Automatically Mining Relevant Variable Interactions Via Sparse Bayesian Learning

Ryoichiro Yafune, Daisuke Sakuma, Yasuo Tabei, Noritaka Saito, Hiroto Saigo

Responsive image

Auto-TLDR; Sparse Bayes for Interpretable Non-linear Prediction

Slides Poster

With the rapid increase in the availability of large amount of data, prediction is becoming increasingly popular, and has widespread through our daily life. However, powerful non- linear prediction methods such as deep learning and SVM suffer from interpretability problem, making it hard to use in domains where the reason for decision making is required. In this paper, we develop an interpretable non-linear model called itemset Sparse Bayes (iSB), which builds a Bayesian probabilistic model, while simultaneously considering variable interactions. In order to suppress the resulting large number of variables, sparsity is imposed on regression weights by a sparsity inducing prior. As a subroutine to search for variable interactions, itemset enumeration algorithm is employed with a novel bounding condition. In computational experiments using real-world dataset, the proposed method performed better than decision tree by 10% in terms of r-squared . We also demonstrated the advantage of our method in Bayesian optimization setting, in which the proposed approach could successfully find the maximum of an unknown function faster than Gaussian process. The interpretability of iSB is naturally inherited to Bayesian optimization, thereby gives us a clue to understand which variables interactions are important in optimizing an unknown function.

Similar papers

3CS Algorithm for Efficient Gaussian Process Model Retrieval

Fabian Berns, Kjeld Schmidt, Ingolf Bracht, Christian Beecks

Responsive image

Auto-TLDR; Efficient retrieval of Gaussian Process Models for large-scale data using divide-&-conquer-based approach

Slides Poster Similar

Gaussian Process Models (GPMs) have been applied for various pattern recognition tasks due to their analytical tractability, ability to quantify uncertainty for their own results as well as to subsume prominent other regression techniques. Despite these promising prospects their super-quadratic computation time complexity for model selection and evaluation impedes its broader application for more than a few thousand data points. Although there have been many proposals towards Gaussian Processes for large-scale data, those only offer a linearly scaling improvement to a cubical scaling problem. In particular, solutions like the Nystrom approximation or sparse matrices are only taking fractions of the given data into account and subsequently lead to inaccurate models. In this paper, we thus propose a divide-&-conquer-based approach, that allows to efficiently retrieve GPMs for large-scale data. The resulting model is composed of independent pattern representations for non-overlapping segments of the given data and consequently reduces computation time significantly. Our performance analysis indicates that our proposal is able to outperform state-of-the-art algorithms for GPM retrieval with respect to the qualities of efficiency and accuracy.

GPSRL: Learning Semi-Parametric Bayesian Survival Rule Lists from Heterogeneous Patient Data

Ameer Hamza Shakur, Xiaoning Qian, Zhangyang Wang, Bobak Mortazavi, Shuai Huang

Responsive image

Auto-TLDR; Semi-parametric Bayesian Survival Rule List Model for Heterogeneous Survival Data

Slides Similar

Survival data is often collected in medical applications from a heterogeneous population of patients. While in the past, popular survival models focused on modeling the average effect of the co-variates on survival outcomes, rapidly advancing sensing and information technologies have provided opportunities to further model the heterogeneity of the population as well as the non-linearity of the survival risk. With this motivation, we propose a new semi-parametric Bayesian Survival Rule List model in this paper. Our model derives a rule-based decision-making approach, while within the regime defined by each rule, survival risk is modelled via a Gaussian process latent variable model. Markov Chain Monte Carlo with a nested Laplace approximation for the latent variable model is used to search over the posterior of the rule lists efficiently. The use of ordered rule lists enables us to model heterogeneity while keeping the model complexity in check. Performance evaluations on a synthetic heterogeneous survival dataset and a real world sepsis survival dataset demonstrate the effectiveness of our model.

Factor Screening Using Bayesian Active Learning and Gaussian Process Meta-Modelling

Cheng Li, Santu Rana, Andrew William Gill, Dang Nguyen, Sunil Kumar Gupta, Svetha Venkatesh

Responsive image

Auto-TLDR; Data-Efficient Bayesian Active Learning for Factor Screening in Combat Simulations

Similar

In this paper we propose a data-efficient Bayesian active learning framework for factor screening, which is important when dealing with systems which are expensive to evaluate, such as combat simulations. We use Gaussian Process meta-modelling with the Automatic Relevance Determination covariance kernel, which measures the importance of each factor by the inverse of their associated length-scales in the kernel. This importance measures the degree of non-linearity in the simulation response with respect to the corresponding factor. We initially place a prior over the length-scale values, then use the estimated posterior to select the next datum to simulate which maximises the mutual entropy between the length-scales and the unknown simulation response. Our goal-driven Bayesian active learning strategy ensures that we are data-efficient in discovering the correct values of the length-scales compared to either a random-sampling or uncertainty-sampling based approach. We apply our method to an expensive combat simulation and demonstrate the superiority of our approach.

Aggregating Dependent Gaussian Experts in Local Approximation

Hamed Jalali, Gjergji Kasneci

Responsive image

Auto-TLDR; A novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence

Slides Poster Similar

Distributed Gaussian processes (DGPs) are prominent local approximation methods to scale Gaussian processes (GPs) to large datasets. Instead of a global estimation, they train local experts by dividing the training set into subsets, thus reducing the time complexity. This strategy is based on the conditional independence assumption, which basically means that there is a perfect diversity between the local experts. In practice, however, this assumption is often violated, and the aggregation of experts leads to sub-optimal and inconsistent solutions. In this paper, we propose a novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence. The dependency between experts is determined by using a Gaussian graphical model, which yields the precision matrix. The precision matrix encodes conditional dependencies between experts and is used to detect strongly dependent experts and construct an improved aggregation. Using both synthetic and real datasets, our experimental evaluations illustrate that our new method outperforms other state-of-the-art (SOTA) DGP approaches while being substantially more time-efficient than SOTA approaches, which build on independent experts.

Hierarchical Routing Mixture of Experts

Wenbo Zhao, Yang Gao, Shahan Ali Memon, Bhiksha Raj, Rita Singh

Responsive image

Auto-TLDR; A Binary Tree-structured Hierarchical Routing Mixture of Experts for Regression

Slides Poster Similar

In regression tasks the distribution of the data is often too complex to be fitted by a single model. In contrast, partition-based models are developed where data is divided and fitted by local models. These models partition the input space and do not leverage the input-output dependency of multimodal-distributed data, and strong local models are needed to make good predictions. Addressing these problems, we propose a binary tree-structured hierarchical routing mixture of experts (HRME) model that has classifiers as non-leaf node experts and simple regression models as leaf node experts. The classifier nodes jointly soft-partition the input-output space based on the natural separateness of multimodal data. This enables simple leaf experts to be effective for prediction. Further, we develop a probabilistic framework for the HRME model, and propose a recursive Expectation-Maximization (EM) based algorithm to learn both the tree structure and the expert models. Experiments on a collection of regression tasks validate the effectiveness of our method compared to a variety of other regression models.

