GPSRL: Learning Semi-Parametric Bayesian Survival Rule Lists from Heterogeneous Patient Data

Ameer Hamza Shakur, Xiaoning Qian, Zhangyang Wang, Bobak Mortazavi, Shuai Huang

Responsive image

Auto-TLDR; Semi-parametric Bayesian Survival Rule List Model for Heterogeneous Survival Data

Slides

Survival data is often collected in medical applications from a heterogeneous population of patients. While in the past, popular survival models focused on modeling the average effect of the co-variates on survival outcomes, rapidly advancing sensing and information technologies have provided opportunities to further model the heterogeneity of the population as well as the non-linearity of the survival risk. With this motivation, we propose a new semi-parametric Bayesian Survival Rule List model in this paper. Our model derives a rule-based decision-making approach, while within the regime defined by each rule, survival risk is modelled via a Gaussian process latent variable model. Markov Chain Monte Carlo with a nested Laplace approximation for the latent variable model is used to search over the posterior of the rule lists efficiently. The use of ordered rule lists enables us to model heterogeneity while keeping the model complexity in check. Performance evaluations on a synthetic heterogeneous survival dataset and a real world sepsis survival dataset demonstrate the effectiveness of our model.

Similar papers

Factor Screening Using Bayesian Active Learning and Gaussian Process Meta-Modelling

Cheng Li, Santu Rana, Andrew William Gill, Dang Nguyen, Sunil Kumar Gupta, Svetha Venkatesh

Responsive image

Auto-TLDR; Data-Efficient Bayesian Active Learning for Factor Screening in Combat Simulations

Similar

In this paper we propose a data-efficient Bayesian active learning framework for factor screening, which is important when dealing with systems which are expensive to evaluate, such as combat simulations. We use Gaussian Process meta-modelling with the Automatic Relevance Determination covariance kernel, which measures the importance of each factor by the inverse of their associated length-scales in the kernel. This importance measures the degree of non-linearity in the simulation response with respect to the corresponding factor. We initially place a prior over the length-scale values, then use the estimated posterior to select the next datum to simulate which maximises the mutual entropy between the length-scales and the unknown simulation response. Our goal-driven Bayesian active learning strategy ensures that we are data-efficient in discovering the correct values of the length-scales compared to either a random-sampling or uncertainty-sampling based approach. We apply our method to an expensive combat simulation and demonstrate the superiority of our approach.

Aggregating Dependent Gaussian Experts in Local Approximation

Hamed Jalali, Gjergji Kasneci

Responsive image

Auto-TLDR; A novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence

Slides Poster Similar

Distributed Gaussian processes (DGPs) are prominent local approximation methods to scale Gaussian processes (GPs) to large datasets. Instead of a global estimation, they train local experts by dividing the training set into subsets, thus reducing the time complexity. This strategy is based on the conditional independence assumption, which basically means that there is a perfect diversity between the local experts. In practice, however, this assumption is often violated, and the aggregation of experts leads to sub-optimal and inconsistent solutions. In this paper, we propose a novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence. The dependency between experts is determined by using a Gaussian graphical model, which yields the precision matrix. The precision matrix encodes conditional dependencies between experts and is used to detect strongly dependent experts and construct an improved aggregation. Using both synthetic and real datasets, our experimental evaluations illustrate that our new method outperforms other state-of-the-art (SOTA) DGP approaches while being substantially more time-efficient than SOTA approaches, which build on independent experts.

Automatically Mining Relevant Variable Interactions Via Sparse Bayesian Learning

Ryoichiro Yafune, Daisuke Sakuma, Yasuo Tabei, Noritaka Saito, Hiroto Saigo

Responsive image

Auto-TLDR; Sparse Bayes for Interpretable Non-linear Prediction

Slides Poster Similar

With the rapid increase in the availability of large amount of data, prediction is becoming increasingly popular, and has widespread through our daily life. However, powerful non- linear prediction methods such as deep learning and SVM suffer from interpretability problem, making it hard to use in domains where the reason for decision making is required. In this paper, we develop an interpretable non-linear model called itemset Sparse Bayes (iSB), which builds a Bayesian probabilistic model, while simultaneously considering variable interactions. In order to suppress the resulting large number of variables, sparsity is imposed on regression weights by a sparsity inducing prior. As a subroutine to search for variable interactions, itemset enumeration algorithm is employed with a novel bounding condition. In computational experiments using real-world dataset, the proposed method performed better than decision tree by 10% in terms of r-squared . We also demonstrated the advantage of our method in Bayesian optimization setting, in which the proposed approach could successfully find the maximum of an unknown function faster than Gaussian process. The interpretability of iSB is naturally inherited to Bayesian optimization, thereby gives us a clue to understand which variables interactions are important in optimizing an unknown function.

3CS Algorithm for Efficient Gaussian Process Model Retrieval

Fabian Berns, Kjeld Schmidt, Ingolf Bracht, Christian Beecks

Responsive image

Auto-TLDR; Efficient retrieval of Gaussian Process Models for large-scale data using divide-&-conquer-based approach

Slides Poster Similar

Gaussian Process Models (GPMs) have been applied for various pattern recognition tasks due to their analytical tractability, ability to quantify uncertainty for their own results as well as to subsume prominent other regression techniques. Despite these promising prospects their super-quadratic computation time complexity for model selection and evaluation impedes its broader application for more than a few thousand data points. Although there have been many proposals towards Gaussian Processes for large-scale data, those only offer a linearly scaling improvement to a cubical scaling problem. In particular, solutions like the Nystrom approximation or sparse matrices are only taking fractions of the given data into account and subsequently lead to inaccurate models. In this paper, we thus propose a divide-&-conquer-based approach, that allows to efficiently retrieve GPMs for large-scale data. The resulting model is composed of independent pattern representations for non-overlapping segments of the given data and consequently reduces computation time significantly. Our performance analysis indicates that our proposal is able to outperform state-of-the-art algorithms for GPM retrieval with respect to the qualities of efficiency and accuracy.

