alper Yilmaz

Responsive image

Auto-TLDR; Exploiting Motion Trajectories for Geolocalization of Object on Topological Map using Recurrent Neural Network

Slides Poster Similar

In this paper, we propose a novel trajectory learning method that exploits motion trajectories on topological map using recurrent neural network for temporally consistent geolocalization of object. Inspired by human's ability to both be aware of distance and direction of self-motion in navigation, our trajectory learning method learns a pattern representation of trajectories encoded as a sequence of distances and turning angles to assist self-localization. We pose the learning process as a conditional sequence prediction problem in which each output locates the object on a traversable edge in a map. Considering the prediction sequence ought to be topologically connected in the graph-structured map, we adopt two different hypotheses generation and elimination strategies to eliminate disconnected sequence prediction. We demonstrate our approach on the KITTI stereo visual odometry dataset which is a city-scale environment. The key benefits of our approach to geolocalization are that 1) we take advantage of powerful sequence modeling ability of recurrent neural network and its robustness to noisy input, 2) only require a map in the form of a graph and 3) simply use an affordable sensor that generates motion trajectory. The experiments show that the motion trajectories can be learned by training an recurrent neural network, and temporally consistent geolocation can be predicted with both of the proposed strategies.

Generalization Comparison of Deep Neural Networks Via Output Sensitivity

Mahsa Forouzesh, Farnood Salehi, Patrick Thiran

Responsive image

Auto-TLDR; Generalization of Deep Neural Networks using Sensitivity

Slides Similar

Although recent works have brought some insights into the performance improvement of techniques used in state-of-the-art deep-learning models, more work is needed to understand their generalization properties. We shed light on this matter by linking the loss function to the output's sensitivity to its input. We find a rather strong empirical relation between the output sensitivity and the variance in the bias-variance decomposition of the loss function, which hints on using sensitivity as a metric for comparing the generalization performance of networks, without requiring labeled data. We find that sensitivity is decreased by applying popular methods which improve the generalization performance of the model, such as (1) using a deep network rather than a wide one, (2) adding convolutional layers to baseline classifiers instead of adding fully-connected layers, (3) using batch normalization, dropout and max-pooling, and (4) applying parameter initialization techniques.

Interpolation in Auto Encoders with Bridge Processes

Carl Ringqvist, Henrik Hult, Judith Butepage, Hedvig Kjellstrom

Responsive image

Auto-TLDR; Stochastic interpolations from auto encoders trained on flattened sequences

Slides Poster Similar

Auto encoding models have been extensively studied in recent years. They provide an efficient framework for sample generation, as well as for analysing feature learning. Furthermore, they are efficient in performing interpolations between data-points in semantically meaningful ways. In this paper, we introduce a method for generating sequence samples from auto encoders trained on flattened sequences (e.g video sample from auto encoders trained to generate a video frame); as well as a canonical, dimension independent method for generating stochastic interpolations. The distribution of interpolation paths is represented as the distribution of a bridge process constructed from an artificial random data generating process in the latent space, having the prior distribution as its invariant distribution.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

Phase Retrieval Using Conditional Generative Adversarial Networks

Tobias Uelwer, Alexander Oberstraß, Stefan Harmeling

Responsive image

Auto-TLDR; Conditional Generative Adversarial Networks for Phase Retrieval

Slides Poster Similar

In this paper, we propose the application of conditional generative adversarial networks to solve various phase retrieval problems. We show that including knowledge of the measurement process at training time leads to an optimization at test time that is more robust to initialization than existing approaches involving generative models. In addition, conditioning the generator network on the measurements enables us to achieve much more detailed results. We empirically demonstrate that these advantages provide meaningful solutions to the Fourier and the compressive phase retrieval problem and that our method outperforms well-established projection-based methods as well as existing methods that are based on neural networks. Like other deep learning methods, our approach is very robust to noise and can therefore be very useful for real-world applications.