Decision Snippet Features

Pascal Welke, Fouad Alkhoury, Christian Bauckhage, Stefan Wrobel

Responsive image

Auto-TLDR; Decision Snippet Features for Interpretability

Slides Poster Similar

Decision trees excel at interpretability of their prediction results. To achieve required prediction accuracies, however, often large ensembles of decision trees -- random forests -- are considered, reducing interpretability due to large size. Additionally, their size slows down inference on modern hardware and restricts their applicability in low-memory embedded devices. We introduce \emph{Decision Snippet Features}, which are obtained from small subtrees that appear frequently in trained random forests. We subsequently show that linear models on top of these features achieve comparable and sometimes even better predictive performance than the original random forest, while reducing the model size by up to two orders of magnitude.

Learning Sign-Constrained Support Vector Machines

Kenya Tajima, Kouhei Tsuchida, Esmeraldo Ronnie Rey Zara, Naoya Ohta, Tsuyoshi Kato

Responsive image

Auto-TLDR; Constrained Sign Constraints for Learning Linear Support Vector Machine

Poster Similar

Domain knowledge is useful to improve the generalization performance of learning machines. Sign constraints are a handy representation to combine domain knowledge with learning machine. In this paper, we consider constraining the signs of the weight coefficients in learning the linear support vector machine, and develop two optimization algorithms for minimizing the empirical risk under the sign constraints. One of the two algorithms is based on the projected gradient method, in which each iteration of the projected gradient method takes O(nd) computational cost and the sublinear convergence of the objective error is guaranteed. The second algorithm is based on the Frank-Wolfe method that also converges sublinearly and possesses a clear termination criterion. We show that each iteration of the Frank-Wolfe also requires O(nd) cost. Furthermore, we derive the explicit expression for the minimal iteration number to ensure an epsilon-accurate solution by analyzing the curvature of the objective function. Finally, we empirically demonstrate that the sign constraints are a promising technique when similarities to the training examples compose the feature vector.

Bayesian Active Learning for Maximal Information Gain on Model Parameters

Kasra Arnavaz, Aasa Feragen, Oswin Krause, Marco Loog

Responsive image

Auto-TLDR; Bayesian assumptions for Bayesian classification

Slides Poster Similar

The fact that machine learning models, despite their advancements, are still trained on randomly gathered data is proof that a lasting solution to the problem of optimal data gathering has not yet been found. In this paper, we investigate whether a Bayesian approach to the classification problem can provide assumptions under which one is guaranteed to perform at least as good as random sampling. For a logistic regression model, we show that maximal expected information gain on model parameters is a promising criterion for selecting samples, assuming that our classification model is well-matched to the data. Our derived criterion is closely related to the maximum model change. We experiment with data sets which satisfy this assumption to varying degrees to see how sensitive our performance is to the violation of our assumption in practice.

A Multilinear Sampling Algorithm to Estimate Shapley Values

Ramin Okhrati, Aldo Lipani

Responsive image

Auto-TLDR; A sampling method for Shapley values for multilayer Perceptrons

Slides Poster Similar

Shapley values are great analytical tools in game theory to measure the importance of a player in a game. Due to their axiomatic and desirable properties such as efficiency, they have become popular for feature importance analysis in data science and machine learning. However, the time complexity to compute Shapley values based on the original formula is exponential, and as the number of features increases, this becomes infeasible. Castro et al. [1] developed a sampling algorithm, to estimate Shapley values. In this work, we propose a new sampling method based on a multilinear extension technique as applied in game theory. The aim is to provide a more efficient (sampling) method for estimating Shapley values. Our method is applicable to any machine learning model, in particular for either multiclass classifications or regression problems. We apply the method to estimate Shapley values for multilayer Perceptrons (MLPs) and through experimentation on two datasets, we demonstrate that our method provides more accurate estimations of the Shapley values by reducing the variance of the sampling statistics

Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference

Jiansheng Fang, Xiaoqing Zhang, Yan Hu, Yanwu Xu, Ming Yang, Jiang Liu

Responsive image

Auto-TLDR; Bayesian Latent Factor Model for Collaborative Filtering

Slides Similar

Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually in pattern recognition, LFM models user-item interactions as inner products of factor vectors of user and item in that space and can be efficiently solved by least square methods with optimal estimation. However, such optimal estimation methods are prone to overfitting due to the extreme sparsity of user-item interactions. In this paper, we propose a Bayesian treatment for LFM, named Bayesian Latent Factor Model (BLFM). Based on observed user-item interactions, we build a probabilistic factor model in which the regularization is introduced via placing prior constraint on latent factors, and the likelihood function is established over observations and parameters. Then we draw samples of latent factors from the posterior distribution with Variational Inference (VI) to predict expected value. We further make an extension to BLFM, called BLFMBias, incorporating user-dependent and item-dependent biases into the model for enhancing performance. Extensive experiments on the movie rating dataset show the effectiveness of our proposed models by compared with several strong baselines.

Temporal Pattern Detection in Time-Varying Graphical Models

Federico Tomasi, Veronica Tozzo, Annalisa Barla

Responsive image

Auto-TLDR; A dynamical network inference model that leverages on kernels to consider general temporal patterns

Slides Poster Similar

Graphical models allow to describe the interplay among variables of a system through a compact representation, suitable when relations evolve over time. For example, in a biological setting, genes interact differently depending on external environmental or metabolic factors. To incorporate this dynamics a viable strategy is to estimate a sequence of temporally related graphs assuming similarity among samples in different time points. While adjacent time points may direct the analysis towards a robust estimate of the underlying graph, the resulting model will not incorporate long-term or recurrent temporal relationships. In this work we propose a dynamical network inference model that leverages on kernels to consider general temporal patterns (such as circadian rhythms or seasonality). We show how our approach may also be exploited when the recurrent patterns are unknown, by coupling the network inference with a clustering procedure that detects possibly non-consecutive similar networks. Such clusters are then used to build similarity kernels. The convexity of the functional is determined by whether we impose or infer the kernel. In the first case, the optimisation algorithm exploits efficiently proximity operators with closed-form solutions. In the other case, we resort to an alternating minimisation procedure which jointly learns the temporal kernel and the underlying network. Extensive analysis on synthetic data shows the efficacy of our models compared to state-of-the-art methods. Finally, we applied our approach on two real-world applications to show how considering long-term patterns is fundamental to have insights on the behaviour of a complex system.