Hierarchical Routing Mixture of Experts

Wenbo Zhao, Yang Gao, Shahan Ali Memon, Bhiksha Raj, Rita Singh

Responsive image

Auto-TLDR; A Binary Tree-structured Hierarchical Routing Mixture of Experts for Regression

Slides Poster Similar

In regression tasks the distribution of the data is often too complex to be fitted by a single model. In contrast, partition-based models are developed where data is divided and fitted by local models. These models partition the input space and do not leverage the input-output dependency of multimodal-distributed data, and strong local models are needed to make good predictions. Addressing these problems, we propose a binary tree-structured hierarchical routing mixture of experts (HRME) model that has classifiers as non-leaf node experts and simple regression models as leaf node experts. The classifier nodes jointly soft-partition the input-output space based on the natural separateness of multimodal data. This enables simple leaf experts to be effective for prediction. Further, we develop a probabilistic framework for the HRME model, and propose a recursive Expectation-Maximization (EM) based algorithm to learn both the tree structure and the expert models. Experiments on a collection of regression tasks validate the effectiveness of our method compared to a variety of other regression models.

Seasonal Inhomogeneous Nonconsecutive Arrival Process Search and Evaluation

Kimberly Holmgren, Paul Gibby, Joseph Zipkin

Responsive image

Auto-TLDR; SINAPSE: Fitting a Sparse Time Series Model to Seasonal Data

Slides Poster Similar

Time series often exhibit seasonal patterns, and identification of these patterns is essential to understanding the data and predicting future behavior. Most methods train on large datasets and can fail to predict far past the training data. This limitation becomes more pronounced when data is sparse. This paper presents a method to fit a model to seasonal time series data that maintains predictive power when data is limited. This method, called \textit{SINAPSE}, combines statistical model fitting with an information criteria to search for disjoint, and possibly nonconsecutive, regimes underlying the data, allowing for a sparse representation resistant to overfitting.

Deep Transformation Models: Tackling Complex Regression Problems with Neural Network Based Transformation Models

Beate Sick, Torsten Hothorn, Oliver Dürr

Responsive image

Auto-TLDR; A Deep Transformation Model for Probabilistic Regression

Slides Poster Similar

We present a deep transformation model for probabilistic regression. Deep learning is known for outstandingly accurate predictions on complex data but in regression tasks it is predominantly used to just predict a single number. This ignores the non-deterministic character of most tasks. Especially if crucial decisions are based on the predictions, like in medical applications, it is essential to quantify the prediction uncertainty. The presented deep learning transformation model estimates the whole conditional probability distribution, which is the most thorough way to capture uncertainty about the outcome. We combine ideas from a statistical transformation model (most likely transformation) with recent transformation models from deep learning (normalizing flows) to predict complex outcome distributions. The core of the method is a parameterized transformation function which can be trained with the usual maximum likelihood framework using gradient descent. The method can be combined with existing deep learning architectures. For small machine learning benchmark datasets, we report state of the art performance for most dataset and partly even outperform it. Our method works for complex input data, which we demonstrate by employing a CNN architecture on image data.

Bayesian Active Learning for Maximal Information Gain on Model Parameters

Kasra Arnavaz, Aasa Feragen, Oswin Krause, Marco Loog

Responsive image

Auto-TLDR; Bayesian assumptions for Bayesian classification

Slides Poster Similar

The fact that machine learning models, despite their advancements, are still trained on randomly gathered data is proof that a lasting solution to the problem of optimal data gathering has not yet been found. In this paper, we investigate whether a Bayesian approach to the classification problem can provide assumptions under which one is guaranteed to perform at least as good as random sampling. For a logistic regression model, we show that maximal expected information gain on model parameters is a promising criterion for selecting samples, assuming that our classification model is well-matched to the data. Our derived criterion is closely related to the maximum model change. We experiment with data sets which satisfy this assumption to varying degrees to see how sensitive our performance is to the violation of our assumption in practice.

Watermelon: A Novel Feature Selection Method Based on Bayes Error Rate Estimation and a New Interpretation of Feature Relevance and Redundancy

Xiang Xie, Wilhelm Stork

Responsive image

Auto-TLDR; Feature Selection Using Bayes Error Rate Estimation for Dynamic Feature Selection

Slides Poster Similar

Feature selection has become a crucial part of many classification problems in which high-dimensional datasets may contain tens of thousands of features. In this paper, we propose a novel feature selection method scoring the features through estimating the Bayes error rate based on kernel density estimation. Additionally, we update the scores of features dynamically by quantitatively interpreting the effects of feature relevance and redundancy in a new way. Distinguishing from the common heuristic applied by many feature selection methods, which prefers choosing features that are not relevant to each other, our approach penalizes only monotonically correlated features and rewards any other kind of relevance among features based on Spearman’s rank correlation coefficient and normalized mutual information. We conduct extensive experiments on seventeen diverse classification benchmarks, the results show that our approach overperforms other seventeen popular state-of-the-art feature selection methods in most cases.

Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference

Jiansheng Fang, Xiaoqing Zhang, Yan Hu, Yanwu Xu, Ming Yang, Jiang Liu

Responsive image

Auto-TLDR; Bayesian Latent Factor Model for Collaborative Filtering

Slides Similar

Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually in pattern recognition, LFM models user-item interactions as inner products of factor vectors of user and item in that space and can be efficiently solved by least square methods with optimal estimation. However, such optimal estimation methods are prone to overfitting due to the extreme sparsity of user-item interactions. In this paper, we propose a Bayesian treatment for LFM, named Bayesian Latent Factor Model (BLFM). Based on observed user-item interactions, we build a probabilistic factor model in which the regularization is introduced via placing prior constraint on latent factors, and the likelihood function is established over observations and parameters. Then we draw samples of latent factors from the posterior distribution with Variational Inference (VI) to predict expected value. We further make an extension to BLFM, called BLFMBias, incorporating user-dependent and item-dependent biases into the model for enhancing performance. Extensive experiments on the movie rating dataset show the effectiveness of our proposed models by compared with several strong baselines.

Temporal Pattern Detection in Time-Varying Graphical Models

Federico Tomasi, Veronica Tozzo, Annalisa Barla

Responsive image

Auto-TLDR; A dynamical network inference model that leverages on kernels to consider general temporal patterns

Slides Poster Similar

Graphical models allow to describe the interplay among variables of a system through a compact representation, suitable when relations evolve over time. For example, in a biological setting, genes interact differently depending on external environmental or metabolic factors. To incorporate this dynamics a viable strategy is to estimate a sequence of temporally related graphs assuming similarity among samples in different time points. While adjacent time points may direct the analysis towards a robust estimate of the underlying graph, the resulting model will not incorporate long-term or recurrent temporal relationships. In this work we propose a dynamical network inference model that leverages on kernels to consider general temporal patterns (such as circadian rhythms or seasonality). We show how our approach may also be exploited when the recurrent patterns are unknown, by coupling the network inference with a clustering procedure that detects possibly non-consecutive similar networks. Such clusters are then used to build similarity kernels. The convexity of the functional is determined by whether we impose or infer the kernel. In the first case, the optimisation algorithm exploits efficiently proximity operators with closed-form solutions. In the other case, we resort to an alternating minimisation procedure which jointly learns the temporal kernel and the underlying network. Extensive analysis on synthetic data shows the efficacy of our models compared to state-of-the-art methods. Finally, we applied our approach on two real-world applications to show how considering long-term patterns is fundamental to have insights on the behaviour of a complex system.

On Learning Random Forests for Random Forest Clustering

Manuele Bicego, Francisco Escolano

Responsive image

Auto-TLDR; Learning Random Forests for Clustering

Slides Poster Similar

In this paper we study the poorly investigated problem of learning Random Forests for distance-based Random Forest clustering. We studied both classic schemes as well as alternative approaches, novel in this context. In particular, we investigated the suitability of Gaussian Density Forests, Random Forests specifically designed for density estimation. Further, we introduce a novel variant of Random Forest, based on an effective non parametric by-pass estimator of the Renyi entropy, which can be useful when the parametric assumption is too strict. An empirical evaluation involving different datasets and different RF-clustering strategies confirms that the learning step is crucial for RF-clustering. We also present a set of practical guidelines useful to determine the most suitable variant of RF-clustering according to the problem under examination.

Active Sampling for Pairwise Comparisons via Approximate Message Passing and Information Gain Maximization

Aliaksei Mikhailiuk, Clifford Wilmot, Maria Perez-Ortiz, Dingcheng Yue, Rafal Mantiuk

Responsive image

Auto-TLDR; ASAP: An Active Sampling Algorithm for Pairwise Comparison Data

Slides Similar

Pairwise comparison data arise in many domains with subjective assessment experiments, for example in image and video quality assessment. In these experiments observers are asked to express a preference between two conditions. However, many pairwise comparison protocols require a large number of comparisons to infer accurate scores, which may be unfeasible when each comparison is time-consuming (e.g. videos) or expensive (e.g. medical imaging). This motivates the use of an active sampling algorithm that chooses only the most informative pairs for comparison. In this paper we propose ASAP, an active sampling algorithm based on approximate message passing and expected information gain maximization. Unlike most existing methods, which rely on partial updates of the posterior distribution, we are able to perform full updates and therefore much improve the accuracy of the inferred scores. The algorithm relies on three techniques for reducing computational cost: inference based on approximate message passing, selective evaluations of the information gain, and selecting pairs in a batch that forms a minimum spanning tree of the inverse of information gain. We demonstrate, with real and synthetic data, that ASAP offers the highest accuracy of inferred scores compared to the existing methods. We also provide an open-source GPU implementation of ASAP for large-scale experiments.

Quantifying Model Uncertainty in Inverse Problems Via Bayesian Deep Gradient Descent

Riccardo Barbano, Chen Zhang, Simon Arridge, Bangti Jin

Responsive image

Auto-TLDR; Bayesian Neural Networks for Inverse Reconstruction via Bayesian Knowledge-Aided Computation

Slides Poster Similar

Recent advances in reconstruction methods for inverse problems leverage powerful data-driven models, e.g., deep neural networks. These techniques have demonstrated state-of-the-art performances for several imaging tasks, but they often do not provide uncertainty on the obtained reconstructions. In this work, we develop a novel scalable data-driven knowledge-aided computational framework to quantify the model uncertainty via Bayesian neural networks. The approach builds on and extends deep gradient descent, a recently developed greedy iterative training scheme, and recasts it within a probabilistic framework. Scalability is achieved by being hybrid in the architecture: only the last layer of each block is Bayesian, while the others remain deterministic, and by being greedy in training. The framework is showcased on one representative medical imaging modality, viz. computed tomography with either sparse view or limited view data, and exhibits competitive performance with respect to state-of-the-art benchmarks, e.g., total variation, deep gradient descent and learned primal-dual.