Factor Screening Using Bayesian Active Learning and Gaussian Process Meta-Modelling

Cheng Li, Santu Rana, Andrew William Gill, Dang Nguyen, Sunil Kumar Gupta, Svetha Venkatesh

Responsive image

Auto-TLDR; Data-Efficient Bayesian Active Learning for Factor Screening in Combat Simulations

Similar

In this paper we propose a data-efficient Bayesian active learning framework for factor screening, which is important when dealing with systems which are expensive to evaluate, such as combat simulations. We use Gaussian Process meta-modelling with the Automatic Relevance Determination covariance kernel, which measures the importance of each factor by the inverse of their associated length-scales in the kernel. This importance measures the degree of non-linearity in the simulation response with respect to the corresponding factor. We initially place a prior over the length-scale values, then use the estimated posterior to select the next datum to simulate which maximises the mutual entropy between the length-scales and the unknown simulation response. Our goal-driven Bayesian active learning strategy ensures that we are data-efficient in discovering the correct values of the length-scales compared to either a random-sampling or uncertainty-sampling based approach. We apply our method to an expensive combat simulation and demonstrate the superiority of our approach.

Multi-Modal Deep Clustering: Unsupervised Partitioning of Images

Guy Shiran, Daphna Weinshall

Responsive image

Auto-TLDR; Multi-Modal Deep Clustering for Unlabeled Images

Slides Poster Similar

The clustering of unlabeled raw images is a daunting task, which has recently been approached with some success by deep learning methods. Here we propose an unsupervised clustering framework, which learns a deep neural network in an end-to-end fashion, providing direct cluster assignments of images without additional processing. Multi-Modal Deep Clustering (MMDC), trains a deep network to align its image embeddings with target points sampled from a Gaussian Mixture Model distribution. The cluster assignments are then determined by mixture component association of image embeddings. Simultaneously, the same deep network is trained to solve an additional self-supervised task. This pushes the network to learn more meaningful image representations and stabilizes the training. Experimental results show that MMDC achieves or exceeds state-of-the-art performance on four challenging benchmarks. On natural image datasets we improve on previous results with significant margins of up to 11% absolute accuracy points, yielding an accuracy of 70% on CIFAR-10 and 61% on STL-10.

Generative Deep-Neural-Network Mixture Modeling with Semi-Supervised MinMax+EM Learning

Nilay Pande, Suyash Awate

Responsive image

Auto-TLDR; Semi-supervised Deep Neural Networks for Generative Mixture Modeling and Clustering

Slides Poster Similar

Deep neural networks (DNNs) for generative mixture modeling typically rely on unsupervised learning that employs hard clustering schemes, or variational learning with loose / approximate bounds, or under-regularized modeling. We propose a novel statistical framework for a DNN mixture model using a single generative adversarial network. Our learning formulation proposes a novel data-likelihood term relying on a well-regularized / constrained Gaussian mixture model in the latent space along with a prior term on the DNN weights. Our min-max learning increases the data likelihood using a tight variational lower bound using expectation maximization (EM). We leverage our min-max EM learning scheme for semi-supervised learning. Results on three real-world datasets demonstrate the benefits of our compact modeling and learning formulation over the state of the art for mixture modeling and clustering.

The Aleatoric Uncertainty Estimation Using a Separate Formulation with Virtual Residuals

Takumi Kawashima, Qing Yu, Akari Asai, Daiki Ikami, Kiyoharu Aizawa

Responsive image

Auto-TLDR; Aleatoric Uncertainty Estimation in Regression Problems

Slides Similar

We propose a new optimization framework for aleatoric uncertainty estimation in regression problems. Existing methods can quantify the error in the target estimation, but they tend to underestimate it. To obtain the predictive uncertainty inherent in an observation, we propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting. By decoupling target estimation and uncertainty estimation, we also control the balance between signal estimation and uncertainty estimation. We conduct three types of experiments: regression with simulation data, age estimation, and depth estimation. We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.