Classification and Feature Selection Using a Primal-Dual Method and Projections on Structured Constraints

Michel Barlaud, Antonin Chambolle, Jean_Baptiste Caillau

Responsive image

Auto-TLDR; A Constrained Primal-dual Method for Structured Feature Selection on High Dimensional Data

Slides Poster Similar

This paper deals with feature selection using supervised classification on high dimensional datasets. A classical approach is to project data on a low dimensional space and classify by minimizing an appropriate quadratic cost. Our first contribution is to introduce a matrix of centers in the definition of this cost. Moreover, as quadratic costs are not robust to outliers, we propose to use an $\ell_1$ cost instead (or Huber loss to mitigate overfitting issues). While control on sparsity is commonly obtained by adding an $\ell_1$ constraint on the vectorized matrix of weights used for projecting the data, our second contribution is to enforce structured sparsity. To this end we propose constraints that take into account the matrix structure of the data, based either on the nuclear norm, on the $\ell_{2,1}$ norm, or on the $\ell_{1,2}$ norm for which we provide a new projection algorithm. We optimize simultaneously the projection matrix and the matrix of centers thanks to a new tailored constrained primal-dual method. The primal-dual framework is general enough to encompass the various robust losses and structured constraints we use, and allows a convergence analysis. We demonstrate the effectiveness of the approach on three biological datasets. Our primal-dual method with robust losses, adaptive centers and structured constraints does significantly better than classical methods, both in terms of accuracy and computational time.

Adaptive Sampling of Pareto Frontiers with Binary Constraints Using Regression and Classification

Raoul Heese, Michael Bortz

Responsive image

Auto-TLDR; Adaptive Optimization for Black-Box Multi-Objective Optimizing Problems with Binary Constraints

Poster Similar

We present a novel adaptive optimization algorithm for black-box multi-objective optimization problems with binary constraints on the foundation of Bayes optimization. Our method is based on probabilistic regression and classification models, which act as a surrogate for the optimization goals and allow us to suggest multiple design points at once in each iteration. The proposed acquisition function is intuitively understandable and can be tuned to the demands of the problems at hand. We also present a novel ellipsoid truncation method to speed up the expected hypervolume calculation in a straightfoward way for regression models with a normal probability density. We benchmark our approach with an evolutionary algorithm on multiple test problems.

Low-Cost Lipschitz-Independent Adaptive Importance Sampling of Stochastic Gradients

Huikang Liu, Xiaolu Wang, Jiajin Li, Man-Cho Anthony So

Responsive image

Auto-TLDR; Adaptive Importance Sampling for Stochastic Gradient Descent

Slides Similar

Stochastic gradient descent (SGD) usually samples training data based on the uniform distribution, which may not be a good choice because of the high variance of its stochastic gradient. Thus, importance sampling methods are considered in the literature to improve the performance. Most previous work on SGD-based methods with importance sampling requires the knowledge of Lipschitz constants of all component gradients, which are in general difficult to estimate. In this paper, we study an adaptive importance sampling method for common SGD-based methods by exploiting the local first-order information without knowing any Lipschitz constants. In particular, we periodically changes the sampling distribution by only utilizing the gradient norms in the past few iterations. We prove that our adaptive importance sampling non-asymptotically reduces the variance of the stochastic gradients in SGD, and thus better convergence bounds than that for vanilla SGD can be obtained. We extend this sampling method to several other widely used stochastic gradient algorithms including SGD with momentum and ADAM. Experiments on common convex learning problems and deep neural networks illustrate notably enhanced performance using the adaptive sampling strategy.

An Efficient Empirical Solver for Localized Multiple Kernel Learning Via DNNs

Ziming Zhang

Responsive image

Auto-TLDR; Localized Multiple Kernel Learning using LMKL-Net

Slides Poster Similar

In this paper we propose solving localized multiple kernel learning (LMKL) using LMKL-Net, a feedforward deep neural network (DNN). In contrast to previous works, as a learning principle we propose parameterizing the gating function for learning kernel combination weights and the multiclass classifier using an attentional network (AN) and a multilayer perceptron (MLP), respectively. Such interpretability helps us better understand how the network solves the problem. Thanks to stochastic gradient descent (SGD), our approach has {\em linear} computational complexity in training. Empirically on benchmark datasets we demonstrate that with comparable or better accuracy than the state-of-the-art, our LMKL-Net can be trained about {\bf two orders of magnitude} faster with about {\bf two orders of magnitude} smaller memory footprint for large-scale learning.

Deep Transformation Models: Tackling Complex Regression Problems with Neural Network Based Transformation Models

Beate Sick, Torsten Hothorn, Oliver Dürr

Responsive image

Auto-TLDR; A Deep Transformation Model for Probabilistic Regression

Slides Poster Similar

We present a deep transformation model for probabilistic regression. Deep learning is known for outstandingly accurate predictions on complex data but in regression tasks it is predominantly used to just predict a single number. This ignores the non-deterministic character of most tasks. Especially if crucial decisions are based on the predictions, like in medical applications, it is essential to quantify the prediction uncertainty. The presented deep learning transformation model estimates the whole conditional probability distribution, which is the most thorough way to capture uncertainty about the outcome. We combine ideas from a statistical transformation model (most likely transformation) with recent transformation models from deep learning (normalizing flows) to predict complex outcome distributions. The core of the method is a parameterized transformation function which can be trained with the usual maximum likelihood framework using gradient descent. The method can be combined with existing deep learning architectures. For small machine learning benchmark datasets, we report state of the art performance for most dataset and partly even outperform it. Our method works for complex input data, which we demonstrate by employing a CNN architecture on image data.

Watermelon: A Novel Feature Selection Method Based on Bayes Error Rate Estimation and a New Interpretation of Feature Relevance and Redundancy

Xiang Xie, Wilhelm Stork

Responsive image

Auto-TLDR; Feature Selection Using Bayes Error Rate Estimation for Dynamic Feature Selection

Slides Poster Similar

Feature selection has become a crucial part of many classification problems in which high-dimensional datasets may contain tens of thousands of features. In this paper, we propose a novel feature selection method scoring the features through estimating the Bayes error rate based on kernel density estimation. Additionally, we update the scores of features dynamically by quantitatively interpreting the effects of feature relevance and redundancy in a new way. Distinguishing from the common heuristic applied by many feature selection methods, which prefers choosing features that are not relevant to each other, our approach penalizes only monotonically correlated features and rewards any other kind of relevance among features based on Spearman’s rank correlation coefficient and normalized mutual information. We conduct extensive experiments on seventeen diverse classification benchmarks, the results show that our approach overperforms other seventeen popular state-of-the-art feature selection methods in most cases.

Budgeted Batch Mode Active Learning with Generalized Cost and Utility Functions

Arvind Agarwal, Shashank Mujumdar, Nitin Gupta, Sameep Mehta

Responsive image

Auto-TLDR; Active Learning Based on Utility and Cost Functions

Slides Poster Similar

Active learning reduces the labeling cost by actively querying labels for the most valuable data points. Typical active learning methods select the most informative examples one-at-a-time, their batch variants exist where a set of most informative points are selected. These points are selected in such a way that when added to the training data along with their labels, they provide maximum benefit to the underlying model. In this paper, we present a learning framework that actively selects optimal set of examples (in a batch) within a given budget, based on given utility and cost functions. The framework is generic enough to incorporate any utility and any cost function defined on a set of examples. Furthermore, we propose a novel utility function based on the Facility Location problem that considers three important characteristics of utility i.e., diversity, density and point utility. We also propose a novel cost function, by formulating the cost computation problem as an optimization problem, the solution to which turns out to be the minimum spanning tree. Thus, our framework provides the optimal batch of points within the given budget based on the cost and utility functions. We evaluate our method on several data sets and show its superior performance over baseline methods.