Decision Snippet Features

Pascal Welke, Fouad Alkhoury, Christian Bauckhage, Stefan Wrobel

Responsive image

Auto-TLDR; Decision Snippet Features for Interpretability

Slides Poster Similar

Decision trees excel at interpretability of their prediction results. To achieve required prediction accuracies, however, often large ensembles of decision trees -- random forests -- are considered, reducing interpretability due to large size. Additionally, their size slows down inference on modern hardware and restricts their applicability in low-memory embedded devices. We introduce \emph{Decision Snippet Features}, which are obtained from small subtrees that appear frequently in trained random forests. We subsequently show that linear models on top of these features achieve comparable and sometimes even better predictive performance than the original random forest, while reducing the model size by up to two orders of magnitude.

An Intransitivity Model for Matchup and Pairwise Comparison

Yan Gu, Jiuding Duan, Hisashi Kashima

Responsive image

Auto-TLDR; Blade-Chest: A Low-Rank Matrix Approach for Probabilistic Ranking of Players

Slides Poster Similar

Ranking is a ubiquitous problem appearing in many real-world applications. The superior players or objects are oftentimes determined by a matchup or pairwise comparison. Various models have been developed to integrate the matchup results into a single ranking list of players and to further predict the results of future matchups. Amongst them, the Bradley-Terry model is a mainstream model that achieves the goals by constructing explicit probabilistic interpretation. However, the model suffers from its strong assumption of transitive relationships and becomes vulnerable in practices where intransitive relationships exist. Blade-Chest model is an alternative solution to this intransitivity challenge by allowing the multi-dimensional representation of players. In this paper, we propose a low-rank matrix approach to characterize all players and generalize the related works by introducing a unified framework. Our experimental results on synthetic datasets and real-world datasets show that the proposed model is stably competitive with the standard models in terms of the consistency of probabilistic model interpretation and the predictive performance in out-of-sample tests.

A Novel Random Forest Dissimilarity Measure for Multi-View Learning

Hongliu Cao, Simon Bernard, Robert Sabourin, Laurent Heutte

Responsive image

Auto-TLDR; Multi-view Learning with Random Forest Relation Measure and Instance Hardness

Slides Poster Similar

Multi-view learning is a learning task in which data is described by several concurrent representations. Its main challenge is most often to exploit the complementarities between these representations to help solve a classification/regression task. This is a challenge that can be met nowadays if there is a large amount of data available for learning. However, this is not necessarily true for all real-world problems, where data are sometimes scarce (e.g. problems related to the medical environment). In these situations, an effective strategy is to use intermediate representations based on the dissimilarities between instances. This work presents new ways of constructing these dissimilarity representations, learning them from data with Random Forest classifiers. More precisely, two methods are proposed, which modify the Random Forest proximity measure, to adapt it to the context of High Dimension Low Sample Size (HDLSS) multi-view classification problems. The second method, based on an Instance Hardness measurement, is significantly more accurate than other state-of-the-art measurements including the original RF Proximity measurement and the Large Margin Nearest Neighbor (LMNN) metric learning measurement.

Automatic Classification of Human Granulosa Cells in Assisted Reproductive Technology Using Vibrational Spectroscopy Imaging

Marina Paolanti, Emanuele Frontoni, Giorgia Gioacchini, Giorgini Elisabetta, Notarstefano Valentina, Zacà Carlotta, Carnevali Oliana, Andrea Borini, Marco Mameli

Responsive image

Auto-TLDR; Predicting Oocyte Quality in Assisted Reproductive Technology Using Machine Learning Techniques

Slides Poster Similar

In the field of reproductive technology, the biochemical composition of female gametes has been successfully investigated with the use of vibrational spectroscopy. Currently, in assistive reproductive technology (ART), there are no shared criteria for the choice of oocyte, and automatic classification methods for the best quality oocytes have not yet been applied. In this paper, considering the lack of criteria in Assisted Reproductive Technology (ART), we use Machine Learning (ML) techniques to predict oocyte quality for a successful pregnancy. To improve the chances of successful implantation and minimize any complications during the pregnancy, Fourier transform infrared microspectroscopy (FTIRM) analysis has been applied on granulosa cells (GCs) collected along with the oocytes during oocyte aspiration, as it is routinely done in ART, and specific spectral biomarkers were selected by multivariate statistical analysis. A proprietary biological reference dataset (BRD) was successfully collected to predict the best oocyte for a successful pregnancy. Personal health information are stored, maintained and backed up using a cloud computing service. Using a user-friendly interface, the user will evaluate whether or not the selected oocyte will have a positive result. This interface includes a dashboard for retrospective analysis, reporting, real-time processing, and statistical analysis. The experimental results are promising and confirm the efficiency of the method in terms of classification metrics: precision, recall, and F1-score (F1) measures.

The eXPose Approach to Crosslier Detection

Antonio Barata, Frank Takes, Hendrik Van Den Herik, Cor Veenman

Responsive image

Auto-TLDR; EXPose: Crosslier Detection Based on Supervised Category Modeling

Slides Poster Similar

Transit of wasteful materials within the European Union is highly regulated through a system of permits. Waste processing costs vary greatly depending on the waste category of a permit. Therefore, companies may have a financial incentive to allege transporting waste with erroneous categorisation. Our goal is to assist inspectors in selecting potentially manipulated permits for further investigation, making their task more effective and efficient. Due to data limitations, a supervised learning approach based on historical cases is not possible. Standard unsupervised approaches, such as outlier detection and data quality-assurance techniques, are not suited since we are interested in targeting non-random modifications in both category and category-correlated features. For this purpose we (1) introduce the concept of crosslier: an anomalous instance of a category which lies across other categories; (2) propose eXPose: a novel approach to crosslier detection based on supervised category modelling; and (3) present the crosslier diagram: a visualisation tool specifically designed for domain experts to easily assess crossliers. We compare eXPose against traditional outlier detection methods in various benchmark datasets with synthetic crossliers and show the superior performance of our method in targeting these instances.