Disentangled Representation Learning for Controllable Image Synthesis: An Information-Theoretic Perspective

Shichang Tang, Xu Zhou, Xuming He, Yi Ma

Responsive image

Auto-TLDR; Controllable Image Synthesis in Deep Generative Models using Variational Auto-Encoder

Slides Poster Similar

In this paper, we look into the problem of disentangled representation learning and controllable image synthesis in a deep generative model. We develop an encoder-decoder architecture for a variant of the Variational Auto-Encoder (VAE) with two latent codes $z_1$ and $z_2$. Our framework uses $z_2$ to capture specified factors of variation while $z_1$ captures the complementary factors of variation. To this end, we analyze the learning problem from the perspective of multivariate mutual information, derive optimizable lower bounds of the conditional mutual information in the image synthesis processes and incorporate them into the training objective. We validate our method empirically on the Color MNIST dataset and the CelebA dataset by showing controllable image syntheses. Our proposed paradigm is simple yet effective and is applicable to many situations, including those where there is not an explicit factorization of features available, or where the features are non-categorical.

Deep Topic Modeling by Multilayer Bootstrap Network and Lasso

Jian-Yu Wang, Xiao-Lei Zhang

Responsive image

Auto-TLDR; Unsupervised Deep Topic Modeling with Multilayer Bootstrap Network and Lasso

Slides Poster Similar

Topic modeling is widely studied for the dimension reduction and analysis of documents. However, it is formulated as a difficult optimization problem. Current approximate solutions also suffer from inaccurate model- or data-assumptions. To deal with the above problems, we propose a polynomial-time deep topic model with no model and data assumptions. Specifically, we first apply multilayer bootstrap network (MBN), which is an unsupervised deep model, to reduce the dimension of documents, and then use the low-dimensional data representations or their clustering results as the target of supervised Lasso for topic word discovery. To our knowledge, this is the first time that MBN and Lasso are applied to unsupervised topic modeling. Experimental comparison results with five representative topic models on the 20-newsgroups and TDT2 corpora illustrate the effectiveness of the proposed algorithm.

Multi-Layered Discriminative Restricted Boltzmann Machine with Untrained Probabilistic Layer

Yuri Kanno, Muneki Yasuda

Responsive image

Auto-TLDR; MDRBM: A Probabilistic Four-layered Neural Network for Extreme Learning Machine

Poster Similar

An extreme learning machine (ELM) is a three-layered feed-forward neural network having untrained parameters, which are randomly determined before training. Inspired by the idea of ELM, a probabilistic untrained layer called a probabilistic-ELM (PELM) layer is proposed, and it is combined with a discriminative restricted Boltzmann machine (DRBM), which is a probabilistic three-layered neural network for solving classification problems. The proposed model is obtained by stacking DRBM on the PELM layer. The resultant model (i.e., multi-layered DRBM (MDRBM)) forms a probabilistic four-layered neural network. In MDRBM, the parameters in the PELM layer can be determined using Gaussian-Bernoulli restricted Boltzmann machine. Owing to the PELM layer, MDRBM obtains a strong immunity against noise in inputs, which is one of the most important advantages of MDRBM. Numerical experiments using some benchmark datasets, MNIST, Fashion-MNIST, Urban Land Cover, and CIFAR-10, demonstrate that MDRBM is superior to other existing models, particularly, in terms of the noise-robustness property (or, in other words, the generalization property).

Attack-Agnostic Adversarial Detection on Medical Data Using Explainable Machine Learning

Matthew Watson, Noura Al Moubayed

Responsive image

Auto-TLDR; Explainability-based Detection of Adversarial Samples on EHR and Chest X-Ray Data

Slides Poster Similar

Explainable machine learning has become increasingly prevalent, especially in healthcare where explainable models are vital for ethical and trusted automated decision making. Work on the susceptibility of deep learning models to adversarial attacks has shown the ease of designing samples to mislead a model into making incorrect predictions. In this work, we propose an explainability-based method for the accurate detection of adversarial samples on two datasets with different complexity and properties: Electronic Health Record (EHR) and chest X-ray (CXR) data. On the MIMIC-III and Henan-Renmin EHR datasets, we report a detection accuracy of 77% against the Longitudinal Adversarial Attack. On the MIMIC-CXR dataset, we achieve an accuracy of 88%; significantly improving on the state of the art of adversarial detection in both datasets by over 10% in all settings. We propose an anomaly detection based method using explainability techniques to detect adversarial samples which is able to generalise to different attack methods without a need for retraining.