Feature Extraction by Joint Robust Discriminant Analysis and Inter-Class Sparsity

Fadi Dornaika, Ahmad Khoder

Responsive image

Auto-TLDR; Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS)

Slides Similar

Feature extraction methods have been successfully applied to many real-world applications. The classical Linear Discriminant Analysis (LDA) and its variants are widely used as feature extraction methods. Although they have been used for different classification tasks, these methods have some shortcomings. The main one is that the projection axes obtained are not informative about the relevance of original features. In this paper, we propose a linear embedding method that merges two interesting properties: Robust LDA and inter-class sparsity. Furthermore, the targeted projection transformation focuses on the most discriminant original features. The proposed method is called Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS). Two kinds of sparsity are explicitly included in the proposed model. The first kind is obtained by imposing the $\ell_{2,1}$ constraint on the projection matrix in order to perform feature ranking. The second kind is obtained by imposing the inter-class sparsity constraint used for getting a common sparsity structure in each class. Comprehensive experiments on five real-world image datasets demonstrate the effectiveness and advantages of our framework over existing linear methods.

Active Sampling for Pairwise Comparisons via Approximate Message Passing and Information Gain Maximization

Aliaksei Mikhailiuk, Clifford Wilmot, Maria Perez-Ortiz, Dingcheng Yue, Rafal Mantiuk

Responsive image

Auto-TLDR; ASAP: An Active Sampling Algorithm for Pairwise Comparison Data

Slides Similar

Pairwise comparison data arise in many domains with subjective assessment experiments, for example in image and video quality assessment. In these experiments observers are asked to express a preference between two conditions. However, many pairwise comparison protocols require a large number of comparisons to infer accurate scores, which may be unfeasible when each comparison is time-consuming (e.g. videos) or expensive (e.g. medical imaging). This motivates the use of an active sampling algorithm that chooses only the most informative pairs for comparison. In this paper we propose ASAP, an active sampling algorithm based on approximate message passing and expected information gain maximization. Unlike most existing methods, which rely on partial updates of the posterior distribution, we are able to perform full updates and therefore much improve the accuracy of the inferred scores. The algorithm relies on three techniques for reducing computational cost: inference based on approximate message passing, selective evaluations of the information gain, and selecting pairs in a batch that forms a minimum spanning tree of the inverse of information gain. We demonstrate, with real and synthetic data, that ASAP offers the highest accuracy of inferred scores compared to the existing methods. We also provide an open-source GPU implementation of ASAP for large-scale experiments.

On Resource-Efficient Bayesian Network Classifiers and Deep Neural Networks

Wolfgang Roth, Günther Schindler, Holger Fröning, Franz Pernkopf

Responsive image

Auto-TLDR; Quantization-Aware Bayesian Network Classifiers for Small-Scale Scenarios

Slides Poster Similar

We present two methods to reduce the complexity of Bayesian network (BN) classifiers. First, we introduce quantization-aware training using the straight-through gradient estimator to quantize the parameters of BNs to few bits. Second, we extend a recently proposed differentiable tree-augmented naive Bayes (TAN) structure learning approach to also consider the model size. Both methods are motivated by recent developments in the deep learning community, and they provide effective means to trade off between model size and prediction accuracy, which is demonstrated in extensive experiments. Furthermore, we contrast quantized BN classifiers with quantized deep neural networks (DNNs) for small-scale scenarios which have hardly been investigated in the literature. We show Pareto optimal models with respect to model size, number of operations, and test error and find that both model classes are viable options.

Unveiling Groups of Related Tasks in Multi-Task Learning

Jordan Frecon, Saverio Salzo, Massimiliano Pontil

Responsive image

Auto-TLDR; Continuous Bilevel Optimization for Multi-Task Learning

Slides Poster Similar

A common approach in multi-task learning is to encourage the tasks to share a low dimensional representation. This has led to the popular method of trace norm regularization, which has proved effective in many applications. In this paper, we extend this approach by allowing the tasks to partition into different groups, within which trace norm regularization is separately applied. We propose a continuous bilevel optimization framework to simultaneously identify groups of related tasks and learn a low dimensional representation within each group. Hinging on recent results on the derivative of generalized matrix functions, we devise a smooth approximation of the upper-level objective via a dual forward-backward algorithm with Bregman distances. This allows us to solve the bilevel problem by a gradient-based scheme. Numerical experiments on synthetic and benchmark datasets support the effectiveness of the proposed method.

Mean Decision Rules Method with Smart Sampling for Fast Large-Scale Binary SVM Classification

Alexandra Makarova, Mikhail Kurbakov, Valentina Sulimova

Responsive image

Auto-TLDR; Improving Mean Decision Rule for Large-Scale Binary SVM Problems

Slides Poster Similar

This paper relies on the Mean Decision Rule (MDR) method for solving large-scale binary SVM problems. It consists in taking small random samples of the full dataset and separate training for each of them with consecutive averaging the respective individual decision rules to obtain a final one. This paper proposes two new approaches to improve it. The first proposed approach is a new sampling technique that exploits SVM and MDR properties to fast form so called smart samples by selecting only the objects, that are candidates to be the support ones. The proposed technique essentially increases MDR convergence and allows to reach the highest quality in less time. In the case of kernel-based MDR (KMDR) the proposed sampling technique allows additionally to reduce the number of support objects in the final decision rule and, as a result, to decrease the recognition time. The second proposed approach is a new data strategy to accelerate random access to large datasets stored in the traditional libsvm format. The proposed strategy allows to quickly extract random subsets of objects from a file and load them into RAM, and is it also suitable for any sampling-based methods, including stochastic gradient methods. Joint using of the proposed approaches with (K)MDR allows to obtain the best (or near the best) decision of large-scale binary SVM problems faster, compared to the existing SVM solvers.

Creating Classifier Ensembles through Meta-Heuristic Algorithms for Aerial Scene Classification

Álvaro Roberto Ferreira Jr., Gustavo Gustavo Henrique De Rosa, Joao Paulo Papa, Gustavo Carneiro, Fabio Augusto Faria

Responsive image

Auto-TLDR; Univariate Marginal Distribution Algorithm for Aerial Scene Classification Using Meta-Heuristic Optimization

Slides Poster Similar

Aerial scene classification is a challenging task to be solved in the remote sensing area, whereas deep learning approaches, such as Convolutional Neural Networks (CNN), are being widely employed to overcome such a problem. Nevertheless, it is not straightforward to find single CNN models that can solve all aerial scene classification tasks, allowing the nurturing of a better alternative, which is to fuse CNN-based classifiers into an ensemble. However, an appropriate choice of the classifiers that will belong to the ensemble is a critical factor, as it is unfeasible to employ all the possible classifiers in the literature. Therefore, this work proposes a novel framework based on meta-heuristic optimization for creating optimized-ensembles in the context of aerial scene classification. The experimental results were performed across nine meta-heuristic algorithms and three aerial scene literature datasets, being compared in terms of effectiveness (accuracy), efficiency (execution time), and behavioral performance in different scenarios. Finally, one can observe that the Univariate Marginal Distribution Algorithm (UMDA) overcame popular literature meta-heuristic algorithms, such as Genetic Programming and Particle Swarm Optimization considering the adopted criteria in the performed experiments.

