Watermelon: A Novel Feature Selection Method Based on Bayes Error Rate Estimation and a New Interpretation of Feature Relevance and Redundancy

Xiang Xie, Wilhelm Stork

Responsive image

Auto-TLDR; Feature Selection Using Bayes Error Rate Estimation for Dynamic Feature Selection

Slides Poster

Feature selection has become a crucial part of many classification problems in which high-dimensional datasets may contain tens of thousands of features. In this paper, we propose a novel feature selection method scoring the features through estimating the Bayes error rate based on kernel density estimation. Additionally, we update the scores of features dynamically by quantitatively interpreting the effects of feature relevance and redundancy in a new way. Distinguishing from the common heuristic applied by many feature selection methods, which prefers choosing features that are not relevant to each other, our approach penalizes only monotonically correlated features and rewards any other kind of relevance among features based on Spearman’s rank correlation coefficient and normalized mutual information. We conduct extensive experiments on seventeen diverse classification benchmarks, the results show that our approach overperforms other seventeen popular state-of-the-art feature selection methods in most cases.

Similar papers

Classification and Feature Selection Using a Primal-Dual Method and Projections on Structured Constraints

Michel Barlaud, Antonin Chambolle, Jean_Baptiste Caillau

Responsive image

Auto-TLDR; A Constrained Primal-dual Method for Structured Feature Selection on High Dimensional Data

Slides Poster Similar

This paper deals with feature selection using supervised classification on high dimensional datasets. A classical approach is to project data on a low dimensional space and classify by minimizing an appropriate quadratic cost. Our first contribution is to introduce a matrix of centers in the definition of this cost. Moreover, as quadratic costs are not robust to outliers, we propose to use an $\ell_1$ cost instead (or Huber loss to mitigate overfitting issues). While control on sparsity is commonly obtained by adding an $\ell_1$ constraint on the vectorized matrix of weights used for projecting the data, our second contribution is to enforce structured sparsity. To this end we propose constraints that take into account the matrix structure of the data, based either on the nuclear norm, on the $\ell_{2,1}$ norm, or on the $\ell_{1,2}$ norm for which we provide a new projection algorithm. We optimize simultaneously the projection matrix and the matrix of centers thanks to a new tailored constrained primal-dual method. The primal-dual framework is general enough to encompass the various robust losses and structured constraints we use, and allows a convergence analysis. We demonstrate the effectiveness of the approach on three biological datasets. Our primal-dual method with robust losses, adaptive centers and structured constraints does significantly better than classical methods, both in terms of accuracy and computational time.

A Novel Random Forest Dissimilarity Measure for Multi-View Learning

Hongliu Cao, Simon Bernard, Robert Sabourin, Laurent Heutte

Responsive image

Auto-TLDR; Multi-view Learning with Random Forest Relation Measure and Instance Hardness

Slides Poster Similar

Multi-view learning is a learning task in which data is described by several concurrent representations. Its main challenge is most often to exploit the complementarities between these representations to help solve a classification/regression task. This is a challenge that can be met nowadays if there is a large amount of data available for learning. However, this is not necessarily true for all real-world problems, where data are sometimes scarce (e.g. problems related to the medical environment). In these situations, an effective strategy is to use intermediate representations based on the dissimilarities between instances. This work presents new ways of constructing these dissimilarity representations, learning them from data with Random Forest classifiers. More precisely, two methods are proposed, which modify the Random Forest proximity measure, to adapt it to the context of High Dimension Low Sample Size (HDLSS) multi-view classification problems. The second method, based on an Instance Hardness measurement, is significantly more accurate than other state-of-the-art measurements including the original RF Proximity measurement and the Large Margin Nearest Neighbor (LMNN) metric learning measurement.

Aggregating Dependent Gaussian Experts in Local Approximation

Hamed Jalali, Gjergji Kasneci

Responsive image

Auto-TLDR; A novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence

Slides Poster Similar

Distributed Gaussian processes (DGPs) are prominent local approximation methods to scale Gaussian processes (GPs) to large datasets. Instead of a global estimation, they train local experts by dividing the training set into subsets, thus reducing the time complexity. This strategy is based on the conditional independence assumption, which basically means that there is a perfect diversity between the local experts. In practice, however, this assumption is often violated, and the aggregation of experts leads to sub-optimal and inconsistent solutions. In this paper, we propose a novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence. The dependency between experts is determined by using a Gaussian graphical model, which yields the precision matrix. The precision matrix encodes conditional dependencies between experts and is used to detect strongly dependent experts and construct an improved aggregation. Using both synthetic and real datasets, our experimental evaluations illustrate that our new method outperforms other state-of-the-art (SOTA) DGP approaches while being substantially more time-efficient than SOTA approaches, which build on independent experts.

Variational Deep Embedding Clustering by Augmented Mutual Information Maximization

Qiang Ji, Yanfeng Sun, Yongli Hu, Baocai Yin

Responsive image

Auto-TLDR; Clustering by Augmented Mutual Information maximization for Deep Embedding

Slides Poster Similar

Clustering is a crucial but challenging task in pattern analysis and machine learning. Recent many deep clustering methods combining representation learning with cluster techniques emerged. These deep clustering methods mainly focus on the correlation among samples and ignore the relationship between samples and their representations. In this paper, we propose a novel end-to-end clustering framework, namely variational deep embedding clustering by augmented mutual information maximization (VCAMI). From the perspective of VAE, we prove that minimizing reconstruction loss is equivalent to maximizing the mutual information of the input and its latent representation. This provides a theoretical guarantee for us to directly maximize the mutual information instead of minimizing reconstruction loss. Therefore we proposed the augmented mutual information which highlights the uniqueness of the representations while discovering invariant information among similar samples. Extensive experiments on several challenging image datasets show that the VCAMI achieves good performance. we achieve state-of-the-art results for clustering on MNIST (99.5%) and CIFAR-10 (65.4%) to the best of our knowledge.

The eXPose Approach to Crosslier Detection

Antonio Barata, Frank Takes, Hendrik Van Den Herik, Cor Veenman

Responsive image

Auto-TLDR; EXPose: Crosslier Detection Based on Supervised Category Modeling

Slides Poster Similar

Transit of wasteful materials within the European Union is highly regulated through a system of permits. Waste processing costs vary greatly depending on the waste category of a permit. Therefore, companies may have a financial incentive to allege transporting waste with erroneous categorisation. Our goal is to assist inspectors in selecting potentially manipulated permits for further investigation, making their task more effective and efficient. Due to data limitations, a supervised learning approach based on historical cases is not possible. Standard unsupervised approaches, such as outlier detection and data quality-assurance techniques, are not suited since we are interested in targeting non-random modifications in both category and category-correlated features. For this purpose we (1) introduce the concept of crosslier: an anomalous instance of a category which lies across other categories; (2) propose eXPose: a novel approach to crosslier detection based on supervised category modelling; and (3) present the crosslier diagram: a visualisation tool specifically designed for domain experts to easily assess crossliers. We compare eXPose against traditional outlier detection methods in various benchmark datasets with synthetic crossliers and show the superior performance of our method in targeting these instances.

