Aggregating Dependent Gaussian Experts in Local Approximation

Hamed Jalali, Gjergji Kasneci

Responsive image

Auto-TLDR; A novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence

Slides Poster

Distributed Gaussian processes (DGPs) are prominent local approximation methods to scale Gaussian processes (GPs) to large datasets. Instead of a global estimation, they train local experts by dividing the training set into subsets, thus reducing the time complexity. This strategy is based on the conditional independence assumption, which basically means that there is a perfect diversity between the local experts. In practice, however, this assumption is often violated, and the aggregation of experts leads to sub-optimal and inconsistent solutions. In this paper, we propose a novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence. The dependency between experts is determined by using a Gaussian graphical model, which yields the precision matrix. The precision matrix encodes conditional dependencies between experts and is used to detect strongly dependent experts and construct an improved aggregation. Using both synthetic and real datasets, our experimental evaluations illustrate that our new method outperforms other state-of-the-art (SOTA) DGP approaches while being substantially more time-efficient than SOTA approaches, which build on independent experts.

Similar papers

3CS Algorithm for Efficient Gaussian Process Model Retrieval

Fabian Berns, Kjeld Schmidt, Ingolf Bracht, Christian Beecks

Responsive image

Auto-TLDR; Efficient retrieval of Gaussian Process Models for large-scale data using divide-&-conquer-based approach

Slides Poster Similar

Gaussian Process Models (GPMs) have been applied for various pattern recognition tasks due to their analytical tractability, ability to quantify uncertainty for their own results as well as to subsume prominent other regression techniques. Despite these promising prospects their super-quadratic computation time complexity for model selection and evaluation impedes its broader application for more than a few thousand data points. Although there have been many proposals towards Gaussian Processes for large-scale data, those only offer a linearly scaling improvement to a cubical scaling problem. In particular, solutions like the Nystrom approximation or sparse matrices are only taking fractions of the given data into account and subsequently lead to inaccurate models. In this paper, we thus propose a divide-&-conquer-based approach, that allows to efficiently retrieve GPMs for large-scale data. The resulting model is composed of independent pattern representations for non-overlapping segments of the given data and consequently reduces computation time significantly. Our performance analysis indicates that our proposal is able to outperform state-of-the-art algorithms for GPM retrieval with respect to the qualities of efficiency and accuracy.

Temporal Pattern Detection in Time-Varying Graphical Models

Federico Tomasi, Veronica Tozzo, Annalisa Barla

Responsive image

Auto-TLDR; A dynamical network inference model that leverages on kernels to consider general temporal patterns

Slides Poster Similar

Graphical models allow to describe the interplay among variables of a system through a compact representation, suitable when relations evolve over time. For example, in a biological setting, genes interact differently depending on external environmental or metabolic factors. To incorporate this dynamics a viable strategy is to estimate a sequence of temporally related graphs assuming similarity among samples in different time points. While adjacent time points may direct the analysis towards a robust estimate of the underlying graph, the resulting model will not incorporate long-term or recurrent temporal relationships. In this work we propose a dynamical network inference model that leverages on kernels to consider general temporal patterns (such as circadian rhythms or seasonality). We show how our approach may also be exploited when the recurrent patterns are unknown, by coupling the network inference with a clustering procedure that detects possibly non-consecutive similar networks. Such clusters are then used to build similarity kernels. The convexity of the functional is determined by whether we impose or infer the kernel. In the first case, the optimisation algorithm exploits efficiently proximity operators with closed-form solutions. In the other case, we resort to an alternating minimisation procedure which jointly learns the temporal kernel and the underlying network. Extensive analysis on synthetic data shows the efficacy of our models compared to state-of-the-art methods. Finally, we applied our approach on two real-world applications to show how considering long-term patterns is fundamental to have insights on the behaviour of a complex system.

Hierarchical Routing Mixture of Experts

Wenbo Zhao, Yang Gao, Shahan Ali Memon, Bhiksha Raj, Rita Singh

Responsive image

Auto-TLDR; A Binary Tree-structured Hierarchical Routing Mixture of Experts for Regression

Slides Poster Similar

In regression tasks the distribution of the data is often too complex to be fitted by a single model. In contrast, partition-based models are developed where data is divided and fitted by local models. These models partition the input space and do not leverage the input-output dependency of multimodal-distributed data, and strong local models are needed to make good predictions. Addressing these problems, we propose a binary tree-structured hierarchical routing mixture of experts (HRME) model that has classifiers as non-leaf node experts and simple regression models as leaf node experts. The classifier nodes jointly soft-partition the input-output space based on the natural separateness of multimodal data. This enables simple leaf experts to be effective for prediction. Further, we develop a probabilistic framework for the HRME model, and propose a recursive Expectation-Maximization (EM) based algorithm to learn both the tree structure and the expert models. Experiments on a collection of regression tasks validate the effectiveness of our method compared to a variety of other regression models.

Factor Screening Using Bayesian Active Learning and Gaussian Process Meta-Modelling

Cheng Li, Santu Rana, Andrew William Gill, Dang Nguyen, Sunil Kumar Gupta, Svetha Venkatesh

Responsive image

Auto-TLDR; Data-Efficient Bayesian Active Learning for Factor Screening in Combat Simulations

Similar

In this paper we propose a data-efficient Bayesian active learning framework for factor screening, which is important when dealing with systems which are expensive to evaluate, such as combat simulations. We use Gaussian Process meta-modelling with the Automatic Relevance Determination covariance kernel, which measures the importance of each factor by the inverse of their associated length-scales in the kernel. This importance measures the degree of non-linearity in the simulation response with respect to the corresponding factor. We initially place a prior over the length-scale values, then use the estimated posterior to select the next datum to simulate which maximises the mutual entropy between the length-scales and the unknown simulation response. Our goal-driven Bayesian active learning strategy ensures that we are data-efficient in discovering the correct values of the length-scales compared to either a random-sampling or uncertainty-sampling based approach. We apply our method to an expensive combat simulation and demonstrate the superiority of our approach.

GPSRL: Learning Semi-Parametric Bayesian Survival Rule Lists from Heterogeneous Patient Data

Ameer Hamza Shakur, Xiaoning Qian, Zhangyang Wang, Bobak Mortazavi, Shuai Huang

Responsive image

Auto-TLDR; Semi-parametric Bayesian Survival Rule List Model for Heterogeneous Survival Data

Slides Similar

Survival data is often collected in medical applications from a heterogeneous population of patients. While in the past, popular survival models focused on modeling the average effect of the co-variates on survival outcomes, rapidly advancing sensing and information technologies have provided opportunities to further model the heterogeneity of the population as well as the non-linearity of the survival risk. With this motivation, we propose a new semi-parametric Bayesian Survival Rule List model in this paper. Our model derives a rule-based decision-making approach, while within the regime defined by each rule, survival risk is modelled via a Gaussian process latent variable model. Markov Chain Monte Carlo with a nested Laplace approximation for the latent variable model is used to search over the posterior of the rule lists efficiently. The use of ordered rule lists enables us to model heterogeneity while keeping the model complexity in check. Performance evaluations on a synthetic heterogeneous survival dataset and a real world sepsis survival dataset demonstrate the effectiveness of our model.