Interpretable Structured Learning with Sparse Gated Sequence Encoder for Protein-Protein Interaction Prediction

Kishan K C, Feng Cui, Anne Haake, Rui Li

Responsive image

Auto-TLDR; Predicting Protein-Protein Interactions Using Sequence Representations

Slides Poster Similar

Predicting protein-protein interactions (PPIs) by learning informative representations from amino acid sequences is a challenging yet important problem in biology. Although various deep learning models in Siamese architecture have been proposed to model PPIs from sequences, these methods are computationally expensive for a large number of PPIs due to the pairwise encoding process. Furthermore, these methods are difficult to interpret because of non-intuitive mappings from protein sequences to their sequence representation. To address these challenges, we present a novel deep framework to model and predict PPIs from sequence alone. Our model incorporates a bidirectional gated recurrent unit to learn sequence representations by leveraging contextualized and sequential information from sequences. We further employ a sparse regularization to model long-range dependencies between amino acids and to select important amino acids (protein motifs), thus enhancing interpretability. Besides, the novel design of the encoding process makes our model computationally efficient and scalable to an increasing number of interactions. Experimental results on up-to-date interaction datasets demonstrate that our model achieves superior performance compared to other state-of-the-art methods. Literature-based case studies illustrate the ability of our model to provide biological insights to interpret the predictions.

Relative Feature Importance

Gunnar König, Christoph Molnar, Bernd Bischl, Moritz Grosse-Wentrup

Responsive image

Auto-TLDR; Relative Feature Importance for Interpretable Machine Learning

Slides Similar

Interpretable Machine Learning (IML) methods are used to gain insight into the relevance of a feature of interest for the performance of a model. Commonly used IML methods differ in whether they consider features of interest in isolation, e.g., Permutation Feature Importance (PFI), or in relation to all remaining feature variables, e.g., Conditional Feature Importance (CFI). As such, the perturbation mechanisms inherent to PFI and CFI represent extreme reference points. We introduce Relative Feature Importance (RFI), a generalization of PFI and CFI that allows for a more nuanced feature importance computation beyond the PFI versus CFI dichotomy. With RFI, the importance of a feature relative to any other subset of features can be assessed, including variables that were not available at training time. We derive general interpretation rules for RFI based on a detailed theoretical analysis of the implications of relative feature relevance, and demonstrate the method's usefulness on simulated examples.

Killing Four Birds with One Gaussian Process: The Relation between Different Test-Time Attacks

Kathrin Grosse, Michael Thomas Smith, Michael Backes

Responsive image

Auto-TLDR; Security of Gaussian Process Classifiers against Attack Algorithms

Slides Poster Similar

In machine learning (ML) security, attacks like evasion, model stealing or membership inference are generally studied in individually. Previous work has also shown a relationship between some attacks and decision function curvature of the targeted model. Consequently, we study an ML model allowing direct control over the decision surface curvature: Gaussian Process classifiers (GPCs). For evasion, we find that changing GPC's curvature to be robust against one attack algorithm boils down to enabling a different norm or attack algorithm to succeed. This is backed up by our formal analysis showing that static security guarantees are opposed to learning. Concerning intellectual property, we show formally that lazy learning does not necessarily leak all information when applied. In practice, often a seemingly secure curvature can be found. For example, we are able to secure GPC against empirical membership inference by proper configuration. In this configuration, however, the GPC's hyper-parameters are leaked, e.g. model reverse engineering succeeds. We conclude that attacks on classification should not be studied in isolation, but in relation to each other.

Quantifying Model Uncertainty in Inverse Problems Via Bayesian Deep Gradient Descent

Riccardo Barbano, Chen Zhang, Simon Arridge, Bangti Jin

Responsive image

Auto-TLDR; Bayesian Neural Networks for Inverse Reconstruction via Bayesian Knowledge-Aided Computation

Slides Poster Similar

Recent advances in reconstruction methods for inverse problems leverage powerful data-driven models, e.g., deep neural networks. These techniques have demonstrated state-of-the-art performances for several imaging tasks, but they often do not provide uncertainty on the obtained reconstructions. In this work, we develop a novel scalable data-driven knowledge-aided computational framework to quantify the model uncertainty via Bayesian neural networks. The approach builds on and extends deep gradient descent, a recently developed greedy iterative training scheme, and recasts it within a probabilistic framework. Scalability is achieved by being hybrid in the architecture: only the last layer of each block is Bayesian, while the others remain deterministic, and by being greedy in training. The framework is showcased on one representative medical imaging modality, viz. computed tomography with either sparse view or limited view data, and exhibits competitive performance with respect to state-of-the-art benchmarks, e.g., total variation, deep gradient descent and learned primal-dual.

Region and Relations Based Multi Attention Network for Graph Classification

Manasvi Aggarwal, M. Narasimha Murty

Responsive image

Auto-TLDR; R2POOL: A Graph Pooling Layer for Non-euclidean Structures

Slides Poster Similar

Graphs are non-euclidean structures that can represent many relational data efficiently. Many studies have proposed the convolution and the pooling operators on the non-euclidean domain. The graph convolution operators have shown astounding performance on various tasks such as node representation and classification. For graph classification, different pooling techniques are introduced, but none of them has considered both neighborhood of the node and the long-range dependencies of the node. In this paper, we propose a novel graph pooling layer R2POOL, which balances the structure information around the node as well as the dependencies with far away nodes. Further, we propose a new training strategy to learn coarse to fine representations. We add supervision at only intermediate levels to generate predictions using only intermediate-level features. For this, we propose the concept of an alignment score. Moreover, each layer's prediction is controlled by our proposed branch training strategy. This complete training helps in learning dominant class features at each layer for representing graphs. We call the combined model by R2MAN. Experiments show that R2MAN the potential to improve the performance of graph classification on various datasets.

Automatic Classification of Human Granulosa Cells in Assisted Reproductive Technology Using Vibrational Spectroscopy Imaging

Marina Paolanti, Emanuele Frontoni, Giorgia Gioacchini, Giorgini Elisabetta, Notarstefano Valentina, Zacà Carlotta, Carnevali Oliana, Andrea Borini, Marco Mameli

Responsive image

Auto-TLDR; Predicting Oocyte Quality in Assisted Reproductive Technology Using Machine Learning Techniques

Slides Poster Similar

In the field of reproductive technology, the biochemical composition of female gametes has been successfully investigated with the use of vibrational spectroscopy. Currently, in assistive reproductive technology (ART), there are no shared criteria for the choice of oocyte, and automatic classification methods for the best quality oocytes have not yet been applied. In this paper, considering the lack of criteria in Assisted Reproductive Technology (ART), we use Machine Learning (ML) techniques to predict oocyte quality for a successful pregnancy. To improve the chances of successful implantation and minimize any complications during the pregnancy, Fourier transform infrared microspectroscopy (FTIRM) analysis has been applied on granulosa cells (GCs) collected along with the oocytes during oocyte aspiration, as it is routinely done in ART, and specific spectral biomarkers were selected by multivariate statistical analysis. A proprietary biological reference dataset (BRD) was successfully collected to predict the best oocyte for a successful pregnancy. Personal health information are stored, maintained and backed up using a cloud computing service. Using a user-friendly interface, the user will evaluate whether or not the selected oocyte will have a positive result. This interface includes a dashboard for retrospective analysis, reporting, real-time processing, and statistical analysis. The experimental results are promising and confirm the efficiency of the method in terms of classification metrics: precision, recall, and F1-score (F1) measures.