Classifier Pool Generation Based on a Two-Level Diversity Approach

Marcos Monteiro, Alceu Britto, Jean Paul Barddal, Luiz Oliveira, Robert Sabourin

Responsive image

Auto-TLDR; Diversity-Based Pool Generation with Dynamic Classifier Selection and Dynamic Ensemble Selection

Slides Poster Similar

This paper describes a classifier pool generation method guided by the diversity estimated on the data complexity and classifier decisions. First, the behavior of complexity measures is assessed by considering several subsamples of the dataset. The complexity measures with high variability across the subsamples are selected for posterior pool adaptation, where an evolutionary algorithm optimizes diversity in both complexity and decision spaces. A robust experimental protocol with 28 datasets and 20 replications is used to evaluate the proposed method. Results show significant accuracy improvements in 69.4\% of the experiments when Dynamic Classifier Selection and Dynamic Ensemble Selection methods are applied.

N2D: (Not Too) Deep Clustering Via Clustering the Local Manifold of an Autoencoded Embedding

Ryan Mcconville, Raul Santos-Rodriguez, Robert Piechocki, Ian Craddock

Responsive image

Auto-TLDR; Local Manifold Learning for Deep Clustering on Autoencoded Embeddings

Slides Similar

Deep clustering has increasingly been demonstrating superiority over conventional shallow clustering algorithms. Deep clustering algorithms usually combine representation learning with deep neural networks to achieve this performance, typically optimizing a clustering and non-clustering loss. In such cases, an autoencoder is typically connected with a clustering network, and the final clustering is jointly learned by both the autoencoder and clustering network. Instead, we propose to learn an autoencoded embedding and then search this further for the underlying manifold. For simplicity, we then cluster this with a shallow clustering algorithm, rather than a deeper network. We study a number of local and global manifold learning methods on both the raw data and autoencoded embedding, concluding that UMAP in our framework is able to find the best clusterable manifold of the embedding. This suggests that local manifold learning on an autoencoded embedding is effective for discovering higher quality clusters. We quantitatively show across a range of image and time-series datasets that our method has competitive performance against the latest deep clustering algorithms, including out-performing current state-of-the-art on several. We postulate that these results show a promising research direction for deep clustering. The code can be found at https://github.com/rymc/n2d.

Adaptive Matching of Kernel Means

Miao Cheng, Xinge You

Responsive image

Auto-TLDR; Adaptive Matching of Kernel Means for Knowledge Discovery and Feature Learning

Slides Poster Similar

As a promising step, the performance of data analysis and feature learning are able to be improved if certain pattern matching mechanism is available. One of the feasible solutions can refer to the importance estimation of instances, and consequently, kernel mean matching (KMM) has become an important method for knowledge discovery and novelty detection in general. Furthermore, the existing KMM methods have focused on concrete learning frameworks. In this work, a novel approach to adaptive matching of kernel means is proposed, and selected data with high importance are adopted to achieve calculation efficiency with optimization. In addition, scalable learning can be conducted in proposed method as a generalized solution with appended data. The experimental results on a wide variety of real-world data sets demonstrate the proposed method is able to give outstanding performance compared with several state-of-the-art methods, while calculation efficiency can be preserved.

Neuron-Based Network Pruning Based on Majority Voting

Ali Alqahtani, Xianghua Xie, Ehab Essa, Mark W. Jones

Responsive image

Auto-TLDR; Large-Scale Neural Network Pruning using Majority Voting

Slides Poster Similar

The achievement of neural networks in a variety of applications is accompanied by a dramatic increase in computational costs and memory requirements. In this paper, we propose an efficient method to simultaneously identify the critical neurons and prune the model during training without involving any pre-training or fine-tuning procedures. Unlike existing methods, which accomplish this task in a greedy fashion, we propose a majority voting technique to compare the activation values among neurons and assign a voting score to quantitatively evaluate their importance.This mechanism helps to effectively reduce model complexity by eliminating the less influential neurons and aims to determine a subset of the whole model that can represent the reference model with much fewer parameters within the training process. Experimental results show that majority voting efficiently compresses the network with no drop in model accuracy, pruning more than 79\% of the original model parameters on CIFAR10 and more than 91\% of the original parameters on MNIST. Moreover, we show that with our proposed method, sparse models can be further pruned into even smaller models by removing more than 60\% of the parameters, whilst preserving the reference model accuracy.

Feature Extraction and Selection Via Robust Discriminant Analysis and Class Sparsity

Ahmad Khoder, Fadi Dornaika

Responsive image

Auto-TLDR; Hybrid Linear Discriminant Embedding for supervised multi-class classification

Slides Poster Similar

The main goal of discriminant embedding is to extract features that can be compact and informative representations of the original set of features. This paper introduces a hybrid scheme for linear feature extraction for supervised multi-class classification. We introduce a unifying criterion that is able to retain the advantages of robust sparse LDA and Inter-class sparsity. Thus, the estimated transformation includes two types of discrimination which are the inter-class sparsity and robust Linear Discriminant Analysis with feature selection. In order to optimize the proposed objective function, we deploy an iterative alternating minimization scheme for estimating the linear transformation and the orthogonal matrix. The introduced scheme is generic in the sense that it can be used for combining and tuning many other linear embedding methods. In the lights of the experiments conducted on six image datasets including faces, objects, and digits, the proposed scheme was able to outperform competing methods in most of the cases.

MD-kNN: An Instance-Based Approach for Multi-Dimensional Classification

Bin-Bin Jia, Min-Ling Zhang

Responsive image

Auto-TLDR; MD-kNN: Adapting Instance-based Techniques for Multi-dimensional Classification

Slides Poster Similar

Multi-dimensional classification (MDC) deals with the problem where each instance is associated with multiple class variables, each of which corresponds to a specific class space. One of the mainstream solutions for MDC is to adapt traditional machine learning techniques to deal with MDC data. In this paper, a first attempt towards adapting instance-based techniques for MDC is investigated, and a new approach named MD-kNN is proposed. Specifically, MD-kNN identifies unseen instance's k nearest neighbors and obtains its corresponding kNN counting statistics for each class space, based on which maximum a posteriori (MAP) inference is made for each pair of class spaces. After that, the class label w.r.t. each class space is determined by synergizing predictions from the learned classifiers via consulting empirical kNN accuracy. Comparative studies over ten benchmark data sets clearly validate MD-kNN's effectiveness.