Adaptive Sampling of Pareto Frontiers with Binary Constraints Using Regression and Classification

Raoul Heese, Michael Bortz

Responsive image

Auto-TLDR; Adaptive Optimization for Black-Box Multi-Objective Optimizing Problems with Binary Constraints

Poster Similar

We present a novel adaptive optimization algorithm for black-box multi-objective optimization problems with binary constraints on the foundation of Bayes optimization. Our method is based on probabilistic regression and classification models, which act as a surrogate for the optimization goals and allow us to suggest multiple design points at once in each iteration. The proposed acquisition function is intuitively understandable and can be tuned to the demands of the problems at hand. We also present a novel ellipsoid truncation method to speed up the expected hypervolume calculation in a straightfoward way for regression models with a normal probability density. We benchmark our approach with an evolutionary algorithm on multiple test problems.

Assortative-Constrained Stochastic Block Models

Daniel Gribel, Thibaut Vidal, Michel Gendreau

Responsive image

Auto-TLDR; Constrained Stochastic Block Models for Assortative Communities in Neural Networks

Slides Poster Similar

Stochastic block models (SBMs) are often used to find assortative community structures in networks, such that the probability of connections within communities is higher than in between communities. However, classic SBMs are not limited to assortative structures. In this study, we discuss the implications of this model-inherent indifference towards assortativity or disassortativity, and show that it can lead to undesirable outcomes in datasets which are known to be assortative but which contain a reduced amount of information. To circumvent these issues, we propose a constrained SBM that imposes strong assortativity constraints, along with efficient algorithmic solutions. These constraints significantly boost community-detection capabilities in regimes which are close to the detectability threshold. They also permit to identify structurally-different communities in networks representing cerebral-cortex activity regions.

Creating Classifier Ensembles through Meta-Heuristic Algorithms for Aerial Scene Classification

Álvaro Roberto Ferreira Jr., Gustavo Gustavo Henrique De Rosa, Joao Paulo Papa, Gustavo Carneiro, Fabio Augusto Faria

Responsive image

Auto-TLDR; Univariate Marginal Distribution Algorithm for Aerial Scene Classification Using Meta-Heuristic Optimization

Slides Poster Similar

Aerial scene classification is a challenging task to be solved in the remote sensing area, whereas deep learning approaches, such as Convolutional Neural Networks (CNN), are being widely employed to overcome such a problem. Nevertheless, it is not straightforward to find single CNN models that can solve all aerial scene classification tasks, allowing the nurturing of a better alternative, which is to fuse CNN-based classifiers into an ensemble. However, an appropriate choice of the classifiers that will belong to the ensemble is a critical factor, as it is unfeasible to employ all the possible classifiers in the literature. Therefore, this work proposes a novel framework based on meta-heuristic optimization for creating optimized-ensembles in the context of aerial scene classification. The experimental results were performed across nine meta-heuristic algorithms and three aerial scene literature datasets, being compared in terms of effectiveness (accuracy), efficiency (execution time), and behavioral performance in different scenarios. Finally, one can observe that the Univariate Marginal Distribution Algorithm (UMDA) overcame popular literature meta-heuristic algorithms, such as Genetic Programming and Particle Swarm Optimization considering the adopted criteria in the performed experiments.

Deep Learning Based Sepsis Intervention: The Modelling and Prediction of Severe Sepsis Onset

Gavin Tsang, Xianghua Xie

Responsive image

Auto-TLDR; Predicting Sepsis onset by up to six hours prior using a boosted cascading training methodology and adjustable margin hinge loss function

Slides Poster Similar

Sepsis presents a significant challenge to healthcare providers during critical care scenarios such as within an intensive care unit. The prognosis of the onset of severe septic shock results in significant increases in mortality rate, length of stay and readmission rates. Continual advancements in health informatics data allows for applications within the machine learning field to predict sepsis onset in a timely manner, allowing for effective preventative intervention of severe septic shock. A novel deep learning application is proposed to provide effective prediction of sepsis onset by up to six hours prior, involving the use of novel concepts such as a boosted cascading training methodology and adjustable margin hinge loss function. The proposed methodology provides statistically significant improvements to that of current machine learning based modelling applications based off the Physionet Computing in Cardiology 2019 challenge. Results show test F1 scores of 0.420, a significant improvement of 0.281 as compared to the next best challenger results.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

Using Machine Learning to Refer Patients with Chronic Kidney Disease to Secondary Care

Lee Au-Yeung, Xianghua Xie, Timothy Marcus Scale, James Anthony Chess

Responsive image

Auto-TLDR; A Machine Learning Approach for Chronic Kidney Disease Prediction using Blood Test Data

Slides Poster Similar

There has been growing interest recently in using machine learning techniques as an aid in clinical medicine. Machine learning offers a range of classification algorithms which can be applied to medical data to aid in making clinical predictions. Recent studies have demonstrated the high predictive accuracy of various classification algorithms applied to clinical data. Several studies have already been conducted in diagnosing or predicting chronic kidney disease at various stages using different sets of variables. In this study we are investigating the use machine learning techniques with blood test data. Such a system could aid renal teams in making recommendations to primary care general practitioners to refer patients to secondary care where patients may benefit from earlier specialist assessment and medical intervention. We are able to achieve an overall accuracy of 88.48\% using logistic regression, 87.12\% using ANN and 85.29\% using SVM. ANNs performed with the highest sensitivity at 89.74\% compared to 86.67\% for logistic regression and 85.51\% for SVM.