MD-kNN: An Instance-Based Approach for Multi-Dimensional Classification

Bin-Bin Jia, Min-Ling Zhang

Responsive image

Auto-TLDR; MD-kNN: Adapting Instance-based Techniques for Multi-dimensional Classification

Slides Poster Similar

Multi-dimensional classification (MDC) deals with the problem where each instance is associated with multiple class variables, each of which corresponds to a specific class space. One of the mainstream solutions for MDC is to adapt traditional machine learning techniques to deal with MDC data. In this paper, a first attempt towards adapting instance-based techniques for MDC is investigated, and a new approach named MD-kNN is proposed. Specifically, MD-kNN identifies unseen instance's k nearest neighbors and obtains its corresponding kNN counting statistics for each class space, based on which maximum a posteriori (MAP) inference is made for each pair of class spaces. After that, the class label w.r.t. each class space is determined by synergizing predictions from the learned classifiers via consulting empirical kNN accuracy. Comparative studies over ten benchmark data sets clearly validate MD-kNN's effectiveness.

Epitomic Variational Graph Autoencoder

Rayyan Ahmad Khan, Muhammad Umer Anwaar, Martin Kleinsteuber

Responsive image

Auto-TLDR; EVGAE: A Generative Variational Autoencoder for Graph Data

Slides Poster Similar

Variational autoencoder (VAE) is a widely used generative model for learning latent representations. Burda et al. in their seminal paper showed that learning capacity of VAE is limited by over-pruning. It is a phenomenon where a significant number of latent variables fail to capture any information about the input data and the corresponding hidden units become inactive. This adversely affects learning diverse and interpretable latent representations. As variational graph autoencoder (VGAE) extends VAE for graph-structured data, it inherits the over-pruning problem. In this paper, we adopt a model based approach and propose epitomic VGAE (EVGAE),a generative variational framework for graph datasets which successfully mitigates the over-pruning problem and also boosts the generative ability of VGAE. We consider EVGAE to consist of multiple sparse VGAE models, called epitomes, that are groups of latent variables sharing the latent space. This approach aids in increasing active units as epitomes compete to learn better representation of the graph data. We verify our claims via experiments on three benchmark datasets. Our experiments show that EVGAE has a better generative ability than VGAE. Moreover, EVGAE outperforms VGAE on link prediction task in citation networks

Learning Sparse Deep Neural Networks Using Efficient Structured Projections on Convex Constraints for Green AI

Michel Barlaud, Frederic Guyard

Responsive image

Auto-TLDR; Constrained Deep Neural Network with Constrained Splitting Projection

Slides Poster Similar

In recent years, deep neural networks (DNN) have been applied to different domains and achieved dramatic performance improvements over state-of-the-art classical methods. These performances of DNNs were however often obtained with networks containing millions of parameters and which training required heavy computational power. In order to cope with this computational issue a huge literature deals with proximal regularization methods which are time consuming.\\ In this paper, we propose instead a constrained approach. We provide the general framework for our new splitting projection gradient method. Our splitting algorithm iterates a gradient step and a projection on convex sets. We study algorithms for different constraints: the classical $\ell_1$ unstructured constraint and structured constraints such as the nuclear norm, the $\ell_{2,1} $ constraint (Group LASSO). We propose a new $\ell_{1,1} $ structured constraint for which we provide a new projection algorithm We demonstrate the effectiveness of our method on three popular datasets (MNIST, Fashion MNIST and CIFAR). Experiments on these datasets show that our splitting projection method with our new $\ell_{1,1} $ structured constraint provides the best reduction of memory and computational power. Experiments show that fully connected linear DNN are more efficient for green AI.

Learning Parameter Distributions to Detect Concept Drift in Data Streams

Johannes Haug, Gjergji Kasneci

Responsive image

Auto-TLDR; A novel framework for the detection of concept drift in streaming environments

Slides Poster Similar

Data distributions in streaming environments are usually not stationary. In order to maintain a high predictive quality at all times, online learning models need to adapt to distributional changes, which are known as concept drift. The timely and robust identification of concept drift can be difficult, as we never have access to the true distribution of streaming data. In this work, we propose a novel framework for the detection of real concept drift, called ERICS. By treating the parameters of a predictive model as random variables, we show that concept drift corresponds to a change in the distribution of optimal parameters. To this end, we adopt common measures from information theory. The proposed framework is completely model-agnostic. By choosing an appropriate base model, ERICS is also capable to detect concept drift at the input level, which is a significant advantage over existing approaches. An evaluation on several synthetic and real-world data sets suggests that the proposed framework identifies concept drift more effectively and precisely than various existing works.

Multi-Layered Discriminative Restricted Boltzmann Machine with Untrained Probabilistic Layer

Yuri Kanno, Muneki Yasuda

Responsive image

Auto-TLDR; MDRBM: A Probabilistic Four-layered Neural Network for Extreme Learning Machine

Poster Similar

An extreme learning machine (ELM) is a three-layered feed-forward neural network having untrained parameters, which are randomly determined before training. Inspired by the idea of ELM, a probabilistic untrained layer called a probabilistic-ELM (PELM) layer is proposed, and it is combined with a discriminative restricted Boltzmann machine (DRBM), which is a probabilistic three-layered neural network for solving classification problems. The proposed model is obtained by stacking DRBM on the PELM layer. The resultant model (i.e., multi-layered DRBM (MDRBM)) forms a probabilistic four-layered neural network. In MDRBM, the parameters in the PELM layer can be determined using Gaussian-Bernoulli restricted Boltzmann machine. Owing to the PELM layer, MDRBM obtains a strong immunity against noise in inputs, which is one of the most important advantages of MDRBM. Numerical experiments using some benchmark datasets, MNIST, Fashion-MNIST, Urban Land Cover, and CIFAR-10, demonstrate that MDRBM is superior to other existing models, particularly, in terms of the noise-robustness property (or, in other words, the generalization property).