Uniform and Non-Uniform Sampling Methods for Sub-Linear Time K-Means Clustering

Yuanhang Ren, Ye Du

Responsive image

Auto-TLDR; Sub-linear Time Clustering with Constant Approximation Ratio for K-Means Problem

Slides Poster Similar

The $k$-means problem is arguably the most well-known clustering problem in machine learning, and lots of approximation algorithms have been proposed for it. However, many of these algorithms may become infeasible when data is huge. Sub-linear time algorithms with constant approximation ratios are desirable in this scenario. In this paper, we first improve the analysis of the algorithm proposed by \cite{Mohan:2017:BNA:3172077.3172235} by sharpening the approximation ratio from $4(\alpha+\beta)$ to $\alpha+\beta$. Moreover, on mild assumptions of the data, a constant approximation ratio can be achieved in poly-logarithmic time by the algorithm. Furthermore, we propose a novel sub-linear time clustering algorithm called {\it Double-K-M$\text{C}^2$ sampling} as well. Experiments on the data clustering task and the image segmentation task have validated the effectiveness of our algorithms.

Automatically Mining Relevant Variable Interactions Via Sparse Bayesian Learning

Ryoichiro Yafune, Daisuke Sakuma, Yasuo Tabei, Noritaka Saito, Hiroto Saigo

Responsive image

Auto-TLDR; Sparse Bayes for Interpretable Non-linear Prediction

Slides Poster Similar

With the rapid increase in the availability of large amount of data, prediction is becoming increasingly popular, and has widespread through our daily life. However, powerful non- linear prediction methods such as deep learning and SVM suffer from interpretability problem, making it hard to use in domains where the reason for decision making is required. In this paper, we develop an interpretable non-linear model called itemset Sparse Bayes (iSB), which builds a Bayesian probabilistic model, while simultaneously considering variable interactions. In order to suppress the resulting large number of variables, sparsity is imposed on regression weights by a sparsity inducing prior. As a subroutine to search for variable interactions, itemset enumeration algorithm is employed with a novel bounding condition. In computational experiments using real-world dataset, the proposed method performed better than decision tree by 10% in terms of r-squared . We also demonstrated the advantage of our method in Bayesian optimization setting, in which the proposed approach could successfully find the maximum of an unknown function faster than Gaussian process. The interpretability of iSB is naturally inherited to Bayesian optimization, thereby gives us a clue to understand which variables interactions are important in optimizing an unknown function.

Sketch-Based Community Detection Via Representative Node Sampling

Mahlagha Sedghi, Andre Beckus, George Atia

Responsive image

Auto-TLDR; Sketch-based Clustering of Community Detection Using a Small Sketch

Slides Poster Similar

This paper proposes a sketch-based approach to the community detection problem which clusters the full graph through the use of an informative and concise sketch. The reduced sketch is built through an effective sampling approach which selects few nodes that best represent the complete graph and operates on a pairwise node similarity measure based on the average commute time. After sampling, the proposed algorithm clusters the nodes in the sketch, and then infers the cluster membership of the remaining nodes in the full graph based on their aggregate similarity to nodes in the partitioned sketch. By sampling nodes with strong representation power, our approach can improve the success rates over full graph clustering. In challenging cases with large node degree variation, our approach not only maintains competitive accuracy with full graph clustering despite using a small sketch, but also outperforms existing sampling methods. The use of a small sketch allows considerable storage savings, and computational and timing improvements for further analysis such as clustering and visualization. We provide numerical results on synthetic data based on the homogeneous, heterogeneous and degree corrected versions of the stochastic block model, as well as experimental results on real-world data.

Assortative-Constrained Stochastic Block Models

Daniel Gribel, Thibaut Vidal, Michel Gendreau

Responsive image

Auto-TLDR; Constrained Stochastic Block Models for Assortative Communities in Neural Networks

Slides Poster Similar

Stochastic block models (SBMs) are often used to find assortative community structures in networks, such that the probability of connections within communities is higher than in between communities. However, classic SBMs are not limited to assortative structures. In this study, we discuss the implications of this model-inherent indifference towards assortativity or disassortativity, and show that it can lead to undesirable outcomes in datasets which are known to be assortative but which contain a reduced amount of information. To circumvent these issues, we propose a constrained SBM that imposes strong assortativity constraints, along with efficient algorithmic solutions. These constraints significantly boost community-detection capabilities in regimes which are close to the detectability threshold. They also permit to identify structurally-different communities in networks representing cerebral-cortex activity regions.

On Learning Random Forests for Random Forest Clustering

Manuele Bicego, Francisco Escolano

Responsive image

Auto-TLDR; Learning Random Forests for Clustering

Slides Poster Similar

In this paper we study the poorly investigated problem of learning Random Forests for distance-based Random Forest clustering. We studied both classic schemes as well as alternative approaches, novel in this context. In particular, we investigated the suitability of Gaussian Density Forests, Random Forests specifically designed for density estimation. Further, we introduce a novel variant of Random Forest, based on an effective non parametric by-pass estimator of the Renyi entropy, which can be useful when the parametric assumption is too strict. An empirical evaluation involving different datasets and different RF-clustering strategies confirms that the learning step is crucial for RF-clustering. We also present a set of practical guidelines useful to determine the most suitable variant of RF-clustering according to the problem under examination.

Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference

Jiansheng Fang, Xiaoqing Zhang, Yan Hu, Yanwu Xu, Ming Yang, Jiang Liu

Responsive image

Auto-TLDR; Bayesian Latent Factor Model for Collaborative Filtering

Slides Similar

Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually in pattern recognition, LFM models user-item interactions as inner products of factor vectors of user and item in that space and can be efficiently solved by least square methods with optimal estimation. However, such optimal estimation methods are prone to overfitting due to the extreme sparsity of user-item interactions. In this paper, we propose a Bayesian treatment for LFM, named Bayesian Latent Factor Model (BLFM). Based on observed user-item interactions, we build a probabilistic factor model in which the regularization is introduced via placing prior constraint on latent factors, and the likelihood function is established over observations and parameters. Then we draw samples of latent factors from the posterior distribution with Variational Inference (VI) to predict expected value. We further make an extension to BLFM, called BLFMBias, incorporating user-dependent and item-dependent biases into the model for enhancing performance. Extensive experiments on the movie rating dataset show the effectiveness of our proposed models by compared with several strong baselines.