How to Define a Rejection Class Based on Model Learning?

Sarah Laroui, Xavier Descombes, Aurelia Vernay, Florent Villiers, Francois Villalba, Eric Debreuve

Responsive image

Auto-TLDR; An innovative learning strategy for supervised classification that is able, by design, to reject a sample as not belonging to any of the known classes

Slides Poster Similar

In supervised classification, the learning process typically trains a classifier to optimize the accuracy of classifying data into the classes that appear in the learning set, and only them. While this framework fits many use cases, there are situations where the learning process is knowingly performed using a learning set that only represents the data that have been observed so far among a virtually unconstrained variety of possible samples. It is then crucial to define a classifier which has the ability to reject a sample, i.e., to classify it into a rejection class that has not been yet defined. Although obvious solutions can add this ability a posteriori to a classifier that has been learned classically, a better approach seems to directly account for this requirement in the classifier design. In this paper, we propose an innovative learning strategy for supervised classification that is able, by design, to reject a sample as not belonging to any of the known classes. For that, we rely on modeling each class as the combination of a probability density function (PDF) and a threshold that is computed with respect to the other classes. Several alternatives are proposed and compared in this framework. A comparison with straightforward approaches is also provided.

Separation of Aleatoric and Epistemic Uncertainty in Deterministic Deep Neural Networks

Denis Huseljic, Bernhard Sick, Marek Herde, Daniel Kottke

Responsive image

Auto-TLDR; AE-DNN: Modeling Uncertainty in Deep Neural Networks

Slides Poster Similar

Despite the success of deep neural networks (DNN) in many applications, their ability to model uncertainty is still significantly limited. For example, in safety-critical applications such as autonomous driving, it is crucial to obtain a prediction that reflects different types of uncertainty to address life-threatening situations appropriately. In such cases, it is essential to be aware of the risk (i.e., aleatoric uncertainty) and the reliability (i.e., epistemic uncertainty) that comes with a prediction. We present AE-DNN, a model allowing the separation of aleatoric and epistemic uncertainty while maintaining a proper generalization capability. AE-DNN is based on deterministic DNN, which can determine the respective uncertainty measures in a single forward pass. In analyses with synthetic and image data, we show that our method improves the modeling of epistemic uncertainty while providing an intuitively understandable separation of risk and reliability.

Uniform and Non-Uniform Sampling Methods for Sub-Linear Time K-Means Clustering

Yuanhang Ren, Ye Du

Responsive image

Auto-TLDR; Sub-linear Time Clustering with Constant Approximation Ratio for K-Means Problem

Slides Poster Similar

The $k$-means problem is arguably the most well-known clustering problem in machine learning, and lots of approximation algorithms have been proposed for it. However, many of these algorithms may become infeasible when data is huge. Sub-linear time algorithms with constant approximation ratios are desirable in this scenario. In this paper, we first improve the analysis of the algorithm proposed by \cite{Mohan:2017:BNA:3172077.3172235} by sharpening the approximation ratio from $4(\alpha+\beta)$ to $\alpha+\beta$. Moreover, on mild assumptions of the data, a constant approximation ratio can be achieved in poly-logarithmic time by the algorithm. Furthermore, we propose a novel sub-linear time clustering algorithm called {\it Double-K-M$\text{C}^2$ sampling} as well. Experiments on the data clustering task and the image segmentation task have validated the effectiveness of our algorithms.

Switching Dynamical Systems with Deep Neural Networks

Cesar Ali Ojeda Marin, Kostadin Cvejoski, Bogdan Georgiev, Ramses J. Sanchez

Responsive image

Auto-TLDR; Variational RNN for Switching Dynamics

Slides Poster Similar

The problem of uncovering different dynamicalregimes is of pivotal importance in time series analysis. Switchingdynamical systems provide a solution for modeling physical phe-nomena whose time series data exhibit different dynamical modes.In this work we propose a novel variational RNN model forswitching dynamics allowing for both non-Markovian and non-linear dynamical behavior between and within dynamic modes.Attention mechanisms are provided to inform the switchingdistribution. We evaluate our model on synthetic and empiricaldatasets of diverse nature and successfully uncover differentdynamical regimes and predict the switching dynamics.

Adaptive Matching of Kernel Means

Miao Cheng, Xinge You

Responsive image

Auto-TLDR; Adaptive Matching of Kernel Means for Knowledge Discovery and Feature Learning

Slides Poster Similar

As a promising step, the performance of data analysis and feature learning are able to be improved if certain pattern matching mechanism is available. One of the feasible solutions can refer to the importance estimation of instances, and consequently, kernel mean matching (KMM) has become an important method for knowledge discovery and novelty detection in general. Furthermore, the existing KMM methods have focused on concrete learning frameworks. In this work, a novel approach to adaptive matching of kernel means is proposed, and selected data with high importance are adopted to achieve calculation efficiency with optimization. In addition, scalable learning can be conducted in proposed method as a generalized solution with appended data. The experimental results on a wide variety of real-world data sets demonstrate the proposed method is able to give outstanding performance compared with several state-of-the-art methods, while calculation efficiency can be preserved.