Understanding Integrated Gradients with SmoothTaylor for Deep Neural Network Attribution

Gary Shing Wee Goh, Sebastian Lapuschkin, Leander Weber, Wojciech Samek, Alexander Binder

Responsive image

Auto-TLDR; SmoothGrad: bridging Integrated Gradients and SmoothGrad from the Taylor's theorem perspective

Slides Similar

Integrated Gradients as an attribution method for deep neural network models offers simple implementability. However, it suffers from noisiness of explanations which affects the ease of interpretability. The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method. In this paper, we present SmoothTaylor as a novel theoretical concept bridging Integrated Gradients and SmoothGrad, from the Taylor's theorem perspective. We apply the methods to the image classification problem, using the ILSVRC2012 ImageNet object recognition dataset, and a couple of pretrained image models to generate attribution maps. These attribution maps are empirically evaluated using quantitative measures for sensitivity and noise level. We further propose adaptive noising to optimize for the noise scale hyperparameter value. From our experiments, we find that the SmoothTaylor approach together with adaptive noising is able to generate better quality saliency maps with lesser noise and higher sensitivity to the relevant points in the input space as compared to Integrated Gradients.

Switching Dynamical Systems with Deep Neural Networks

Cesar Ali Ojeda Marin, Kostadin Cvejoski, Bogdan Georgiev, Ramses J. Sanchez

Responsive image

Auto-TLDR; Variational RNN for Switching Dynamics

Slides Poster Similar

The problem of uncovering different dynamicalregimes is of pivotal importance in time series analysis. Switchingdynamical systems provide a solution for modeling physical phe-nomena whose time series data exhibit different dynamical modes.In this work we propose a novel variational RNN model forswitching dynamics allowing for both non-Markovian and non-linear dynamical behavior between and within dynamic modes.Attention mechanisms are provided to inform the switchingdistribution. We evaluate our model on synthetic and empiricaldatasets of diverse nature and successfully uncover differentdynamical regimes and predict the switching dynamics.

An Intransitivity Model for Matchup and Pairwise Comparison

Yan Gu, Jiuding Duan, Hisashi Kashima

Responsive image

Auto-TLDR; Blade-Chest: A Low-Rank Matrix Approach for Probabilistic Ranking of Players

Slides Poster Similar

Ranking is a ubiquitous problem appearing in many real-world applications. The superior players or objects are oftentimes determined by a matchup or pairwise comparison. Various models have been developed to integrate the matchup results into a single ranking list of players and to further predict the results of future matchups. Amongst them, the Bradley-Terry model is a mainstream model that achieves the goals by constructing explicit probabilistic interpretation. However, the model suffers from its strong assumption of transitive relationships and becomes vulnerable in practices where intransitive relationships exist. Blade-Chest model is an alternative solution to this intransitivity challenge by allowing the multi-dimensional representation of players. In this paper, we propose a low-rank matrix approach to characterize all players and generalize the related works by introducing a unified framework. Our experimental results on synthetic datasets and real-world datasets show that the proposed model is stably competitive with the standard models in terms of the consistency of probabilistic model interpretation and the predictive performance in out-of-sample tests.

MINT: Deep Network Compression Via Mutual Information-Based Neuron Trimming

Madan Ravi Ganesh, Jason Corso, Salimeh Yasaei Sekeh

Responsive image

Auto-TLDR; Mutual Information-based Neuron Trimming for Deep Compression via Pruning

Slides Poster Similar

Most approaches to deep neural network compression via pruning either evaluate a filter’s importance using its weights or optimize an alternative objective function with sparsity constraints. While these methods offer a useful way to approximate contributions from similar filters, they often either ignore the dependency between layers or solve a more difficult optimization objective than standard cross-entropy. Our method, Mutual Information-based Neuron Trimming (MINT), approaches deep compression via pruning by enforcing sparsity based on the strength of the relationship between filters of adjacent layers, across every pair of layers. The relationship is calculated using conditional geometric mutual information which evaluates the amount of similar information exchanged between the filters using a graph-based criterion. When pruning a network, we ensure that retained filters contribute the majority of the information towards succeeding layers which ensures high performance. Our novel approach outperforms existing state-of-the-art compression-via-pruning methods on the standard benchmarks for this task: MNIST, CIFAR-10, and ILSVRC2012, across a variety of network architectures. In addition, we discuss our observations of a common denominator between our pruning methodology’s response to adversarial attacks and calibration statistics when compared to the original network.

Compression Strategies and Space-Conscious Representations for Deep Neural Networks

Giosuè Marinò, Gregorio Ghidoli, Marco Frasca, Dario Malchiodi

Responsive image

Auto-TLDR; Compression of Large Convolutional Neural Networks by Weight Pruning and Quantization

Slides Poster Similar

Recent advances in deep learning have made available large, powerful convolutional neural networks (CNN) with state-of-the-art performance in several real-world applications. Unfortunately, these large-sized models have millions of parameters, thus they are not deployable on resource-limited platforms (e.g. where RAM is limited). Compression of CNNs thereby becomes a critical problem to achieve memory-efficient and possibly computationally faster model representations. In this paper, we investigate the impact of lossy compression of CNNs by weight pruning and quantization, and lossless weight matrix representations based on source coding. We tested several combinations of these techniques on four benchmark datasets for classification and regression problems, achieving compression rates up to 165 times, while preserving or improving the model performance.

Feature Extraction and Selection Via Robust Discriminant Analysis and Class Sparsity

Ahmad Khoder, Fadi Dornaika

Responsive image

Auto-TLDR; Hybrid Linear Discriminant Embedding for supervised multi-class classification

Slides Poster Similar

The main goal of discriminant embedding is to extract features that can be compact and informative representations of the original set of features. This paper introduces a hybrid scheme for linear feature extraction for supervised multi-class classification. We introduce a unifying criterion that is able to retain the advantages of robust sparse LDA and Inter-class sparsity. Thus, the estimated transformation includes two types of discrimination which are the inter-class sparsity and robust Linear Discriminant Analysis with feature selection. In order to optimize the proposed objective function, we deploy an iterative alternating minimization scheme for estimating the linear transformation and the orthogonal matrix. The introduced scheme is generic in the sense that it can be used for combining and tuning many other linear embedding methods. In the lights of the experiments conducted on six image datasets including faces, objects, and digits, the proposed scheme was able to outperform competing methods in most of the cases.

Kernel-Based LIME with Feature Dependency Sampling

Sheng Shi, Yangzhou Du, Fan Wei

Responsive image

Auto-TLDR; Local Interpretable Model-agnostic Explanation with Feature Dependency Sampling

Slides Poster Similar

While deep learning makes significant achievements in Artificial Intelligence (AI), the lack of transparency has limited its broad application in various vertical domains. Explainability is not only a gateway between AI and society, but also a powerful feature to detect flaw of the models and bias of the data. Local Interpretable Model-agnostic Explanation (LIME) is a widely-accepted technique that explains the predictions of any classifier faithfully by learning an interpretable model locally around the predicted instance. However, the sampling operation in the standard implementation of LIME is defective. Perturbed samples are generated from a uniform distribution, ignoring the complicated correlation between features. Moreover, as the local decision boundary is non-linear for most complex networks, linear approximation may produce serious errors. This paper proposes an high-interpretability and high-fidelity local explanation method, known as Kernel-based LIME with Feature Dependency Sampling (KLFDS). Given an instance being explained, KLFDS enhances interpretability by feature sampling with intrinsic dependency. Besides, KLFDS improves the local explanation fidelity by approximating nonlinear boundary of local decision. We evaluate our method with image classification tasks and results show that KLFDS's explanation of the back-box model achieves much better performance than original LIME in terms of interpretability and fidelity.