GPSRL: Learning Semi-Parametric Bayesian Survival Rule Lists from Heterogeneous Patient Data

Ameer Hamza Shakur, Xiaoning Qian, Zhangyang Wang, Bobak Mortazavi, Shuai Huang

Responsive image

Auto-TLDR; Semi-parametric Bayesian Survival Rule List Model for Heterogeneous Survival Data

Slides Similar

Survival data is often collected in medical applications from a heterogeneous population of patients. While in the past, popular survival models focused on modeling the average effect of the co-variates on survival outcomes, rapidly advancing sensing and information technologies have provided opportunities to further model the heterogeneity of the population as well as the non-linearity of the survival risk. With this motivation, we propose a new semi-parametric Bayesian Survival Rule List model in this paper. Our model derives a rule-based decision-making approach, while within the regime defined by each rule, survival risk is modelled via a Gaussian process latent variable model. Markov Chain Monte Carlo with a nested Laplace approximation for the latent variable model is used to search over the posterior of the rule lists efficiently. The use of ordered rule lists enables us to model heterogeneity while keeping the model complexity in check. Performance evaluations on a synthetic heterogeneous survival dataset and a real world sepsis survival dataset demonstrate the effectiveness of our model.

Sample-Dependent Distance for 1 : N Identification Via Discriminative Feature Selection

Naoki Kawamura, Susumu Kubota

Responsive image

Auto-TLDR; Feature Selection Mask for 1:N Identification Problems with Binary Features

Slides Poster Similar

We focus on 1:N identification problems with binary features. Most multiclass classification methods, including identification and verification methods, use a shared metric space in which distances between samples are measured regardless of their identities. This is because dedicated metric spaces learned for each identity in the training set are of little use for the test set. In 1:N identification problems, however, gallery samples contain rich information about the test domain. Given a sample and its neighbors in the gallery set, we propose a method for calculating a discriminative feature selection mask that is used as a sample-dependent distance metric. Experiments on several re-identification datasets show that the proposed method enhances the performance of state-of-the-art feature extractors.

Budgeted Batch Mode Active Learning with Generalized Cost and Utility Functions

Arvind Agarwal, Shashank Mujumdar, Nitin Gupta, Sameep Mehta

Responsive image

Auto-TLDR; Active Learning Based on Utility and Cost Functions

Slides Poster Similar

Active learning reduces the labeling cost by actively querying labels for the most valuable data points. Typical active learning methods select the most informative examples one-at-a-time, their batch variants exist where a set of most informative points are selected. These points are selected in such a way that when added to the training data along with their labels, they provide maximum benefit to the underlying model. In this paper, we present a learning framework that actively selects optimal set of examples (in a batch) within a given budget, based on given utility and cost functions. The framework is generic enough to incorporate any utility and any cost function defined on a set of examples. Furthermore, we propose a novel utility function based on the Facility Location problem that considers three important characteristics of utility i.e., diversity, density and point utility. We also propose a novel cost function, by formulating the cost computation problem as an optimization problem, the solution to which turns out to be the minimum spanning tree. Thus, our framework provides the optimal batch of points within the given budget based on the cost and utility functions. We evaluate our method on several data sets and show its superior performance over baseline methods.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

Leveraging Quadratic Spherical Mutual Information Hashing for Fast Image Retrieval

Nikolaos Passalis, Anastasios Tefas

Responsive image

Auto-TLDR; Quadratic Mutual Information for Large-Scale Hashing and Information Retrieval

Slides Poster Similar

Several deep supervised hashing techniques have been proposed to allow for querying large image databases. However, it is often overlooked that the process of information retrieval can be modeled using information-theoretic metrics, leading to optimizing various proxies for the problem at hand instead. Contrary to this, we propose a deep supervised hashing algorithm that optimizes the learned codes using an information-theoretic measure, the Quadratic Mutual Information (QMI). The proposed method is adapted to the needs of large-scale hashing and information retrieval leading to a novel information-theoretic measure, the Quadratic Spherical Mutual Information (QSMI), that is inspired by QMI, but leads to significant better retrieval precision. Indeed, the effectiveness of the proposed method is demonstrated under several different scenarios, using different datasets and network architectures, outperforming existing deep supervised image hashing techniques.

Sparse-Dense Subspace Clustering

Shuai Yang, Wenqi Zhu, Yuesheng Zhu

Responsive image

Auto-TLDR; Sparse-Dense Subspace Clustering with Piecewise Correlation Estimation

Slides Poster Similar

Subspace clustering refers to the problem of clustering high-dimensional data into a union of low-dimensional subspaces. Current subspace clustering approaches are usually based on a two-stage framework. In the first stage, an affinity matrix is generated from data. In the second one, spectral clustering is applied on the affinity matrix. However, the affinity matrix produced by two-stage methods cannot fully reveal the similarity between data points from the same subspace, resulting in inaccurate clustering. Besides, most approaches fail to solve large-scale clustering problems due to poor efficiency. In this paper, we first propose a new scalable sparse method called Iterative Maximum Correlation (IMC) to learn the affinity matrix from data. Then we develop Piecewise Correlation Estimation (PCE) to densify the intra-subspace similarity produced by IMC. Finally we extend our work into a Sparse-Dense Subspace Clustering (SDSC) framework with a dense stage to optimize the affinity matrix for two-stage methods. We show that IMC is efficient for large-scale tasks, and PCE ensures better performance for IMC. We show the universality of our SDSC framework for current two-stage methods as well. Experiments on benchmark data sets demonstrate the effectiveness of our approaches.

Factor Screening Using Bayesian Active Learning and Gaussian Process Meta-Modelling

Cheng Li, Santu Rana, Andrew William Gill, Dang Nguyen, Sunil Kumar Gupta, Svetha Venkatesh

Responsive image

Auto-TLDR; Data-Efficient Bayesian Active Learning for Factor Screening in Combat Simulations

Similar

In this paper we propose a data-efficient Bayesian active learning framework for factor screening, which is important when dealing with systems which are expensive to evaluate, such as combat simulations. We use Gaussian Process meta-modelling with the Automatic Relevance Determination covariance kernel, which measures the importance of each factor by the inverse of their associated length-scales in the kernel. This importance measures the degree of non-linearity in the simulation response with respect to the corresponding factor. We initially place a prior over the length-scale values, then use the estimated posterior to select the next datum to simulate which maximises the mutual entropy between the length-scales and the unknown simulation response. Our goal-driven Bayesian active learning strategy ensures that we are data-efficient in discovering the correct values of the length-scales compared to either a random-sampling or uncertainty-sampling based approach. We apply our method to an expensive combat simulation and demonstrate the superiority of our approach.