Confidence Calibration for Deep Renal Biopsy Immunofluorescence Image Classification

Federico Pollastri, Juan Maroñas, Federico Bolelli, Giulia Ligabue, Roberto Paredes, Riccardo Magistroni, Costantino Grana

Responsive image

Auto-TLDR; A Probabilistic Convolutional Neural Network for Immunofluorescence Classification in Renal Biopsy

Slides Poster Similar

With this work we tackle immunofluorescence classification in renal biopsy, employing state-of-the-art Convolutional Neural Networks. In this setting, the aim of the probabilistic model is to assist an expert practitioner towards identifying the location pattern of antibody deposits within a glomerulus. Since modern neural networks often provide overconfident outputs, we stress the importance of having a reliable prediction, demonstrating that Temperature Scaling, a recently introduced re-calibration technique, can be successfully applied to immunofluorescence classification in renal biopsy. Experimental results demonstrate that the designed model yields good accuracy on the specific task, and that Temperature Scaling is able to provide reliable probabilities, which are highly valuable for such a task given the low inter-rater agreement.

A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes

Maximilian Söchting, Stefano Allegretti, Federico Bolelli, Costantino Grana

Responsive image

Auto-TLDR; Entropy Partitioning Decision Tree for Connected Components Labeling

Slides Poster Similar

Connected Components Labeling represents a fundamental step for many Computer Vision and Image Processing pipelines. Since the first appearance of the task in the sixties, many algorithmic solutions to optimize the computational load needed to label an image have been proposed. Among them, block-based scan approaches and decision trees revealed to be some of the most valuable strategies. However, due to the cost of the manual construction of optimal decision trees and the computational limitations of automatic strategies employed in the past, the application of blocks and decision trees has been restricted to small masks, and thus to 2D algorithms. With this paper we present a novel heuristic algorithm based on decision tree learning methodology, called Entropy Partitioning Decision Tree (EPDT). It allows to compute near-optimal decision trees for large scan masks. Experimental results demonstrate that algorithms based on the generated decision trees outperform state-of-the-art competitors.

Relative Feature Importance

Gunnar König, Christoph Molnar, Bernd Bischl, Moritz Grosse-Wentrup

Responsive image

Auto-TLDR; Relative Feature Importance for Interpretable Machine Learning

Slides Similar

Interpretable Machine Learning (IML) methods are used to gain insight into the relevance of a feature of interest for the performance of a model. Commonly used IML methods differ in whether they consider features of interest in isolation, e.g., Permutation Feature Importance (PFI), or in relation to all remaining feature variables, e.g., Conditional Feature Importance (CFI). As such, the perturbation mechanisms inherent to PFI and CFI represent extreme reference points. We introduce Relative Feature Importance (RFI), a generalization of PFI and CFI that allows for a more nuanced feature importance computation beyond the PFI versus CFI dichotomy. With RFI, the importance of a feature relative to any other subset of features can be assessed, including variables that were not available at training time. We derive general interpretation rules for RFI based on a detailed theoretical analysis of the implications of relative feature relevance, and demonstrate the method's usefulness on simulated examples.

Using Meta Labels for the Training of Weighting Models in a Sample-Specific Late Fusion Classification Architecture

Peter Bellmann, Patrick Thiam, Friedhelm Schwenker

Responsive image

Auto-TLDR; A Late Fusion Architecture for Multiple Classifier Systems

Slides Poster Similar

The performance of multiple classifier systems can be significantly improved by the use of intelligent classifier combination approaches. In this study, we introduce a novel late fusion architecture, which can be interpreted as a combination of the well-known mixture of experts and stacked generalization methods. Our proposed method aggregates the outputs of classification models and corresponding sample-specific weighting models. A special feature of our proposed architecture is that each weighting model is trained on an individual set of meta labels. Using individual sets of meta labels allows each weighting model to separate regions, on which the predictions of the corresponding classification model can be associated to an estimated confidence value. We test our proposed architecture on a set of publicly available databases, including different benchmark data sets. The experimental evaluation shows the effectiveness and potential of our proposed method. Moreover, we discuss different approaches for further improvement of our proposed architecture.

SAGE: Sequential Attribute Generator for Analyzing Glioblastomas Using Limited Dataset

Padmaja Jonnalagedda, Brent Weinberg, Jason Allen, Taejin Min, Shiv Bhanu, Bir Bhanu

Responsive image

Auto-TLDR; SAGE: Generative Adversarial Networks for Imaging Biomarker Detection and Prediction

Slides Poster Similar

While deep learning approaches have shown remarkable performance in many imaging tasks, most of these methods rely on availability of large quantities of data. Medical image data, however, is scarce and fragmented. Generative Adversarial Networks (GANs) have recently been very effective in handling such datasets by generating more data. If the datasets are very small, however, GANs cannot learn the data distribution properly, resulting in less diverse or low-quality results. One such limited dataset is that for the concurrent gain of 19/20 chromosomes (19/20 co-gain), a mutation with positive prognostic value in Glioblastomas (GBM). In this paper, we detect imaging biomarkers for the mutation to streamline the extensive and invasive prognosis pipeline. Since this mutation is relatively rare, i.e. small dataset, we propose a novel generative framework – the Sequential Attribute GEnerator (SAGE), that generates detailed tumor imaging features while learning from a limited dataset. Experiments show that not only does SAGE generate high quality tumors when compared to standard Deep Convolutional GAN (DC-GAN) and Wasserstein GAN with Gradient Penalty (WGAN-GP), it also captures the imaging biomarkers accurately.