A Novel Random Forest Dissimilarity Measure for Multi-View Learning

Hongliu Cao, Simon Bernard, Robert Sabourin, Laurent Heutte

Responsive image

Auto-TLDR; Multi-view Learning with Random Forest Relation Measure and Instance Hardness

Slides Poster Similar

Multi-view learning is a learning task in which data is described by several concurrent representations. Its main challenge is most often to exploit the complementarities between these representations to help solve a classification/regression task. This is a challenge that can be met nowadays if there is a large amount of data available for learning. However, this is not necessarily true for all real-world problems, where data are sometimes scarce (e.g. problems related to the medical environment). In these situations, an effective strategy is to use intermediate representations based on the dissimilarities between instances. This work presents new ways of constructing these dissimilarity representations, learning them from data with Random Forest classifiers. More precisely, two methods are proposed, which modify the Random Forest proximity measure, to adapt it to the context of High Dimension Low Sample Size (HDLSS) multi-view classification problems. The second method, based on an Instance Hardness measurement, is significantly more accurate than other state-of-the-art measurements including the original RF Proximity measurement and the Large Margin Nearest Neighbor (LMNN) metric learning measurement.

Exploiting Non-Linear Redundancy for Neural Model Compression

Muhammad Ahmed Shah, Raphael Olivier, Bhiksha Raj

Responsive image

Auto-TLDR; Compressing Deep Neural Networks with Linear Dependency

Slides Poster Similar

Deploying deep learning models with millions, even billions, of parameters is challenging given real world memory, power and compute constraints. In an effort to make these models more practical, in this paper, we propose a novel model compression approach that exploits linear dependence between the activations in a layer to eliminate entire structural units (neurons/convolutional filters). Our approach also adjusts the weights of the layer in a manner that is provably lossless while training if the removed neuron was perfectly predictable. We combine this approach with an annealing algorithm that may be applied during training, or even on a trained model, and demonstrate, using popular datasets, that our technique can reduce the parameters of VGG and AlexNet by more than 97\% on \cifar, 85\% on \caltech, and 19\% on ImageNet at less than 2\% loss in accuracy. Furthermore, we provide theoretical results showing that in overparametrized, locally linear (ReLU) neural networks where redundant features exist, and with correct hyperparameter selection, our method is indeed able to capture and suppress those dependencies.

An Empirical Bayes Approach to Topic Modeling

Anirban Gangopadhyay

Responsive image

Auto-TLDR; An Empirical Bayes Based Framework for Topic Modeling in Documents

Slides Similar

Given a corpus of documents, we consider the problem of finding latent topics, and introduce a novel Empirical Bayes based framework that allows us to choose the optimal topic modeling algorithm given observed variables in the data. We specifically consider three disparate algorithms - LDA, graph clustering, and non-negative matrix factorization - and provide a standardized framework that compares statistical and generative assumptions each algorithm makes. We then provide a model selection algorithm that quantifies each model based on how well assumptions match the data. We illustrate the efficacy of our approach by applying our framework to different sets of document corpuses and empirically measuring results.

Neuron-Based Network Pruning Based on Majority Voting

Ali Alqahtani, Xianghua Xie, Ehab Essa, Mark W. Jones

Responsive image

Auto-TLDR; Large-Scale Neural Network Pruning using Majority Voting

Slides Poster Similar

The achievement of neural networks in a variety of applications is accompanied by a dramatic increase in computational costs and memory requirements. In this paper, we propose an efficient method to simultaneously identify the critical neurons and prune the model during training without involving any pre-training or fine-tuning procedures. Unlike existing methods, which accomplish this task in a greedy fashion, we propose a majority voting technique to compare the activation values among neurons and assign a voting score to quantitatively evaluate their importance.This mechanism helps to effectively reduce model complexity by eliminating the less influential neurons and aims to determine a subset of the whole model that can represent the reference model with much fewer parameters within the training process. Experimental results show that majority voting efficiently compresses the network with no drop in model accuracy, pruning more than 79\% of the original model parameters on CIFAR10 and more than 91\% of the original parameters on MNIST. Moreover, we show that with our proposed method, sparse models can be further pruned into even smaller models by removing more than 60\% of the parameters, whilst preserving the reference model accuracy.

AdaFilter: Adaptive Filter Design with Local Image Basis Decomposition for Optimizing Image Recognition Preprocessing

Aiga Suzuki, Keiichi Ito, Takahide Ibe, Nobuyuki Otsu

Responsive image

Auto-TLDR; Optimal Preprocessing Filtering for Pattern Recognition Using Higher-Order Local Auto-Correlation

Slides Poster Similar

Image preprocessing is an important process during pattern recognition which increases the recognition performance. Linear convolution filtering is a primary preprocessing method used to enhance particular local patterns of the image which are essential for recognizing the images. However, because of the vast search space of the preprocessing filter, almost no earlier studies have tackled the problem of identifying an optimal preprocessing filter that yields effective features for input images. This paper proposes a novel design method for the optimal preprocessing filter corresponding to a given task. Our method calculates local image bases of the training dataset and represents the optimal filter as a linear combination of these local image bases with the optimized coefficients to maximize the expected generalization performance. Thereby, the optimization problem of the preprocessing filter is converted to a lower-dimensional optimization problem. Our proposed method combined with a higher-order local auto-correlation (HLAC) feature extraction exhibited the best performance both in the anomaly detection task with the conventional pattern recognition algorithm and in the classification task using the deep convolutional neural network compared with typical preprocessing filters.

Stage-Wise Neural Architecture Search

Artur Jordão, Fernando Akio Yamada, Maiko Lie, William Schwartz

Responsive image

Auto-TLDR; Efficient Neural Architecture Search for Deep Convolutional Networks

Slides Poster Similar

Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications. These architectures consist of stages, which are sets of layers that operate on representations in the same resolution. It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network. However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time. Thus, significant human effort is necessary to evaluate different trade-offs between depth and performance. To handle this problem, recent works have proposed to automatically design high-performance architectures, mainly by means of neural architecture search (NAS). Current NAS strategies analyze a large set of possible candidate architectures and, hence, require vast computational resources and take many GPUs days. Motivated by this, we propose a NAS approach to efficiently design accurate and low-cost convolutional architectures and demonstrate that an efficient strategy for designing these architectures is to learn the depth stage-by-stage. For this purpose, our approach increases depth incrementally in each stage taking into account its importance, such that stages with low importance are kept shallow while stages with high importance become deeper. We conduct experiments on the CIFAR and different versions of ImageNet datasets, where we show that architectures discovered by our approach achieve better accuracy and efficiency than human-designed architectures. Additionally, we show that architectures discovered on CIFAR-10 can be successfully transferred to large datasets. Compared to previous NAS approaches, our method is substantially more efficient, as it evaluates one order of magnitude fewer models and yields architectures on par with the state-of-the-art.