Automatically Mining Relevant Variable Interactions Via Sparse Bayesian Learning

Ryoichiro Yafune, Daisuke Sakuma, Yasuo Tabei, Noritaka Saito, Hiroto Saigo

Responsive image

Auto-TLDR; Sparse Bayes for Interpretable Non-linear Prediction

Slides Poster Similar

With the rapid increase in the availability of large amount of data, prediction is becoming increasingly popular, and has widespread through our daily life. However, powerful non- linear prediction methods such as deep learning and SVM suffer from interpretability problem, making it hard to use in domains where the reason for decision making is required. In this paper, we develop an interpretable non-linear model called itemset Sparse Bayes (iSB), which builds a Bayesian probabilistic model, while simultaneously considering variable interactions. In order to suppress the resulting large number of variables, sparsity is imposed on regression weights by a sparsity inducing prior. As a subroutine to search for variable interactions, itemset enumeration algorithm is employed with a novel bounding condition. In computational experiments using real-world dataset, the proposed method performed better than decision tree by 10% in terms of r-squared . We also demonstrated the advantage of our method in Bayesian optimization setting, in which the proposed approach could successfully find the maximum of an unknown function faster than Gaussian process. The interpretability of iSB is naturally inherited to Bayesian optimization, thereby gives us a clue to understand which variables interactions are important in optimizing an unknown function.

Categorizing the Feature Space for Two-Class Imbalance Learning

Rosa Sicilia, Ermanno Cordelli, Paolo Soda

Responsive image

Auto-TLDR; Efficient Ensemble of Classifiers for Minority Class Inference

Slides Poster Similar

Class imbalance limits the performance of most learning algorithms, resulting in a low recognition rate for samples belonging to the minority class. Although there are different strategies to address this problem, methods that generate ensemble of classifiers have proven to be effective in several applications. This paper presents a new strategy to construct the training set of each classifier in the ensemble by exploiting information in the feature space that can give rise to unreliable classifications, which are determined by a novel algorithm here introduced. The performance of our proposal is compared against multiple standard ensemble approaches on 25 publicly available datasets, showing promising results.

3CS Algorithm for Efficient Gaussian Process Model Retrieval

Fabian Berns, Kjeld Schmidt, Ingolf Bracht, Christian Beecks

Responsive image

Auto-TLDR; Efficient retrieval of Gaussian Process Models for large-scale data using divide-&-conquer-based approach

Slides Poster Similar

Gaussian Process Models (GPMs) have been applied for various pattern recognition tasks due to their analytical tractability, ability to quantify uncertainty for their own results as well as to subsume prominent other regression techniques. Despite these promising prospects their super-quadratic computation time complexity for model selection and evaluation impedes its broader application for more than a few thousand data points. Although there have been many proposals towards Gaussian Processes for large-scale data, those only offer a linearly scaling improvement to a cubical scaling problem. In particular, solutions like the Nystrom approximation or sparse matrices are only taking fractions of the given data into account and subsequently lead to inaccurate models. In this paper, we thus propose a divide-&-conquer-based approach, that allows to efficiently retrieve GPMs for large-scale data. The resulting model is composed of independent pattern representations for non-overlapping segments of the given data and consequently reduces computation time significantly. Our performance analysis indicates that our proposal is able to outperform state-of-the-art algorithms for GPM retrieval with respect to the qualities of efficiency and accuracy.

On Learning Random Forests for Random Forest Clustering

Manuele Bicego, Francisco Escolano

Responsive image

Auto-TLDR; Learning Random Forests for Clustering

Slides Poster Similar

In this paper we study the poorly investigated problem of learning Random Forests for distance-based Random Forest clustering. We studied both classic schemes as well as alternative approaches, novel in this context. In particular, we investigated the suitability of Gaussian Density Forests, Random Forests specifically designed for density estimation. Further, we introduce a novel variant of Random Forest, based on an effective non parametric by-pass estimator of the Renyi entropy, which can be useful when the parametric assumption is too strict. An empirical evaluation involving different datasets and different RF-clustering strategies confirms that the learning step is crucial for RF-clustering. We also present a set of practical guidelines useful to determine the most suitable variant of RF-clustering according to the problem under examination.

Automatic Classification of Human Granulosa Cells in Assisted Reproductive Technology Using Vibrational Spectroscopy Imaging

Marina Paolanti, Emanuele Frontoni, Giorgia Gioacchini, Giorgini Elisabetta, Notarstefano Valentina, Zacà Carlotta, Carnevali Oliana, Andrea Borini, Marco Mameli

Responsive image

Auto-TLDR; Predicting Oocyte Quality in Assisted Reproductive Technology Using Machine Learning Techniques

Slides Poster Similar

In the field of reproductive technology, the biochemical composition of female gametes has been successfully investigated with the use of vibrational spectroscopy. Currently, in assistive reproductive technology (ART), there are no shared criteria for the choice of oocyte, and automatic classification methods for the best quality oocytes have not yet been applied. In this paper, considering the lack of criteria in Assisted Reproductive Technology (ART), we use Machine Learning (ML) techniques to predict oocyte quality for a successful pregnancy. To improve the chances of successful implantation and minimize any complications during the pregnancy, Fourier transform infrared microspectroscopy (FTIRM) analysis has been applied on granulosa cells (GCs) collected along with the oocytes during oocyte aspiration, as it is routinely done in ART, and specific spectral biomarkers were selected by multivariate statistical analysis. A proprietary biological reference dataset (BRD) was successfully collected to predict the best oocyte for a successful pregnancy. Personal health information are stored, maintained and backed up using a cloud computing service. Using a user-friendly interface, the user will evaluate whether or not the selected oocyte will have a positive result. This interface includes a dashboard for retrospective analysis, reporting, real-time processing, and statistical analysis. The experimental results are promising and confirm the efficiency of the method in terms of classification metrics: precision, recall, and F1-score (F1) measures.

Adaptive Sampling of Pareto Frontiers with Binary Constraints Using Regression and Classification

Raoul Heese, Michael Bortz

Responsive image

Auto-TLDR; Adaptive Optimization for Black-Box Multi-Objective Optimizing Problems with Binary Constraints

Poster Similar

We present a novel adaptive optimization algorithm for black-box multi-objective optimization problems with binary constraints on the foundation of Bayes optimization. Our method is based on probabilistic regression and classification models, which act as a surrogate for the optimization goals and allow us to suggest multiple design points at once in each iteration. The proposed acquisition function is intuitively understandable and can be tuned to the demands of the problems at hand. We also present a novel ellipsoid truncation method to speed up the expected hypervolume calculation in a straightfoward way for regression models with a normal probability density. We benchmark our approach with an evolutionary algorithm on multiple test problems.