Epitomic Variational Graph Autoencoder

Rayyan Ahmad Khan, Muhammad Umer Anwaar, Martin Kleinsteuber

Responsive image

Auto-TLDR; EVGAE: A Generative Variational Autoencoder for Graph Data

Slides Poster Similar

Variational autoencoder (VAE) is a widely used generative model for learning latent representations. Burda et al. in their seminal paper showed that learning capacity of VAE is limited by over-pruning. It is a phenomenon where a significant number of latent variables fail to capture any information about the input data and the corresponding hidden units become inactive. This adversely affects learning diverse and interpretable latent representations. As variational graph autoencoder (VGAE) extends VAE for graph-structured data, it inherits the over-pruning problem. In this paper, we adopt a model based approach and propose epitomic VGAE (EVGAE),a generative variational framework for graph datasets which successfully mitigates the over-pruning problem and also boosts the generative ability of VGAE. We consider EVGAE to consist of multiple sparse VGAE models, called epitomes, that are groups of latent variables sharing the latent space. This approach aids in increasing active units as epitomes compete to learn better representation of the graph data. We verify our claims via experiments on three benchmark datasets. Our experiments show that EVGAE has a better generative ability than VGAE. Moreover, EVGAE outperforms VGAE on link prediction task in citation networks

Learning Parameter Distributions to Detect Concept Drift in Data Streams

Johannes Haug, Gjergji Kasneci

Responsive image

Auto-TLDR; A novel framework for the detection of concept drift in streaming environments

Slides Poster Similar

Data distributions in streaming environments are usually not stationary. In order to maintain a high predictive quality at all times, online learning models need to adapt to distributional changes, which are known as concept drift. The timely and robust identification of concept drift can be difficult, as we never have access to the true distribution of streaming data. In this work, we propose a novel framework for the detection of real concept drift, called ERICS. By treating the parameters of a predictive model as random variables, we show that concept drift corresponds to a change in the distribution of optimal parameters. To this end, we adopt common measures from information theory. The proposed framework is completely model-agnostic. By choosing an appropriate base model, ERICS is also capable to detect concept drift at the input level, which is a significant advantage over existing approaches. An evaluation on several synthetic and real-world data sets suggests that the proposed framework identifies concept drift more effectively and precisely than various existing works.

The eXPose Approach to Crosslier Detection

Antonio Barata, Frank Takes, Hendrik Van Den Herik, Cor Veenman

Responsive image

Auto-TLDR; EXPose: Crosslier Detection Based on Supervised Category Modeling

Slides Poster Similar

Transit of wasteful materials within the European Union is highly regulated through a system of permits. Waste processing costs vary greatly depending on the waste category of a permit. Therefore, companies may have a financial incentive to allege transporting waste with erroneous categorisation. Our goal is to assist inspectors in selecting potentially manipulated permits for further investigation, making their task more effective and efficient. Due to data limitations, a supervised learning approach based on historical cases is not possible. Standard unsupervised approaches, such as outlier detection and data quality-assurance techniques, are not suited since we are interested in targeting non-random modifications in both category and category-correlated features. For this purpose we (1) introduce the concept of crosslier: an anomalous instance of a category which lies across other categories; (2) propose eXPose: a novel approach to crosslier detection based on supervised category modelling; and (3) present the crosslier diagram: a visualisation tool specifically designed for domain experts to easily assess crossliers. We compare eXPose against traditional outlier detection methods in various benchmark datasets with synthetic crossliers and show the superior performance of our method in targeting these instances.

Scalable Direction-Search-Based Approach to Subspace Clustering

Yicong He, George Atia

Responsive image

Auto-TLDR; Fast Direction-Search-Based Subspace Clustering

Slides Similar

Subspace clustering finds a multi-subspace representation that best fits a high-dimensional dataset. The computational and storage complexities of existing algorithms limit their usefulness for large scale data. In this paper, we develop a novel scalable approach to subspace clustering termed Fast Direction-Search-Based Subspace Clustering (Fast DiSC). In sharp contrast to existing scalable solutions which are mostly based on the self-expressiveness property of the data, Fast DiSC rests upon a new representation obtained from projections on computed data-dependent directions. These directions are derived from a convex formulation for optimal direction search to gauge hidden similarity relations. The computational complexity is significantly reduced by performing direction search in partitions of sampled data, followed by a retrieval step to cluster out-of-sample data using projections on the computed directions. A theoretical analysis underscores the ability of the proposed formulation to construct local similarity relations for the different data points. Experiments on both synthetic and real data demonstrate that the proposed algorithm can often outperform the state-of-the-art clustering methods.

Watermelon: A Novel Feature Selection Method Based on Bayes Error Rate Estimation and a New Interpretation of Feature Relevance and Redundancy

Xiang Xie, Wilhelm Stork

Responsive image

Auto-TLDR; Feature Selection Using Bayes Error Rate Estimation for Dynamic Feature Selection

Slides Poster Similar

Feature selection has become a crucial part of many classification problems in which high-dimensional datasets may contain tens of thousands of features. In this paper, we propose a novel feature selection method scoring the features through estimating the Bayes error rate based on kernel density estimation. Additionally, we update the scores of features dynamically by quantitatively interpreting the effects of feature relevance and redundancy in a new way. Distinguishing from the common heuristic applied by many feature selection methods, which prefers choosing features that are not relevant to each other, our approach penalizes only monotonically correlated features and rewards any other kind of relevance among features based on Spearman’s rank correlation coefficient and normalized mutual information. We conduct extensive experiments on seventeen diverse classification benchmarks, the results show that our approach overperforms other seventeen popular state-of-the-art feature selection methods in most cases.

Deep Convolutional Embedding for Digitized Painting Clustering

Giovanna Castellano, Gennaro Vessio

Responsive image

Auto-TLDR; A Deep Convolutional Embedding Model for Clustering Artworks

Slides Poster Similar

Clustering artworks is difficult because of several reasons. On one hand, recognizing meaningful patterns in accordance with domain knowledge and visual perception is extremely hard. On the other hand, the application of traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, we propose to use a deep convolutional embedding model for digitized painting clustering, in which the task of mapping the input raw data to an abstract, latent space is jointly optimized with the task of finding a set of cluster centroids in this latent feature space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. The model is also able to outperform other state-of-the-art deep clustering approaches to the same problem. The proposed method may be beneficial to several art-related tasks, particularly visual link retrieval and historical knowledge discovery in painting datasets.