Radar Image Reconstruction from Raw ADC Data Using Parametric Variational Autoencoder with Domain Adaptation

Michael Stephan, Thomas Stadelmayer, Avik Santra, Georg Fischer, Robert Weigel, Fabian Lurz

Responsive image

Auto-TLDR; Parametric Variational Autoencoder-based Human Target Detection and Localization for Frequency Modulated Continuous Wave Radar

Slides Poster Similar

This paper presents a parametric variational autoencoder-based human target detection and localization framework working directly with the raw analog-to-digital converter data from the frequency modulated continuous wave radar. We propose a parametrically constrained variational autoencoder, with residual and skip connections, capable of generating the clustered and localized target detections on the range-angle image. Furthermore, to circumvent the problem of training the proposed neural network on all possible scenarios using real radar data, we propose domain adaptation strategies whereby we first train the neural network using ray tracing based model data and then adapt the network to work on real sensor data. This strategy ensures better generalization and scalability of the proposed neural network even though it is trained with limited radar data. We demonstrate the superior detection and localization performance of our proposed solution compared to the conventional signal processing pipeline and earlier state-of-art deep U-Net architecture with range-doppler images as inputs.

Automatic Detection of Stationary Waves in the Venus’ Atmosphere Using Deep Generative Models

Minori Narita, Daiki Kimura, Takeshi Imamura

Responsive image

Auto-TLDR; Anomaly Detection of Large Bow-shaped Structures on the Venus Clouds using Variational Auto-encoder and Attention Maps

Slides Poster Similar

Various anomaly detection methods utilizing different types of images have recently been proposed. However, anomaly detection in the field of planetary science is still done predominantly by the human eye because explainability is crucial in the physical sciences and most of today's anomaly detection methods based on deep learning cannot offer enough. Moreover, preparing a large number of images required for fully utilizing anomaly detection is not always feasible. In this work, we propose a new framework that automatically detects large bow-shaped structures~(stationary waves) appearing on the surface of the Venus clouds by applying a variational auto-encoder~(VAE) and attention maps to anomaly detection. We also discuss the advantages of using image augmentation. Experiments show that our approach can achieve higher accuracy than the state-of-the-art methods even when the anomaly images are scarce. On the basis of this finding, we discuss anomaly detection frameworks particularly suited to physical science domains.

Trajectory-User Link with Attention Recurrent Networks

Tao Sun, Yongjun Xu, Fei Wang, Lin Wu, 塘文 钱, Zezhi Shao

Responsive image

Auto-TLDR; TULAR: Trajectory-User Link with Attention Recurrent Neural Networks

Slides Poster Similar

The prevalent adoptions of GPS-enabled devices have witnessed an explosion of various location-based services which produces a huge amount of trajectories monitoring the individuals' movements. In this paper, we tackle Trajectory-User Link (TUL) problem, which identifies humans' movement patterns and links trajectories to the users who generated them. Existing solutions on TUL problem employ recurrent neural networks and variational autoencoder methods, which face the bottlenecks in the case of excessively long trajectories and fragmentary users' movements. However, these are common characteristics of trajectory data in reality, leading to performance degradation of the existing models. In this paper, we propose an end-to-end attention recurrent neural learning framework, called TULAR (Trajectory-User Link with Attention Recurrent Networks), which focus on selected parts of the source trajectories when linking. TULAR introduce the Trajectory Semantic Vector (TSV) via unsupervised location representation learning and recurrent neural networks, by which to reckon the weight of parts of source trajectory. Further, we employ three attention scores for the weight measurements. Experiments are conducted on two real world datasets and compared with several existing methods, and the results show that TULAR yields a new state-of-the-art performance. Source code is public available at GitHub: https://github.com/taos123/TULAR.

Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks

Jiehui Deng, Sheng Wan, Xiang Wang, Enmei Tu, Xiaolin Huang, Jie Yang, Chen Gong

Responsive image

Auto-TLDR; EAGAT: Edge-Aware Graph Attention Network for Automatic REU Estimation in Mobile Networks

Slides Poster Similar

Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, which are experience-dependent and labor-intensive, and thus the estimated REU might be imprecise. Considering the inherited graph structure of mobile networks, in this paper, we utilize a graph-based deep learning method for automatic REU estimation, where the practical cells are deemed as nodes and the load switchings among them constitute edges. Concretely, Graph Attention Network (GAT) is employed as the backbone of our method due to its impressive generalizability in dealing with networked data. Nevertheless, conventional GAT cannot make full use of the information in mobile networks, since it only incorporates node features to infer the pairwise importance and conduct graph convolutions, while the edge features that are actually critical in our problem are disregarded. To accommodate this issue, we propose an Edge-Aware Graph Attention Network (EAGAT), which is able to fuse the node features and edge features for REU estimation. Extensive experimental results on two real-world mobile network datasets demonstrate the superiority of our EAGAT approach to several state-of-the-art methods.

Cross-People Mobile-Phone Based Airwriting Character Recognition

Yunzhe Li, Hui Zheng, He Zhu, Haojun Ai, Xiaowei Dong

Responsive image

Auto-TLDR; Cross-People Airwriting Recognition via Motion Sensor Signal via Deep Neural Network

Slides Poster Similar

Airwriting using mobile phones has many applications in human-computer interaction. However, the recognition of airwriting character needs a lot of training data from user, which brings great difficulties to the pratical application. The model learnt from a specific person often cannot yield satisfied results when used on another person. The data gap between people is mainly caused by the following factors: personal writing styles, mobile phone sensors, and ways to hold mobile phones. To address the cross-people problem, we propose a deep neural network(DNN) that combines convolutional neural network(CNN) and bilateral long short-term memory(BLSTM). In each layer of the network, we also add an AdaBN layer which is able to increase the generalization ability of the DNN. Different from the original AdaBN method, we explore the feasibility for semi-supervised learning. We implement it to our design and conduct comprehensive experiments. The evaluation results show that our system can achieve an accuracy of 99% for recognition and an improvement of 10% on average for transfer learning between various factors such as people, devices and postures. To the best of our knowledge, our work is the first to implement cross-people airwriting recognition via motion sensor signal, which is a fundamental step towards ubiquitous sensing.

Beyond Cross-Entropy: Learning Highly Separable Feature Distributions for Robust and Accurate Classification

Arslan Ali, Andrea Migliorati, Tiziano Bianchi, Enrico Magli

Responsive image

Auto-TLDR; Gaussian class-conditional simplex loss for adversarial robust multiclass classifiers

Slides Poster Similar

Deep learning has shown outstanding performance in several applications including image classification. However, deep classifiers are known to be highly vulnerable to adversarial attacks, in that a minor perturbation of the input can easily lead to an error. Providing robustness to adversarial attacks is a very challenging task especially in problems involving a large number of classes, as it typically comes at the expense of an accuracy decrease. In this work, we propose the Gaussian class-conditional simplex (GCCS) loss: a novel approach for training deep robust multiclass classifiers that provides adversarial robustness while at the same time achieving or even surpassing the classification accuracy of state-of-the-art methods. Differently from other frameworks, the proposed method learns a mapping of the input classes onto target distributions in a latent space such that the classes are linearly separable. Instead of maximizing the likelihood of target labels for individual samples, our objective function pushes the network to produce feature distributions yielding high inter-class separation. The mean values of the distributions are centered on the vertices of a simplex such that each class is at the same distance from every other class. We show that the regularization of the latent space based on our approach yields excellent classification accuracy and inherently provides robustness to multiple adversarial attacks, both targeted and untargeted, outperforming state-of-the-art approaches over challenging datasets.

Generative Latent Implicit Conditional Optimization When Learning from Small Sample

Idan Azuri, Daphna Weinshall

Responsive image

Auto-TLDR; GLICO: Generative Latent Implicit Conditional Optimization for Small Sample Learning

Slides Poster Similar

We revisit the long-standing problem of learning from small sample. The generation of new samples from a small training set of labeled points has attracted increased attention in recent years. In this paper, we propose a novel such method called GLICO (Generative Latent Implicit Conditional Optimization). GLICO learns a mapping from the training examples to a latent space and a generator that generates images from vectors in the latent space. Unlike most recent work, which rely on access to large amounts of unlabeled data, GLICO does not require access to any additional data other than the small set of labeled points. In fact, GLICO learns to synthesize completely new samples for every class using as little as 5 or 10 examples per class, with as few as 10 such classes and no data from unknown classes. GLICO is then used to augment the small training set while training a classifier on the small sample. To this end, our proposed method samples the learned latent space using spherical interpolation (slerp) and generates new examples using the trained generator. Empirical results show that the new sampled set is diverse enough, leading to improvement in image classification in comparison with the state of the art when trained on small samples obtained from CIFAR-10, CIFAR-100, and CUB-200.