Textual-Content Based Classification of Bundles of Untranscribed of Manuscript Images

José Ramón Prieto Fontcuberta, Enrique Vidal, Vicente Bosch, Carlos Alonso, Carmen Orcero, Lourdes Márquez

Responsive image

Auto-TLDR; Probabilistic Indexing for Text-based Classification of Manuscripts

Slides Poster Similar

Content-based classification of manuscripts is an important task that is generally performed in archives and libraries by experts with a wealth of knowledge on the manuscripts contents. Unfortunately, many manuscript collections are so vast that it is not feasible to rely solely on experts to perform this task. Current approaches for textual-content-based manuscript classification generally require the handwritten images to be first transcribed into text -- but achieving sufficiently accurate transcripts is generally unfeasible for large sets of historical manuscripts. We propose a new approach to automatically perform this classification task which does not rely on any explicit image transcripts. It is based on ``probabilistic indexing'', a relatively novel technology which allows to effectively represent the intrinsic word-level uncertainty generally exhibited by handwritten text images. We assess the performance of this approach on a large collection of complex manuscripts from the Spanish Archivo General de Indias, with promising results.

MINT: Deep Network Compression Via Mutual Information-Based Neuron Trimming

Madan Ravi Ganesh, Jason Corso, Salimeh Yasaei Sekeh

Responsive image

Auto-TLDR; Mutual Information-based Neuron Trimming for Deep Compression via Pruning

Slides Poster Similar

Most approaches to deep neural network compression via pruning either evaluate a filter’s importance using its weights or optimize an alternative objective function with sparsity constraints. While these methods offer a useful way to approximate contributions from similar filters, they often either ignore the dependency between layers or solve a more difficult optimization objective than standard cross-entropy. Our method, Mutual Information-based Neuron Trimming (MINT), approaches deep compression via pruning by enforcing sparsity based on the strength of the relationship between filters of adjacent layers, across every pair of layers. The relationship is calculated using conditional geometric mutual information which evaluates the amount of similar information exchanged between the filters using a graph-based criterion. When pruning a network, we ensure that retained filters contribute the majority of the information towards succeeding layers which ensures high performance. Our novel approach outperforms existing state-of-the-art compression-via-pruning methods on the standard benchmarks for this task: MNIST, CIFAR-10, and ILSVRC2012, across a variety of network architectures. In addition, we discuss our observations of a common denominator between our pruning methodology’s response to adversarial attacks and calibration statistics when compared to the original network.

Multi-Modal Deep Clustering: Unsupervised Partitioning of Images

Guy Shiran, Daphna Weinshall

Responsive image

Auto-TLDR; Multi-Modal Deep Clustering for Unlabeled Images

Slides Poster Similar

The clustering of unlabeled raw images is a daunting task, which has recently been approached with some success by deep learning methods. Here we propose an unsupervised clustering framework, which learns a deep neural network in an end-to-end fashion, providing direct cluster assignments of images without additional processing. Multi-Modal Deep Clustering (MMDC), trains a deep network to align its image embeddings with target points sampled from a Gaussian Mixture Model distribution. The cluster assignments are then determined by mixture component association of image embeddings. Simultaneously, the same deep network is trained to solve an additional self-supervised task. This pushes the network to learn more meaningful image representations and stabilizes the training. Experimental results show that MMDC achieves or exceeds state-of-the-art performance on four challenging benchmarks. On natural image datasets we improve on previous results with significant margins of up to 11% absolute accuracy points, yielding an accuracy of 70% on CIFAR-10 and 61% on STL-10.

Learning Sign-Constrained Support Vector Machines

Kenya Tajima, Kouhei Tsuchida, Esmeraldo Ronnie Rey Zara, Naoya Ohta, Tsuyoshi Kato

Responsive image

Auto-TLDR; Constrained Sign Constraints for Learning Linear Support Vector Machine

Poster Similar

Domain knowledge is useful to improve the generalization performance of learning machines. Sign constraints are a handy representation to combine domain knowledge with learning machine. In this paper, we consider constraining the signs of the weight coefficients in learning the linear support vector machine, and develop two optimization algorithms for minimizing the empirical risk under the sign constraints. One of the two algorithms is based on the projected gradient method, in which each iteration of the projected gradient method takes O(nd) computational cost and the sublinear convergence of the objective error is guaranteed. The second algorithm is based on the Frank-Wolfe method that also converges sublinearly and possesses a clear termination criterion. We show that each iteration of the Frank-Wolfe also requires O(nd) cost. Furthermore, we derive the explicit expression for the minimal iteration number to ensure an epsilon-accurate solution by analyzing the curvature of the objective function. Finally, we empirically demonstrate that the sign constraints are a promising technique when similarities to the training examples compose the feature vector.

Subspace Clustering Via Joint Unsupervised Feature Selection

Wenhua Dong, Xiaojun Wu, Hui Li, Zhenhua Feng, Josef Kittler

Responsive image

Auto-TLDR; Unsupervised Feature Selection for Subspace Clustering

Poster Similar

Any high-dimensional data arising from practical applications usually contains irrelevant features, which may impact on the performance of existing subspace clustering methods. This paper proposes a novel subspace clustering method, which reconstructs the feature matrix by the means of unsupervised feature selection (UFS) to achieve a better dictionary for subspace clustering (SC). Different from most existing clustering methods, the proposed approach uses a reconstructed feature matrix as the dictionary rather than the original data matrix. As the feature matrix reconstructed by representative features is more discriminative and closer to the ground-truth, it results in improved performance. The corresponding non-convex optimization problem is effectively solved using the half-quadratic and augmented Lagrange multiplier methods. Extensive experiments on four real datasets demonstrate the effectiveness of the proposed method.

Soft Label and Discriminant Embedding Estimation for Semi-Supervised Classification

Fadi Dornaika, Abdullah Baradaaji, Youssof El Traboulsi

Responsive image

Auto-TLDR; Semi-supervised Semi-Supervised Learning for Linear Feature Extraction and Label Propagation

Slides Poster Similar

In recent times, graph-based semi-supervised learning proved to be a powerful paradigm for processing and mining large datasets. The main advantage relies on the fact that these methods can be useful in propagating a small set of known labels to a large set of unlabeled data. The scarcity of labeled data may affect the performance of the semi-learning. This paper introduces a new semi-supervised framework for simultaneous linear feature extraction and label propagation. The proposed method simultaneously estimates a discriminant transformation and the unknown label by exploiting both labeled and unlabeled data. In addition, the unknowns of the learning model are estimated by integrating two types of graph-based smoothness constraints. The resulting semi-supervised model is expected to learn more discriminative information. Experiments are conducted on six public image datasets. These experimental results show that the performance of the proposed method can be better than that of many state-of-the-art graph-based semi-supervised algorithms.