Bayesian Active Learning for Maximal Information Gain on Model Parameters

Kasra Arnavaz, Aasa Feragen, Oswin Krause, Marco Loog

Responsive image

Auto-TLDR; Bayesian assumptions for Bayesian classification

Slides Poster Similar

The fact that machine learning models, despite their advancements, are still trained on randomly gathered data is proof that a lasting solution to the problem of optimal data gathering has not yet been found. In this paper, we investigate whether a Bayesian approach to the classification problem can provide assumptions under which one is guaranteed to perform at least as good as random sampling. For a logistic regression model, we show that maximal expected information gain on model parameters is a promising criterion for selecting samples, assuming that our classification model is well-matched to the data. Our derived criterion is closely related to the maximum model change. We experiment with data sets which satisfy this assumption to varying degrees to see how sensitive our performance is to the violation of our assumption in practice.

Variational Information Bottleneck Model for Accurate Indoor Position Recognition

Weizhu Qian, Franck Gechter

Responsive image

Auto-TLDR; Variational Information Bottleneck for Indoor Positioning with WiFi Fingerprints

Slides Poster Similar

Recognizing user location with WiFi fingerprints is a popular method for accurate indoor positioning problems. In this work, we want to interpret WiFi fingerprints into actual user locations. However, the WiFi fingerprint data can be very high dimensional, we need to find a good representation of the input data for the learning task at first. Otherwise, the neural networks will suffer from sever overfitting problems. In this work, we solve this problem by combining the Information Bottleneck method and Variational Inference. Based on these two approaches, we propose a Variational Information Bottleneck model for accurate indoor positioning. The proposed model consists of an encoder structure and a predictor structure. The encoder is to find a good representation in the input data for the learning task. The predictor is to use the latent representation to predict the final output. To enhance the generalization of our model, we also adopt the Dropout technique for the each hidden layer of the decoder. We conduct the validation experiments on a real world dataset. We also compared the proposed model to other existing methods so as to quantify the performances of our method.

Active Sampling for Pairwise Comparisons via Approximate Message Passing and Information Gain Maximization

Aliaksei Mikhailiuk, Clifford Wilmot, Maria Perez-Ortiz, Dingcheng Yue, Rafal Mantiuk

Responsive image

Auto-TLDR; ASAP: An Active Sampling Algorithm for Pairwise Comparison Data

Slides Similar

Pairwise comparison data arise in many domains with subjective assessment experiments, for example in image and video quality assessment. In these experiments observers are asked to express a preference between two conditions. However, many pairwise comparison protocols require a large number of comparisons to infer accurate scores, which may be unfeasible when each comparison is time-consuming (e.g. videos) or expensive (e.g. medical imaging). This motivates the use of an active sampling algorithm that chooses only the most informative pairs for comparison. In this paper we propose ASAP, an active sampling algorithm based on approximate message passing and expected information gain maximization. Unlike most existing methods, which rely on partial updates of the posterior distribution, we are able to perform full updates and therefore much improve the accuracy of the inferred scores. The algorithm relies on three techniques for reducing computational cost: inference based on approximate message passing, selective evaluations of the information gain, and selecting pairs in a batch that forms a minimum spanning tree of the inverse of information gain. We demonstrate, with real and synthetic data, that ASAP offers the highest accuracy of inferred scores compared to the existing methods. We also provide an open-source GPU implementation of ASAP for large-scale experiments.

Region and Relations Based Multi Attention Network for Graph Classification

Manasvi Aggarwal, M. Narasimha Murty

Responsive image

Auto-TLDR; R2POOL: A Graph Pooling Layer for Non-euclidean Structures

Slides Poster Similar

Graphs are non-euclidean structures that can represent many relational data efficiently. Many studies have proposed the convolution and the pooling operators on the non-euclidean domain. The graph convolution operators have shown astounding performance on various tasks such as node representation and classification. For graph classification, different pooling techniques are introduced, but none of them has considered both neighborhood of the node and the long-range dependencies of the node. In this paper, we propose a novel graph pooling layer R2POOL, which balances the structure information around the node as well as the dependencies with far away nodes. Further, we propose a new training strategy to learn coarse to fine representations. We add supervision at only intermediate levels to generate predictions using only intermediate-level features. For this, we propose the concept of an alignment score. Moreover, each layer's prediction is controlled by our proposed branch training strategy. This complete training helps in learning dominant class features at each layer for representing graphs. We call the combined model by R2MAN. Experiments show that R2MAN the potential to improve the performance of graph classification on various datasets.

Classification and Feature Selection Using a Primal-Dual Method and Projections on Structured Constraints

Michel Barlaud, Antonin Chambolle, Jean_Baptiste Caillau

Responsive image

Auto-TLDR; A Constrained Primal-dual Method for Structured Feature Selection on High Dimensional Data

Slides Poster Similar

This paper deals with feature selection using supervised classification on high dimensional datasets. A classical approach is to project data on a low dimensional space and classify by minimizing an appropriate quadratic cost. Our first contribution is to introduce a matrix of centers in the definition of this cost. Moreover, as quadratic costs are not robust to outliers, we propose to use an $\ell_1$ cost instead (or Huber loss to mitigate overfitting issues). While control on sparsity is commonly obtained by adding an $\ell_1$ constraint on the vectorized matrix of weights used for projecting the data, our second contribution is to enforce structured sparsity. To this end we propose constraints that take into account the matrix structure of the data, based either on the nuclear norm, on the $\ell_{2,1}$ norm, or on the $\ell_{1,2}$ norm for which we provide a new projection algorithm. We optimize simultaneously the projection matrix and the matrix of centers thanks to a new tailored constrained primal-dual method. The primal-dual framework is general enough to encompass the various robust losses and structured constraints we use, and allows a convergence analysis. We demonstrate the effectiveness of the approach on three biological datasets. Our primal-dual method with robust losses, adaptive centers and structured constraints does significantly better than classical methods, both in terms of accuracy and computational time.

An Empirical Bayes Approach to Topic Modeling

Anirban Gangopadhyay

Responsive image

Auto-TLDR; An Empirical Bayes Based Framework for Topic Modeling in Documents

Slides Similar

Given a corpus of documents, we consider the problem of finding latent topics, and introduce a novel Empirical Bayes based framework that allows us to choose the optimal topic modeling algorithm given observed variables in the data. We specifically consider three disparate algorithms - LDA, graph clustering, and non-negative matrix factorization - and provide a standardized framework that compares statistical and generative assumptions each algorithm makes. We then provide a model selection algorithm that quantifies each model based on how well assumptions match the data. We illustrate the efficacy of our approach by applying our framework to different sets of document corpuses and empirically measuring results.