NeuralFP: Out-Of-Distribution Detection Using Fingerprints of Neural Networks

Wei-Han Lee, Steve Millman, Nirmit Desai, Mudhakar Srivatsa, Changchang Liu

Responsive image

Auto-TLDR; NeuralFP: Detecting Out-of-Distribution Records Using Neural Network Models

Slides Poster Similar

Edge devices use neural network models learnt on cloud to predict labels of its data records, which may lead to incorrect predictions especially for records that are different from the data involved in the training process, i.e., out-of-distribution (OOD) records. However, recent efforts in OOD detection either require the retraining of the model or assume the existence of a certain amount of OOD records, thus limiting their application in practice. In this work, we propose a novel OOD detection method (named as NeuralFP) without requiring any access to OOD records, which constructs non-linear fingerprints of neural network models memorizing the information of data observed during training. The key idea of NeuralFP is to exploit the difference in how the neural network model responds to data records in its training set versus data records that are anomalous. Specifically, NeuralFP builds autoencoders for each layer of the neural network model and then carefully analyzes the error distribution of the autocoders in reconstructing the training set to identify OOD records. Through extensive experiments on multiple real-world datasets, we show the effectiveness of NeuralFP in detecting OOD records as well as its advantages over previous approaches. Furthermore, we provide useful guidelines for parameter selection in the practical adoption of NeuralFP.

Visual Localization for Autonomous Driving: Mapping the Accurate Location in the City Maze

Dongfang Liu, Yiming Cui, Xiaolei Guo, Wei Ding, Baijian Yang, Yingjie Chen

Responsive image

Auto-TLDR; Feature Voting for Robust Visual Localization in Urban Settings

Slides Poster Similar

Accurate localization is a foundational capacity, required for autonomous vehicles to accomplish other tasks such as navigation or path planning. It is a common practice for vehicles to use GPS to acquire location information. However, the application of GPS can result in severe challenges when vehicles run within the inner city where different kinds of structures may shadow the GPS signal and lead to inaccurate location results. To address the localization challenges of urban settings, we propose a novel feature voting technique for visual localization. Different from the conventional front-view-based method, our approach employs views from three directions (front, left, and right) and thus significantly improves the robustness of location prediction. In our work, we craft the proposed feature voting method into three state-of-the-art visual localization networks and modify their architectures properly so that they can be applied for vehicular operation. Extensive field test results indicate that our approach can predict location robustly even in challenging inner-city settings. Our research sheds light on using the visual localization approach to help autonomous vehicles to find accurate location information in a city maze, within a desirable time constraint.

Respecting Domain Relations: Hypothesis Invariance for Domain Generalization

Ziqi Wang, Marco Loog, Jan Van Gemert

Responsive image

Auto-TLDR; Learning Hypothesis Invariant Representations for Domain Generalization

Slides Poster Similar

In domain generalization, multiple labeled non-independent and non-identically distributed source domains are available during training while neither the data nor the labels of target domains are. Currently, learning so-called domain invariant representations (DIRs) is the prevalent approach to domain generalization. In this work, we define DIRs employed by existing works in probabilistic terms and show that by learning DIRs, overly strict requirements are imposed concerning the invariance. Particularly, DIRs aim to perfectly align representations of different domains, i.e. their input distributions. This is, however, not necessary for good generalization to a target domain and may even dispose of valuable classification information. We propose to learn so-called hypothesis invariant representations (HIRs), which relax the invariance assumptions. We report experimental results on public domain generalization datasets to show that learning HIRs is more effective than learning DIRs. In fact, our approach can even compete with approaches using prior knowledge about domains.