A Novel Adaptive Minority Oversampling Technique for Improved Classification in Data Imbalanced Scenarios

Ayush Tripathi, Rupayan Chakraborty, Sunil Kumar Kopparapu

Responsive image

Auto-TLDR; Synthetic Minority OverSampling Technique for Imbalanced Data

Slides Poster Similar

Imbalance in the proportion of training samples belonging to different classes often poses performance degradation of conventional classifiers. This is primarily due to the tendency of the classifier to be biased towards the majority classes in the imbalanced dataset. In this paper, we propose a novel three step technique to address imbalanced data. As a first step we significantly oversample the minority class distribution by employing the traditional Synthetic Minority OverSampling Technique (SMOTE) algorithm using the neighborhood of the minority class samples and in the next step we partition the generated samples using a Gaussian-Mixture Model based clustering algorithm. In the final step synthetic data samples are chosen based on the weight associated with the cluster, the weight itself being determined by the distribution of the majority class samples. Extensive experiments on several standard datasets from diverse domains show the usefulness of the proposed technique in comparison with the original SMOTE and its state-of-the-art variants algorithms.

Verifying the Causes of Adversarial Examples

Honglin Li, Yifei Fan, Frieder Ganz, Tony Yezzi, Payam Barnaghi

Responsive image

Auto-TLDR; Exploring the Causes of Adversarial Examples in Neural Networks

Slides Poster Similar

The robustness of neural networks is challenged by adversarial examples that contain almost imperceptible perturbations to inputs which mislead a classifier to incorrect outputs in high confidence. Limited by the extreme difficulty in examining a high-dimensional image space thoroughly, research on explaining and justifying the causes of adversarial examples falls behind studies on attacks and defenses. In this paper, we present a collection of potential causes of adversarial examples and verify (or partially verify) them through carefully-designed controlled experiments. The major causes of adversarial examples include model linearity, one-sum constraint, and geometry of the categories. To control the effect of those causes, multiple techniques are applied such as $L_2$ normalization, replacement of loss functions, construction of reference datasets, and novel models using multi-layer perceptron probabilistic neural networks (MLP-PNN) and density estimation (DE). Our experiment results show that geometric factors tend to be more direct causes and statistical factors magnify the phenomenon, especially for assigning high prediction confidence. We hope this paper will inspire more studies to rigorously investigate the root causes of adversarial examples, which in turn provide useful guidance on designing more robust models.

Feature Extraction by Joint Robust Discriminant Analysis and Inter-Class Sparsity

Fadi Dornaika, Ahmad Khoder

Responsive image

Auto-TLDR; Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS)

Slides Similar

Feature extraction methods have been successfully applied to many real-world applications. The classical Linear Discriminant Analysis (LDA) and its variants are widely used as feature extraction methods. Although they have been used for different classification tasks, these methods have some shortcomings. The main one is that the projection axes obtained are not informative about the relevance of original features. In this paper, we propose a linear embedding method that merges two interesting properties: Robust LDA and inter-class sparsity. Furthermore, the targeted projection transformation focuses on the most discriminant original features. The proposed method is called Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS). Two kinds of sparsity are explicitly included in the proposed model. The first kind is obtained by imposing the $\ell_{2,1}$ constraint on the projection matrix in order to perform feature ranking. The second kind is obtained by imposing the inter-class sparsity constraint used for getting a common sparsity structure in each class. Comprehensive experiments on five real-world image datasets demonstrate the effectiveness and advantages of our framework over existing linear methods.

On the Information of Feature Maps and Pruning of Deep Neural Networks

Mohammadreza Soltani, Suya Wu, Jie Ding, Robert Ravier, Vahid Tarokh

Responsive image

Auto-TLDR; Compressing Deep Neural Models Using Mutual Information

Slides Poster Similar

A technique for compressing deep neural models achieving competitive performance to state-of-the-art methods is proposed. The approach utilizes the mutual information between the feature maps and the output of the model in order to prune the redundant layers of the network. Extensive numerical experiments on both CIFAR-10, CIFAR-100, and Tiny ImageNet data sets demonstrate that the proposed method can be effective in compressing deep models, both in terms of the numbers of parameters and operations. For instance, by applying the proposed approach to DenseNet model with 0.77 million parameters and 293 million operations for classification of CIFAR-10 data set, a reduction of 62.66% and 41.00% in the number of parameters and the number of operations are respectively achieved, while increasing the test error only by less than 1%.

Multi-annotator Probabilistic Active Learning

Marek Herde, Daniel Kottke, Denis Huseljic, Bernhard Sick

Responsive image

Auto-TLDR; MaPAL: Multi-annotator Probabilistic Active Learning

Slides Poster Similar

Classifiers require annotations of instances, i.e., class labels, for training. An annotation process is often costly due to its manual execution through human annotators. Active learning (AL) aims at reducing the annotation costs by selecting instances from which the classifier is expected to learn the most. Many AL strategies assume the availability of a single omniscient annotator. In this article, we overcome this limitation by considering multiple error-prone annotators. We propose a novel AL strategy multi-annotator probabilistic active learning (MaPAL). Due to the nature of learning with error-prone annotators, it must not only select instances but annotators, too. MaPAL builds on a decision-theoretic framework and selects instance-annotator pairs maximizing the classifier's expected performance. Experiments on a variety of data sets demonstrate MaPAL's superior performance compared to five related AL strategies.

Active Sampling for Pairwise Comparisons via Approximate Message Passing and Information Gain Maximization

Aliaksei Mikhailiuk, Clifford Wilmot, Maria Perez-Ortiz, Dingcheng Yue, Rafal Mantiuk

Responsive image

Auto-TLDR; ASAP: An Active Sampling Algorithm for Pairwise Comparison Data

Slides Similar

Pairwise comparison data arise in many domains with subjective assessment experiments, for example in image and video quality assessment. In these experiments observers are asked to express a preference between two conditions. However, many pairwise comparison protocols require a large number of comparisons to infer accurate scores, which may be unfeasible when each comparison is time-consuming (e.g. videos) or expensive (e.g. medical imaging). This motivates the use of an active sampling algorithm that chooses only the most informative pairs for comparison. In this paper we propose ASAP, an active sampling algorithm based on approximate message passing and expected information gain maximization. Unlike most existing methods, which rely on partial updates of the posterior distribution, we are able to perform full updates and therefore much improve the accuracy of the inferred scores. The algorithm relies on three techniques for reducing computational cost: inference based on approximate message passing, selective evaluations of the information gain, and selecting pairs in a batch that forms a minimum spanning tree of the inverse of information gain. We demonstrate, with real and synthetic data, that ASAP offers the highest accuracy of inferred scores compared to the existing methods. We also provide an open-source GPU implementation of ASAP for large-scale experiments.