Algorithm Recommendation for Data Streams

Jáder Martins Camboim De Sá, Andre Luis Debiaso Rossi, Gustavo Enrique De Almeida Prado Alves Batista, Luís Paulo Faina Garcia

Responsive image

Auto-TLDR; Meta-Learning for Algorithm Selection in Time-Changing Data Streams

Slides Poster Similar

In the last decades, many companies are taking advantage of massive data generation at high frequencies through knowledge discovery to identify valuable information. Machine learning techniques can be employed for knowledge discovery, since they are able to extract patterns from data and induce models to predict future events. However, dynamic and evolving environments generate streams of data that usually are non-stationary. Models induced in these scenarios may perish over time due to seasonality or concept drift. The periodic retraining could help but the fixed algorithm's hypothesis space could no longer be appropriate. An alternative solution is to use meta-learning for periodic algorithm selection in time-changing environments, choosing the bias that best suits the current data. In this paper, we present an enhanced framework for data streams algorithm selection based on MetaStream. Our approach uses meta-learning and incremental learning to actively select the best algorithm for the current concept in a time-changing. Different from previous works, a set of cutting edge meta-features and an incremental learning approach in the meta-level based on LightGBM are used. The results show that this new strategy can improve the recommendation of the best algorithm more accurately in time-changing data.

Deep Transformation Models: Tackling Complex Regression Problems with Neural Network Based Transformation Models

Beate Sick, Torsten Hothorn, Oliver Dürr

Responsive image

Auto-TLDR; A Deep Transformation Model for Probabilistic Regression

Slides Poster Similar

We present a deep transformation model for probabilistic regression. Deep learning is known for outstandingly accurate predictions on complex data but in regression tasks it is predominantly used to just predict a single number. This ignores the non-deterministic character of most tasks. Especially if crucial decisions are based on the predictions, like in medical applications, it is essential to quantify the prediction uncertainty. The presented deep learning transformation model estimates the whole conditional probability distribution, which is the most thorough way to capture uncertainty about the outcome. We combine ideas from a statistical transformation model (most likely transformation) with recent transformation models from deep learning (normalizing flows) to predict complex outcome distributions. The core of the method is a parameterized transformation function which can be trained with the usual maximum likelihood framework using gradient descent. The method can be combined with existing deep learning architectures. For small machine learning benchmark datasets, we report state of the art performance for most dataset and partly even outperform it. Our method works for complex input data, which we demonstrate by employing a CNN architecture on image data.

Interpretable Structured Learning with Sparse Gated Sequence Encoder for Protein-Protein Interaction Prediction

Kishan K C, Feng Cui, Anne Haake, Rui Li

Responsive image

Auto-TLDR; Predicting Protein-Protein Interactions Using Sequence Representations

Slides Poster Similar

Predicting protein-protein interactions (PPIs) by learning informative representations from amino acid sequences is a challenging yet important problem in biology. Although various deep learning models in Siamese architecture have been proposed to model PPIs from sequences, these methods are computationally expensive for a large number of PPIs due to the pairwise encoding process. Furthermore, these methods are difficult to interpret because of non-intuitive mappings from protein sequences to their sequence representation. To address these challenges, we present a novel deep framework to model and predict PPIs from sequence alone. Our model incorporates a bidirectional gated recurrent unit to learn sequence representations by leveraging contextualized and sequential information from sequences. We further employ a sparse regularization to model long-range dependencies between amino acids and to select important amino acids (protein motifs), thus enhancing interpretability. Besides, the novel design of the encoding process makes our model computationally efficient and scalable to an increasing number of interactions. Experimental results on up-to-date interaction datasets demonstrate that our model achieves superior performance compared to other state-of-the-art methods. Literature-based case studies illustrate the ability of our model to provide biological insights to interpret the predictions.

Switching Dynamical Systems with Deep Neural Networks

Cesar Ali Ojeda Marin, Kostadin Cvejoski, Bogdan Georgiev, Ramses J. Sanchez

Responsive image

Auto-TLDR; Variational RNN for Switching Dynamics

Slides Poster Similar

The problem of uncovering different dynamicalregimes is of pivotal importance in time series analysis. Switchingdynamical systems provide a solution for modeling physical phe-nomena whose time series data exhibit different dynamical modes.In this work we propose a novel variational RNN model forswitching dynamics allowing for both non-Markovian and non-linear dynamical behavior between and within dynamic modes.Attention mechanisms are provided to inform the switchingdistribution. We evaluate our model on synthetic and empiricaldatasets of diverse nature and successfully uncover differentdynamical regimes and predict the switching dynamics.

An Invariance-Guided Stability Criterion for Time Series Clustering Validation

Florent Forest, Alex Mourer, Mustapha Lebbah, Hanane Azzag, Jérôme Lacaille

Responsive image

Auto-TLDR; An invariance-guided method for clustering model selection in time series data

Slides Poster Similar

Time series clustering is a challenging task due to the specificities of this type of data. Temporal correlation and invariance to transformations such as shifting, warping or noise prevent the use of standard data mining methods. Time series clustering has been mostly studied under the angle of finding efficient algorithms and distance metrics adapted to the specific nature of time series data. Much less attention has been devoted to the general problem of model selection. Clustering stability has emerged as a universal and model-agnostic principle for clustering model selection. This principle can be stated as follows: an algorithm should find a structure in the data that is resilient to perturbation by sampling or noise. We propose to apply stability analysis to time series by leveraging prior knowledge on the nature and invariances of the data. These invariances determine the perturbation process used to assess stability. Based on a recently introduced criterion combining between-cluster and within-cluster stability, we propose an invariance-guided method for model selection, applicable to a wide range of clustering algorithms. Experiments conducted on artificial and benchmark data sets demonstrate the ability of our criterion to discover structure and select the correct number of clusters, whenever data invariances are known beforehand.

Relative Feature Importance

Gunnar König, Christoph Molnar, Bernd Bischl, Moritz Grosse-Wentrup

Responsive image

Auto-TLDR; Relative Feature Importance for Interpretable Machine Learning

Slides Similar

Interpretable Machine Learning (IML) methods are used to gain insight into the relevance of a feature of interest for the performance of a model. Commonly used IML methods differ in whether they consider features of interest in isolation, e.g., Permutation Feature Importance (PFI), or in relation to all remaining feature variables, e.g., Conditional Feature Importance (CFI). As such, the perturbation mechanisms inherent to PFI and CFI represent extreme reference points. We introduce Relative Feature Importance (RFI), a generalization of PFI and CFI that allows for a more nuanced feature importance computation beyond the PFI versus CFI dichotomy. With RFI, the importance of a feature relative to any other subset of features can be assessed, including variables that were not available at training time. We derive general interpretation rules for RFI based on a detailed theoretical analysis of the implications of relative feature relevance, and demonstrate the method's usefulness on simulated examples.