A Joint Representation Learning and Feature Modeling Approach for One-Class Recognition

Pramuditha Perera, Vishal Patel

Responsive image

Auto-TLDR; Combining Generative Features and One-Class Classification for Effective One-class Recognition

Slides Poster Similar

One-class recognition is traditionally approached either as a representation learning problem or a feature modelling problem. In this work, we argue that both of these approaches have their own limitations; and a more effective solution can be obtained by combining the two. The proposed approach is based on the combination of a generative framework and a one-class classification method. First, we learn generative features using the one-class data with a generative framework. We augment the learned features with the corresponding reconstruction errors to obtain augmented features. Then, we qualitatively identify a suitable feature distribution that reduces the redundancy in the chosen classifier space. Finally, we force the augmented features to take the form of this distribution using an adversarial framework. We test the effectiveness of the proposed method on three one-class classification tasks and obtain state-of-the-art results.

In Depth Semantic Scene Completion

David Gillsjö, Kalle Åström

Responsive image

Auto-TLDR; Bayesian Convolutional Neural Network for Semantic Scene Completion

Slides Poster Similar

For autonomous agents moving around in our world, mapping of the environment is essential. This is their only perception of their surrounding, what is not measured is unknown. Humans have learned from experience what to expect in certain environments, for example in indoor offices or supermarkets. This work studies Semantic Scene Completion which aims to predict a 3D semantic segmentation of our surroundings, even though some areas are occluded. For this we construct a Bayesian Convolutional Neural Network (BCNN), which is not only able to perform the segmentation, but also predict model uncertainty. This is an important feature not present in standard CNNs. We show on the MNIST dataset that the Bayesian approach performs equal or better to the standard CNN when processing digits unseen in the training phase when looking at accuracy, precision and recall. With the added benefit of having better calibrated scores and the ability to express model uncertainty. We then show results for the Semantic Scene Completion task where a category is introduced at test time on the SUNCG dataset. In this more complex task the Bayesian approach outperforms the standard CNN. Showing better Intersection over Union score and excels in Average Precision and separation scores.

Fully Convolutional Neural Networks for Raw Eye Tracking Data Segmentation, Generation, and Reconstruction

Wolfgang Fuhl, Yao Rong, Enkelejda Kasneci

Responsive image

Auto-TLDR; Semantic Segmentation of Eye Tracking Data with Fully Convolutional Neural Networks

Slides Poster Similar

In this paper, we use fully convolutional neural networks for the semantic segmentation of eye tracking data. We also use these networks for reconstruction, and in conjunction with a variational auto-encoder to generate eye movement data. The first improvement of our approach is that no input window is necessary, due to the use of fully convolutional networks and therefore any input size can be processed directly. The second improvement is that the used and generated data is raw eye tracking data (position X, Y and time) without preprocessing. This is achieved by pre-initializing the filters in the first layer and by building the input tensor along the z axis. We evaluated our approach on three publicly available datasets and compare the results to the state of the art.

PoseCVAE: Anomalous Human Activity Detection

Yashswi Jain, Ashvini Kumar Sharma, Rajbabu Velmurugan, Biplab Banerjee

Responsive image

Auto-TLDR; PoseCVAE: Anomalous Human Activity Detection Using Generative Modeling

Slides Poster Similar

Anomalous human activity detection is the task of identifying human activities that differ from the usual. Existing techniques, in general, try to deploy some samples from an open-set (anomalous activities can not be represented as a closed set) to define the discriminator. However, it is non-trivial to obtain novel activity instances. To this end, we propose PoseCVAE, a novel anomalous human activity detection strategy using the notion of generative modeling. We adopt a hybrid training strategy comprising of self-supervised and unsupervised learning. The self-supervised learning helps the encoder and decoder to learn better latent space representation of human pose trajectories. We train our framework to predict future pose trajectory given a normal track of past poses, i.e., the goal is to learn a conditional posterior distribution that represents normal training data. To achieve this we use a novel adaptation of a conditional variational autoencoder (CVAE) and refer it as PoseCVAE. Future pose prediction will be erroneous if the given poses are sampled from a distribution different from the learnt posterior, which is indeed the case with abnormal activities. To further separate the abnormal class, we imitate abnormal poses in the encoded space by sampling from a distinct mixture of gaussians (MoG). We use a binary cross-entropy (BCE) loss as a novel addition to the standard CVAE loss function to achieve this. We test our framework on two publicly available datasets and achieve comparable performance to existing unsupervised methods that exploit pose information.