Parallel Network to Learn Novelty from the Known

Shuaiyuan Du, Chaoyi Hong, Zhiyu Pan, Chen Feng, Zhiguo Cao

Responsive image

Auto-TLDR; Trainable Parallel Network for Pseudo-Novel Detection

Slides Poster Similar

Towards multi-class novelty detection, we propose an end-to-end trainable Parallel Network (PN) using no additional data but only the training set itself. Our key idea is to first divide the training set into successive subtasks of pseudo-novelty detection to simulate real scenarios. We then design a multi-branch PN to well address the fine-grained division, which yields a compressed and more discriminative classification space and forms a natural ensemble. In practice, we divide the training data into subsets consisting of known and pseudo-novel classes. Each subset forms a sub-task fed to one branch in PN. During training, both known and pseudo-novel classes are uniformly distributed over the branches for better data balance and model diversity. By distinguishing between the known and the diverse pseudo-novel, PN extracts the concept of novelty in a compressed classification space. This provides PN with generalization ability to real novel classes which are absent during training. During online inference, this ability is further strengthened with the ensemble of PN's multiple branches. Experiments on three public datasets show our method's superiority to the mainstream methods.

Decision Snippet Features

Pascal Welke, Fouad Alkhoury, Christian Bauckhage, Stefan Wrobel

Responsive image

Auto-TLDR; Decision Snippet Features for Interpretability

Slides Poster Similar

Decision trees excel at interpretability of their prediction results. To achieve required prediction accuracies, however, often large ensembles of decision trees -- random forests -- are considered, reducing interpretability due to large size. Additionally, their size slows down inference on modern hardware and restricts their applicability in low-memory embedded devices. We introduce \emph{Decision Snippet Features}, which are obtained from small subtrees that appear frequently in trained random forests. We subsequently show that linear models on top of these features achieve comparable and sometimes even better predictive performance than the original random forest, while reducing the model size by up to two orders of magnitude.

Learning to Rank for Active Learning: A Listwise Approach

Minghan Li, Xialei Liu, Joost Van De Weijer, Bogdan Raducanu

Responsive image

Auto-TLDR; Learning Loss for Active Learning

Slides Similar

Active learning emerged as an alternative to alleviate the effort to label huge amount of data for data-hungry applications (such as image/video indexing and retrieval, autonomous driving, etc.). The goal of active learning is to automatically select a number of unlabeled samples for annotation (according to a budget), based on an acquisition function, which indicates how valuable a sample is for training the model. The learning loss method is a task-agnostic approach which attaches a module to learn to predict the target loss of unlabeled data, and select data with the highest loss for labeling. In this work, we follow this strategy but we define the acquisition function as a learning to rank problem and rethink the structure of the loss prediction module, using a simple but effective listwise approach. Experimental results on four datasets demonstrate that our method outperforms recent state-of-the-art active learning approaches for both image classification and regression tasks.

F-Mixup: Attack CNNs from Fourier Perspective

Xiu-Chuan Li, Xu-Yao Zhang, Fei Yin, Cheng-Lin Liu

Responsive image

Auto-TLDR; F-Mixup: A novel black-box attack in frequency domain for deep neural networks

Slides Poster Similar

Recent research has revealed that deep neural networks are highly vulnerable to adversarial examples. In this paper, different from most adversarial attacks which directly modify pixels in spatial domain, we propose a novel black-box attack in frequency domain, named as f-mixup, based on the property of natural images and perception disparity between human-visual system (HVS) and convolutional neural networks (CNNs): First, natural images tend to have the bulk of their Fourier spectrums concentrated on the low frequency domain; Second, HVS is much less sensitive to high frequencies while CNNs can utilize both low and high frequency information to make predictions. Extensive experiments are conducted and show that deeper CNNs tend to concentrate more on the high frequency domain, which may explain the contradiction between robustness and accuracy. In addition, we compared f-mixup with existing attack methods and observed that our approach possesses great advantages. Finally, we show that f-mixup can be also incorporated in training to make deep CNNs defensible against a kind of perturbations effectively.

An Efficient Empirical Solver for Localized Multiple Kernel Learning Via DNNs

Ziming Zhang

Responsive image

Auto-TLDR; Localized Multiple Kernel Learning using LMKL-Net

Slides Poster Similar

In this paper we propose solving localized multiple kernel learning (LMKL) using LMKL-Net, a feedforward deep neural network (DNN). In contrast to previous works, as a learning principle we propose parameterizing the gating function for learning kernel combination weights and the multiclass classifier using an attentional network (AN) and a multilayer perceptron (MLP), respectively. Such interpretability helps us better understand how the network solves the problem. Thanks to stochastic gradient descent (SGD), our approach has {\em linear} computational complexity in training. Empirically on benchmark datasets we demonstrate that with comparable or better accuracy than the state-of-the-art, our LMKL-Net can be trained about {\bf two orders of magnitude} faster with about {\bf two orders of magnitude} smaller memory footprint for large-scale learning.

Weakly Supervised Learning through Rank-Based Contextual Measures

João Gabriel Camacho Presotto, Lucas Pascotti Valem, Nikolas Gomes De Sá, Daniel Carlos Guimaraes Pedronette, Joao Paulo Papa

Responsive image

Auto-TLDR; Exploiting Unlabeled Data for Weakly Supervised Classification of Multimedia Data

Slides Poster Similar

Machine learning approaches have achieved remarkable advances over the last decades, especially in supervised learning tasks such as classification. Meanwhile, multimedia data and applications experienced an explosive growth, becoming ubiquitous in diverse domains. Due to the huge increase in multimedia data collections and the lack of labeled data in several scenarios, creating methods capable of exploiting the unlabeled data and operating under weakly supervision is imperative. In this work, we propose a rank-based model to exploit contextual information encoded in the unlabeled data in order to perform weakly supervised classification. We employ different rank-based correlation measures for identifying strong similarities relationships and expanding the labeled set in an unsupervised way. Subsequently, the extended labeled set is used by a classifier to achieve better accuracy results. The proposed weakly supervised approach was evaluated on multimedia classification tasks, considering several combinations of rank correlation measures and classifiers. An experimental evaluation was conducted on 4 public image datasets and different features. Very positive gains were achieved in comparison with various semi-supervised and supervised classifiers taken as baselines when considering the same amount of labeled data.