Fast Subspace Clustering Based on the Kronecker Product

Lei Zhou, Xiao Bai, Liang Zhang, Jun Zhou, Edwin Hancock

Responsive image

Auto-TLDR; Subspace Clustering with Kronecker Product for Large Scale Datasets

Slides Poster Similar

Subspace clustering is a useful technique for many computer vision applications in which the intrinsic dimension of high-dimensional data is often smaller than the ambient dimension. Spectral clustering, as one of the main approaches to subspace clustering, often takes on a sparse representation or a low-rank representation to learn a block diagonal self-representation matrix for subspace generation. However, existing methods require solving a large scale convex optimization problem with a large set of data, with computational complexity reaches O(N^3) for N data points. Therefore, the efficiency and scalability of traditional spectral clustering methods can not be guaranteed for large scale datasets. In this paper, we propose a subspace clustering model based on the Kronecker product. Due to the property that the Kronecker product of a block diagonal matrix with any other matrix is still a block diagonal matrix, we can efficiently learn the representation matrix which is formed by the Kronecker product of k smaller matrices. By doing so, our model significantly reduces the computational complexity to O(kN^{3/k}). Furthermore, our model is general in nature, and can be adapted to different regularization based subspace clustering methods. Experimental results on two public datasets show that our model significantly improves the efficiency compared with several state-of-the-art methods. Moreover, we have conducted experiments on synthetic data to verify the scalability of our model for large scale datasets.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

Kernel-based Graph Convolutional Networks

Hichem Sahbi

Responsive image

Auto-TLDR; Spatial Graph Convolutional Networks in Recurrent Kernel Hilbert Space

Slides Poster Similar

Learning graph convolutional networks (GCNs) is an emerging field which aims at generalizing deep learning to arbitrary non-regular domains. Most of the existing GCNs follow a neighborhood aggregation scheme, where the representation of a node is recursively obtained by aggregating its neighboring node representations using averaging or sorting operations. However, these operations are either ill-posed or weak to be discriminant or increase the number of training parameters and thereby the computational complexity and the risk of overfitting. In this paper, we introduce a novel GCN framework that achieves spatial graph convolution in a reproducing kernel Hilbert space. The latter makes it possible to design, via implicit kernel representations, convolutional graph filters in a high dimensional and more discriminating space without increasing the number of training parameters. The particularity of our GCN model also resides in its ability to achieve convolutions without explicitly realigning nodes in the receptive fields of the learned graph filters with those of the input graphs, thereby making convolutions permutation agnostic and well defined. Experiments conducted on the challenging task of skeleton-based action recognition show the superiority of the proposed method against different baselines as well as the related work.

Killing Four Birds with One Gaussian Process: The Relation between Different Test-Time Attacks

Kathrin Grosse, Michael Thomas Smith, Michael Backes

Responsive image

Auto-TLDR; Security of Gaussian Process Classifiers against Attack Algorithms

Slides Poster Similar

In machine learning (ML) security, attacks like evasion, model stealing or membership inference are generally studied in individually. Previous work has also shown a relationship between some attacks and decision function curvature of the targeted model. Consequently, we study an ML model allowing direct control over the decision surface curvature: Gaussian Process classifiers (GPCs). For evasion, we find that changing GPC's curvature to be robust against one attack algorithm boils down to enabling a different norm or attack algorithm to succeed. This is backed up by our formal analysis showing that static security guarantees are opposed to learning. Concerning intellectual property, we show formally that lazy learning does not necessarily leak all information when applied. In practice, often a seemingly secure curvature can be found. For example, we are able to secure GPC against empirical membership inference by proper configuration. In this configuration, however, the GPC's hyper-parameters are leaked, e.g. model reverse engineering succeeds. We conclude that attacks on classification should not be studied in isolation, but in relation to each other.

Variational Deep Embedding Clustering by Augmented Mutual Information Maximization

Qiang Ji, Yanfeng Sun, Yongli Hu, Baocai Yin

Responsive image

Auto-TLDR; Clustering by Augmented Mutual Information maximization for Deep Embedding

Slides Poster Similar

Clustering is a crucial but challenging task in pattern analysis and machine learning. Recent many deep clustering methods combining representation learning with cluster techniques emerged. These deep clustering methods mainly focus on the correlation among samples and ignore the relationship between samples and their representations. In this paper, we propose a novel end-to-end clustering framework, namely variational deep embedding clustering by augmented mutual information maximization (VCAMI). From the perspective of VAE, we prove that minimizing reconstruction loss is equivalent to maximizing the mutual information of the input and its latent representation. This provides a theoretical guarantee for us to directly maximize the mutual information instead of minimizing reconstruction loss. Therefore we proposed the augmented mutual information which highlights the uniqueness of the representations while discovering invariant information among similar samples. Extensive experiments on several challenging image datasets show that the VCAMI achieves good performance. we achieve state-of-the-art results for clustering on MNIST (99.5%) and CIFAR-10 (65.4%) to the best of our knowledge.

Interpolation in Auto Encoders with Bridge Processes

Carl Ringqvist, Henrik Hult, Judith Butepage, Hedvig Kjellstrom

Responsive image

Auto-TLDR; Stochastic interpolations from auto encoders trained on flattened sequences

Slides Poster Similar

Auto encoding models have been extensively studied in recent years. They provide an efficient framework for sample generation, as well as for analysing feature learning. Furthermore, they are efficient in performing interpolations between data-points in semantically meaningful ways. In this paper, we introduce a method for generating sequence samples from auto encoders trained on flattened sequences (e.g video sample from auto encoders trained to generate a video frame); as well as a canonical, dimension independent method for generating stochastic interpolations. The distribution of interpolation paths is represented as the distribution of a bridge process constructed from an artificial random data generating process in the latent space, having the prior distribution as its invariant distribution.