GAN-Based Gaussian Mixture Model Responsibility Learning

Wanming Huang, Yi Da Xu, Shuai Jiang, Xuan Liang, Ian Oppermann

Responsive image

Auto-TLDR; Posterior Consistency Module for Gaussian Mixture Model

Slides Poster Similar

Mixture Model (MM) is a probabilistic framework allows us to define dataset containing $K$ different modes. When each of the modes is associated with a Gaussian distribution, we refer to it as Gaussian MM or GMM. Given a data point $x$, a GMM may assume the existence of a random index $k \in \{1, \dots , K \}$ identifying which Gaussian the particular data is associated with. In a traditional GMM paradigm, it is straightforward to compute in closed-form, the conditional likelihood $p(x |k, \theta)$ as well as the responsibility probability $p(k|x, \theta)$ describing the distribution weights for each data. Computing the responsibility allows us to retrieve many important statistics of the overall dataset, including the weights of each of the modes/clusters. Modern large data-sets are often containing multiple unlabelled modes, such as paintings dataset may contain several styles; fashion images containing several unlabelled categories. In its raw representation, the Euclidean distances between the data (e.g., images) do not allow them to form mixtures naturally, nor it's feasible to compute responsibility distribution analytically, making GMM unable to apply. In this paper, we utilize the Generative Adversarial Network (GAN) framework to achieve a plausible alternative method to compute these probabilities. The key insight is that we compute them at the data's latent space $z$ instead of $x$. However, this process of $z \rightarrow x$ is irreversible under GAN which renders the computation of responsibility $p(k|x, \theta)$ infeasible. Our paper proposed a novel method to solve it by using a so-called Posterior Consistency Module (PCM). PCM acts like a GAN, except its Generator $C_{\text{PCM}}$ does not output the data, but instead it outputs a distribution to approximate $p(k|x, \theta)$. The entire network is trained in an ``end-to-end'' fashion. Trough these techniques, it allows us to model the dataset of very complex structure using GMM and subsequently to discover interesting properties of an unsupervised dataset, including its segments, as well as generating new ``out-distribution" data by smooth linear interpolation across any combinations of the modes in a completely unsupervised manner.

Deep Convolutional Embedding for Digitized Painting Clustering

Giovanna Castellano, Gennaro Vessio

Responsive image

Auto-TLDR; A Deep Convolutional Embedding Model for Clustering Artworks

Slides Poster Similar

Clustering artworks is difficult because of several reasons. On one hand, recognizing meaningful patterns in accordance with domain knowledge and visual perception is extremely hard. On the other hand, the application of traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, we propose to use a deep convolutional embedding model for digitized painting clustering, in which the task of mapping the input raw data to an abstract, latent space is jointly optimized with the task of finding a set of cluster centroids in this latent feature space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. The model is also able to outperform other state-of-the-art deep clustering approaches to the same problem. The proposed method may be beneficial to several art-related tasks, particularly visual link retrieval and historical knowledge discovery in painting datasets.

Meta Learning Via Learned Loss

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Thomas Grefenstette, Ludovic Righetti, Gaurav Sukhatme, Franziska Meier

Responsive image

Auto-TLDR; meta-learning for learning parametric loss functions that generalize across different tasks and model architectures

Slides Similar

Typically, loss functions, regularization mechanisms and other important aspects of training parametric models are chosen heuristically from a limited set of options. In this paper, we take the first step towards automating this process, with the view of producing models which train faster and more robustly. Concretely, we present a meta-learning method for learning parametric loss functions that can generalize across different tasks and model architectures. We develop a pipeline for “meta-training” such loss functions, targeted at maximizing the performance of the model trained under them. The loss landscape produced by our learned losses significantly improves upon the original task-specific losses in both supervised and reinforcement learning tasks. Furthermore, we show that our meta-learning framework is flexible enough to incorporate additional information at meta-train time. This information shapes the learned loss function such that the environment does not need to provide this information during meta-test time.