Scientific Document Summarization using Citation Context and Multi-objective Optimization

Naveen Saini, Sushil Kumar, Sriparna Saha, Pushpak Bhattacharyya

Responsive image

Auto-TLDR; SciSumm Summarization using Multi-Objective Optimization

Slides Poster Similar

The rate of publishing scientific articles is ever increasing which has created difficulty for the researchers to learn about the recent advancements in a faster way. Also, relying on the abstract of these published articles is not a good idea as they cover only broad idea of the article. The summarization of scientific documents (SDS) addresses this challenge. In this paper, we propose a system for SDS having two components: identifying the relevant sentences in the article using citation context; generation of the summary by posing SDS as a binary optimization problem. For the purpose of optimization, a meta-heuristic evolutionary algorithm is utilized. In order to improve the quality of summary, various aspects measuring the relevance of sentences are simultaneously optimized using the concept of multi-objective optimization. Inspired by the popularity of graph-based algorithms like LexRank which is popularly used in solving summarization problems of different real-life applications, its impact is studied in fusion with our optimization framework. An ablation study is also performed to identify the most contributing aspects for the summary generation. We investigated the performance of our proposed framework on two datasets related to the computational linguistic domain, CL-SciSumm 2016 and CL-SciSumm 2017, in terms of ROUGE measures. The results obtained show that our framework effectively improves other existing methods. Further, results are validated using the statistical paired t-test.

Wasserstein k-Means with Sparse Simplex Projection

Takumi Fukunaga, Hiroyuki Kasai

Responsive image

Auto-TLDR; SSPW $k$-means: Sparse Simplex Projection-based Wasserstein $ k$-Means Algorithm

Slides Poster Similar

This paper presents a proposal of a faster Wasserstein $k$-means algorithm for histogram data by reducing Wasserstein distance computations exploiting sparse simplex projection. We shrink data samples, centroids and ground cost matrix, which enables significant reduction of the computations to solve optimal transport problems without loss of clustering quality. Furthermore, we dynamically reduce computational complexity by removing lower-valued data samples harnessing sparse simplex projection while keeping degradation of clustering quality lower. We designate this proposed algorithm as sparse simplex projection-based Wasserstein $k$-means, for short, SSPW $k$-means. Numerical evaluations against Wasserstein $k$-means algorithm demonstrate the effectiveness of the proposed SSPW $k$-means on real-world datasets.

Rank-Based Ordinal Classification

Joan Serrat, Idoia Ruiz

Responsive image

Auto-TLDR; Ordinal Classification with Order

Slides Poster Similar

Differently from the regular classification task, in ordinal classification there is an order in the classes. As a consequence not all classification errors matter the same: a predicted class close to the groundtruth one is better than predicting a farther away class. To account for this, most previous works employ loss functions based on the absolute difference between the predicted and groundtruth class {\em labels}. We argue that there are many cases in ordinal classification where label values are arbitrary (for instance 1\ldots $C$, being $C$ the number of classes) and thus such loss functions may not be the best choice. We instead propose a network architecture that produces not a single class prediction but an ordered vector, or ranking, of all the possible classes from most to less likely. This is tanks to a loss function that compares groundtruth and predicted rankings of these class labels, not the labels themselves. Another advantage of this new formulation is that we can enforce consistency in the predictions, namely, predicted rankings come from some unimodal vector of scores with mode at the groundtruth class. We compare with the state of the art ordinal classification methods, showing that ours attains equal or better performance, as measured by common ordinal classification metrics, on three benchmark datasets. Furthermore, it is also suitable for a new task on image aesthetics assessment, \textit{i.e.}, most voted score prediction. Finally, we also apply it to building damage assessment from satellite images, providing an analysis of its performance depending on the degree of imbalance of the dataset.

Constrained Spectral Clustering Network with Self-Training

Xinyue Liu, Shichong Yang, Linlin Zong

Responsive image

Auto-TLDR; Constrained Spectral Clustering Network: A Constrained Deep spectral clustering network

Slides Poster Similar

Deep spectral clustering networks have shown their superiorities due to the integration of feature learning and cluster assignment, and the ability to deal with non-convex clusters. Nevertheless, deep spectral clustering is still an ill-posed problem. Specifically, the affinity learned by the most remarkable SpectralNet is not guaranteed to be consistent with local invariance and thus hurts the final clustering performance. In this paper, we propose a novel framework of Constrained Spectral Clustering Network (CSCN) by incorporating pairwise constraints and clustering oriented fine-tuning to deal with the ill-posedness. To the best of our knowledge, this is the first constrained deep spectral clustering method. Another advantage of CSCN over existing constrained deep clustering networks is that it propagates pairwise constraints throughout the entire dataset. In addition, we design a clustering oriented loss by self-training to simultaneously finetune feature representations and perform cluster assignments, which further improve the quality of clustering. Extensive experiments on benchmark datasets demonstrate that our approach outperforms the state-of-the-art clustering methods.

Graph Spectral Feature Learning for Mixed Data of Categorical and Numerical Type

Saswata Sahoo, Souradip Chakraborty

Responsive image

Auto-TLDR; Feature Learning in Mixed Type of Variable by an undirected graph

Slides Poster Similar

Feature learning in the presence of a mixed type of variables, numerical and categorical types, is important for related modeling problems. In this work, we propose a novel strategy to explicitly model the probabilistic dependence structure among the mixed type of variables by an undirected graph. The dependence structure among different pairs of variables are encoded by a suitable mapping function to estimate the edges of the graph. Spectral decomposition of the graph Laplacian provides the desired feature transformation. We numerically validate the implications of the feature learning strategy on various datasets in terms of data clustering.

Mean Decision Rules Method with Smart Sampling for Fast Large-Scale Binary SVM Classification

Alexandra Makarova, Mikhail Kurbakov, Valentina Sulimova

Responsive image

Auto-TLDR; Improving Mean Decision Rule for Large-Scale Binary SVM Problems

Slides Poster Similar

This paper relies on the Mean Decision Rule (MDR) method for solving large-scale binary SVM problems. It consists in taking small random samples of the full dataset and separate training for each of them with consecutive averaging the respective individual decision rules to obtain a final one. This paper proposes two new approaches to improve it. The first proposed approach is a new sampling technique that exploits SVM and MDR properties to fast form so called smart samples by selecting only the objects, that are candidates to be the support ones. The proposed technique essentially increases MDR convergence and allows to reach the highest quality in less time. In the case of kernel-based MDR (KMDR) the proposed sampling technique allows additionally to reduce the number of support objects in the final decision rule and, as a result, to decrease the recognition time. The second proposed approach is a new data strategy to accelerate random access to large datasets stored in the traditional libsvm format. The proposed strategy allows to quickly extract random subsets of objects from a file and load them into RAM, and is it also suitable for any sampling-based methods, including stochastic gradient methods. Joint using of the proposed approaches with (K)MDR allows to obtain the best (or near the best) decision of large-scale binary SVM problems faster, compared to the existing SVM solvers.