Low-Cost Lipschitz-Independent Adaptive Importance Sampling of Stochastic Gradients

Huikang Liu, Xiaolu Wang, Jiajin Li, Man-Cho Anthony So

Responsive image

Auto-TLDR; Adaptive Importance Sampling for Stochastic Gradient Descent

Slides Similar

Stochastic gradient descent (SGD) usually samples training data based on the uniform distribution, which may not be a good choice because of the high variance of its stochastic gradient. Thus, importance sampling methods are considered in the literature to improve the performance. Most previous work on SGD-based methods with importance sampling requires the knowledge of Lipschitz constants of all component gradients, which are in general difficult to estimate. In this paper, we study an adaptive importance sampling method for common SGD-based methods by exploiting the local first-order information without knowing any Lipschitz constants. In particular, we periodically changes the sampling distribution by only utilizing the gradient norms in the past few iterations. We prove that our adaptive importance sampling non-asymptotically reduces the variance of the stochastic gradients in SGD, and thus better convergence bounds than that for vanilla SGD can be obtained. We extend this sampling method to several other widely used stochastic gradient algorithms including SGD with momentum and ADAM. Experiments on common convex learning problems and deep neural networks illustrate notably enhanced performance using the adaptive sampling strategy.

Categorizing the Feature Space for Two-Class Imbalance Learning

Rosa Sicilia, Ermanno Cordelli, Paolo Soda

Responsive image

Auto-TLDR; Efficient Ensemble of Classifiers for Minority Class Inference

Slides Poster Similar

Class imbalance limits the performance of most learning algorithms, resulting in a low recognition rate for samples belonging to the minority class. Although there are different strategies to address this problem, methods that generate ensemble of classifiers have proven to be effective in several applications. This paper presents a new strategy to construct the training set of each classifier in the ensemble by exploiting information in the feature space that can give rise to unreliable classifications, which are determined by a novel algorithm here introduced. The performance of our proposal is compared against multiple standard ensemble approaches on 25 publicly available datasets, showing promising results.

Constrained Spectral Clustering Network with Self-Training

Xinyue Liu, Shichong Yang, Linlin Zong

Responsive image

Auto-TLDR; Constrained Spectral Clustering Network: A Constrained Deep spectral clustering network

Slides Poster Similar

Deep spectral clustering networks have shown their superiorities due to the integration of feature learning and cluster assignment, and the ability to deal with non-convex clusters. Nevertheless, deep spectral clustering is still an ill-posed problem. Specifically, the affinity learned by the most remarkable SpectralNet is not guaranteed to be consistent with local invariance and thus hurts the final clustering performance. In this paper, we propose a novel framework of Constrained Spectral Clustering Network (CSCN) by incorporating pairwise constraints and clustering oriented fine-tuning to deal with the ill-posedness. To the best of our knowledge, this is the first constrained deep spectral clustering method. Another advantage of CSCN over existing constrained deep clustering networks is that it propagates pairwise constraints throughout the entire dataset. In addition, we design a clustering oriented loss by self-training to simultaneously finetune feature representations and perform cluster assignments, which further improve the quality of clustering. Extensive experiments on benchmark datasets demonstrate that our approach outperforms the state-of-the-art clustering methods.

MD-kNN: An Instance-Based Approach for Multi-Dimensional Classification

Bin-Bin Jia, Min-Ling Zhang

Responsive image

Auto-TLDR; MD-kNN: Adapting Instance-based Techniques for Multi-dimensional Classification

Slides Poster Similar

Multi-dimensional classification (MDC) deals with the problem where each instance is associated with multiple class variables, each of which corresponds to a specific class space. One of the mainstream solutions for MDC is to adapt traditional machine learning techniques to deal with MDC data. In this paper, a first attempt towards adapting instance-based techniques for MDC is investigated, and a new approach named MD-kNN is proposed. Specifically, MD-kNN identifies unseen instance's k nearest neighbors and obtains its corresponding kNN counting statistics for each class space, based on which maximum a posteriori (MAP) inference is made for each pair of class spaces. After that, the class label w.r.t. each class space is determined by synergizing predictions from the learned classifiers via consulting empirical kNN accuracy. Comparative studies over ten benchmark data sets clearly validate MD-kNN's effectiveness.

Unveiling Groups of Related Tasks in Multi-Task Learning

Jordan Frecon, Saverio Salzo, Massimiliano Pontil

Responsive image

Auto-TLDR; Continuous Bilevel Optimization for Multi-Task Learning

Slides Poster Similar

A common approach in multi-task learning is to encourage the tasks to share a low dimensional representation. This has led to the popular method of trace norm regularization, which has proved effective in many applications. In this paper, we extend this approach by allowing the tasks to partition into different groups, within which trace norm regularization is separately applied. We propose a continuous bilevel optimization framework to simultaneously identify groups of related tasks and learn a low dimensional representation within each group. Hinging on recent results on the derivative of generalized matrix functions, we devise a smooth approximation of the upper-level objective via a dual forward-backward algorithm with Bregman distances. This allows us to solve the bilevel problem by a gradient-based scheme. Numerical experiments on synthetic and benchmark datasets support the effectiveness of the proposed method.

Deep Topic Modeling by Multilayer Bootstrap Network and Lasso

Jian-Yu Wang, Xiao-Lei Zhang

Responsive image

Auto-TLDR; Unsupervised Deep Topic Modeling with Multilayer Bootstrap Network and Lasso

Slides Poster Similar

Topic modeling is widely studied for the dimension reduction and analysis of documents. However, it is formulated as a difficult optimization problem. Current approximate solutions also suffer from inaccurate model- or data-assumptions. To deal with the above problems, we propose a polynomial-time deep topic model with no model and data assumptions. Specifically, we first apply multilayer bootstrap network (MBN), which is an unsupervised deep model, to reduce the dimension of documents, and then use the low-dimensional data representations or their clustering results as the target of supervised Lasso for topic word discovery. To our knowledge, this is the first time that MBN and Lasso are applied to unsupervised topic modeling. Experimental comparison results with five representative topic models on the 20-newsgroups and TDT2 corpora illustrate the effectiveness of the proposed algorithm.

Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks

Jiehui Deng, Sheng Wan, Xiang Wang, Enmei Tu, Xiaolin Huang, Jie Yang, Chen Gong

Responsive image

Auto-TLDR; EAGAT: Edge-Aware Graph Attention Network for Automatic REU Estimation in Mobile Networks

Slides Poster Similar

Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, which are experience-dependent and labor-intensive, and thus the estimated REU might be imprecise. Considering the inherited graph structure of mobile networks, in this paper, we utilize a graph-based deep learning method for automatic REU estimation, where the practical cells are deemed as nodes and the load switchings among them constitute edges. Concretely, Graph Attention Network (GAT) is employed as the backbone of our method due to its impressive generalizability in dealing with networked data. Nevertheless, conventional GAT cannot make full use of the information in mobile networks, since it only incorporates node features to infer the pairwise importance and conduct graph convolutions, while the edge features that are actually critical in our problem are disregarded. To accommodate this issue, we propose an Edge-Aware Graph Attention Network (EAGAT), which is able to fuse the node features and edge features for REU estimation. Extensive experimental results on two real-world mobile network datasets demonstrate the superiority of our EAGAT approach to several state-of-the-art methods.

Cluster-Size Constrained Network Partitioning

Maksim Mironov, Konstantin Avrachenkov

Responsive image

Auto-TLDR; Unsupervised Graph Clustering with Stochastic Block Model

Slides Poster Similar

In this paper we consider a graph clustering problem with a given number of clusters and approximate desired sizes of the clusters. One possible motivation for such task could be the problem of databases or servers allocation within several given large computational clusters, where we want related objects to share the same cluster in order to minimize latency and transaction costs. This task differs from the original community detection problem, though we adopt some ideas from Glauber Dynamics and Label Propagation Algorithm. At the same time we consider no additional information about node labels, so the task has nature of unsupervised learning. We propose an algorithm for the problem, show that it works well for a large set of parameters of Stochastic Block Model (SBM) and theoretically show its running time complexity for achieving almost exact recovery is of $O(n\cdot\deg_{av} \cdot \omega )$ for the mean-field SBM with $\omega$ tending to infinity arbitrary slow. Other significant advantage of the proposed approach is its local nature, which means it can be efficiently distributed with no scheduling or synchronization.

A General Model for Learning Node and Graph Representations Jointly

Chaofan Chen

Responsive image

Auto-TLDR; Joint Community Detection/Dynamic Routing for Graph Classification

Slides Poster Similar

This paper focuses on two fundamental graph recognition tasks: node classification and graph classification. Existing methods usually learn the node and graph representations for these two tasks separately, and ignore modeling the relations between the local and global structures. In this paper, we propose a general approach to learn the local and global features collaboratively: (1) in order to characterize the correlation among nodes and communities (a set of nodes), we employ the joint community detection/dynamic routing modules to generate the clustering assignment matrices at first and then utilize these matrices to cluster nodes to capture the global information of graphs (locally relevant graph representations). Inspired by the success of spectral clustering, we minimize the ratiocut loss to help optimize the learned assignment matrices. (2) We maximize the mutual information between local and global representations to help learn the globally relevant node representations. Experimental results on a variety of node and graph classification benchmarks show that our model can achieve superior performance over the state-of-the-art approaches.

Subspace Clustering Via Joint Unsupervised Feature Selection

Wenhua Dong, Xiaojun Wu, Hui Li, Zhenhua Feng, Josef Kittler

Responsive image

Auto-TLDR; Unsupervised Feature Selection for Subspace Clustering

Poster Similar

Any high-dimensional data arising from practical applications usually contains irrelevant features, which may impact on the performance of existing subspace clustering methods. This paper proposes a novel subspace clustering method, which reconstructs the feature matrix by the means of unsupervised feature selection (UFS) to achieve a better dictionary for subspace clustering (SC). Different from most existing clustering methods, the proposed approach uses a reconstructed feature matrix as the dictionary rather than the original data matrix. As the feature matrix reconstructed by representative features is more discriminative and closer to the ground-truth, it results in improved performance. The corresponding non-convex optimization problem is effectively solved using the half-quadratic and augmented Lagrange multiplier methods. Extensive experiments on four real datasets demonstrate the effectiveness of the proposed method.

Budgeted Batch Mode Active Learning with Generalized Cost and Utility Functions

Arvind Agarwal, Shashank Mujumdar, Nitin Gupta, Sameep Mehta

Responsive image

Auto-TLDR; Active Learning Based on Utility and Cost Functions

Slides Poster Similar

Active learning reduces the labeling cost by actively querying labels for the most valuable data points. Typical active learning methods select the most informative examples one-at-a-time, their batch variants exist where a set of most informative points are selected. These points are selected in such a way that when added to the training data along with their labels, they provide maximum benefit to the underlying model. In this paper, we present a learning framework that actively selects optimal set of examples (in a batch) within a given budget, based on given utility and cost functions. The framework is generic enough to incorporate any utility and any cost function defined on a set of examples. Furthermore, we propose a novel utility function based on the Facility Location problem that considers three important characteristics of utility i.e., diversity, density and point utility. We also propose a novel cost function, by formulating the cost computation problem as an optimization problem, the solution to which turns out to be the minimum spanning tree. Thus, our framework provides the optimal batch of points within the given budget based on the cost and utility functions. We evaluate our method on several data sets and show its superior performance over baseline methods.

Multi-annotator Probabilistic Active Learning

Marek Herde, Daniel Kottke, Denis Huseljic, Bernhard Sick

Responsive image

Auto-TLDR; MaPAL: Multi-annotator Probabilistic Active Learning

Slides Poster Similar

Classifiers require annotations of instances, i.e., class labels, for training. An annotation process is often costly due to its manual execution through human annotators. Active learning (AL) aims at reducing the annotation costs by selecting instances from which the classifier is expected to learn the most. Many AL strategies assume the availability of a single omniscient annotator. In this article, we overcome this limitation by considering multiple error-prone annotators. We propose a novel AL strategy multi-annotator probabilistic active learning (MaPAL). Due to the nature of learning with error-prone annotators, it must not only select instances but annotators, too. MaPAL builds on a decision-theoretic framework and selects instance-annotator pairs maximizing the classifier's expected performance. Experiments on a variety of data sets demonstrate MaPAL's superior performance compared to five related AL strategies.

Learning Sparse Deep Neural Networks Using Efficient Structured Projections on Convex Constraints for Green AI

Michel Barlaud, Frederic Guyard

Responsive image

Auto-TLDR; Constrained Deep Neural Network with Constrained Splitting Projection

Slides Poster Similar

In recent years, deep neural networks (DNN) have been applied to different domains and achieved dramatic performance improvements over state-of-the-art classical methods. These performances of DNNs were however often obtained with networks containing millions of parameters and which training required heavy computational power. In order to cope with this computational issue a huge literature deals with proximal regularization methods which are time consuming.\\ In this paper, we propose instead a constrained approach. We provide the general framework for our new splitting projection gradient method. Our splitting algorithm iterates a gradient step and a projection on convex sets. We study algorithms for different constraints: the classical $\ell_1$ unstructured constraint and structured constraints such as the nuclear norm, the $\ell_{2,1} $ constraint (Group LASSO). We propose a new $\ell_{1,1} $ structured constraint for which we provide a new projection algorithm We demonstrate the effectiveness of our method on three popular datasets (MNIST, Fashion MNIST and CIFAR). Experiments on these datasets show that our splitting projection method with our new $\ell_{1,1} $ structured constraint provides the best reduction of memory and computational power. Experiments show that fully connected linear DNN are more efficient for green AI.