VOWEL: A Local Online Learning Rule for Recurrent Networks of Probabilistic Spiking Winner-Take-All Circuits

Hyeryung Jang, Nicolas Skatchkovsky, Osvaldo Simeone

Responsive image

Auto-TLDR; VOWEL: A Variational Online Local Training Rule for Winner-Take-All Spiking Neural Networks

Slides Similar

Networks of spiking neurons and Winner-Take-All spiking circuits (WTA-SNNs) can detect information encoded in spatio-temporal multi-valued events. These are described by the timing of events of interest, e.g., clicks, as well as by categorical numerical values assigned to each event, e.g., like or dislike. Other use cases include object recognition from data collected by neuromorphic cameras, which produce, for each pixel, signed bits at the times of sufficiently large brightness variations. Existing schemes for training WTA-SNNs are limited to rate-encoding solutions, and are hence able to detect only spatial patterns. Developing more general training algorithms for arbitrary WTA-SNNs inherits the challenges of training (binary) Spiking Neural Networks (SNNs). These amount, most notably, to the non-differentiability of threshold functions, to the recurrent behavior of spiking neural models, and to the difficulty of implementing backpropagation in neuromorphic hardware. In this paper, we develop a variational online local training rule for WTA-SNNs, referred to as VOWEL, that leverages only local pre- and post-synaptic information for visible circuits, and an additional common reward signal for hidden circuits. The method is based on probabilistic generalized linear neural models, control variates, and variational regularization. Experimental results on real-world neuromorphic datasets with multi-valued events demonstrate the advantages of WTA-SNNs over conventional binary SNNs trained with state-of-the-art methods, especially in the presence of limited computing resources.

Memetic Evolution of Training Sets with Adaptive Radial Basis Kernels for Support Vector Machines

Jakub Nalepa, Wojciech Dudzik, Michal Kawulok

Responsive image

Auto-TLDR; Memetic Algorithm for Evolving Support Vector Machines with Adaptive Kernels

Slides Poster Similar

Support vector machines (SVMs) are a supervised learning technique that can be applied in both binary and multi-class classification and regression tasks. SVMs seamlessly handle continuous and categorical variables. Their training is, however, both time- and memory-costly for large training data, and selecting an incorrect kernel function or its hyperparameters leads to suboptimal decision hyperplanes. In this paper, we introduce a memetic algorithm for evolving SVM training sets with adaptive radial basis function kernels to not only make the deployment of SVMs easier for emerging big data applications, but also to improve their generalization abilities over the unseen data. We build upon two observations: first, only a small subset of all training vectors, called the support vectors, contribute to the position of the decision boundary, hence the other vectors can be removed from the training set without deteriorating the performance of the model. Second, selecting different kernel hyperparameters for different training vectors may help better reflect the subtle characteristics of the space while determining the hyperplane. The experiments over almost 100 benchmark and synthetic sets showed that our algorithm delivers models outperforming both SVMs optimized using state-of-the-art evolutionary techniques, and other supervised learners.

Adaptive Estimation of Optimal Color Transformations for Deep Convolutional Network Based Homography Estimation

Miguel A. Molina-Cabello, Jorge García-González, Rafael Marcos Luque-Baena, Karl Thurnhofer-Hemsi, Ezequiel López-Rubio

Responsive image

Auto-TLDR; Improving Homography Estimation from a Pair of Natural Images Using Deep Convolutional Neural Networks

Slides Poster Similar

Homography estimation from a pair of natural images is a problem of paramount importance for computer vision. Specialized deep convolutional neural networks have been proposed to accomplish this task. In this work, a method to enhance the result of this kind of homography estimators is proposed. Our approach generates a set of tentative color transformations for the image pair. Then the color transformed image pairs are evaluated by a regressor that estimates the quality of the homography that would be obtained by supplying the transformed image pairs to the homography estimator. Then the image pair that is predicted to yield the best result is provided to the homography estimator. Experimental results are shown, which demonstrate that our approach performs better than the direct application of the homography estimator to the original image pair, both in qualitative and quantitative terms.

Learning Parameter Distributions to Detect Concept Drift in Data Streams

Johannes Haug, Gjergji Kasneci

Responsive image

Auto-TLDR; A novel framework for the detection of concept drift in streaming environments

Slides Poster Similar

Data distributions in streaming environments are usually not stationary. In order to maintain a high predictive quality at all times, online learning models need to adapt to distributional changes, which are known as concept drift. The timely and robust identification of concept drift can be difficult, as we never have access to the true distribution of streaming data. In this work, we propose a novel framework for the detection of real concept drift, called ERICS. By treating the parameters of a predictive model as random variables, we show that concept drift corresponds to a change in the distribution of optimal parameters. To this end, we adopt common measures from information theory. The proposed framework is completely model-agnostic. By choosing an appropriate base model, ERICS is also capable to detect concept drift at the input level, which is a significant advantage over existing approaches. An evaluation on several synthetic and real-world data sets suggests that the proposed framework identifies concept drift more effectively and precisely than various existing works.

A Multilinear Sampling Algorithm to Estimate Shapley Values

Ramin Okhrati, Aldo Lipani

Responsive image

Auto-TLDR; A sampling method for Shapley values for multilayer Perceptrons

Slides Poster Similar

Shapley values are great analytical tools in game theory to measure the importance of a player in a game. Due to their axiomatic and desirable properties such as efficiency, they have become popular for feature importance analysis in data science and machine learning. However, the time complexity to compute Shapley values based on the original formula is exponential, and as the number of features increases, this becomes infeasible. Castro et al. [1] developed a sampling algorithm, to estimate Shapley values. In this work, we propose a new sampling method based on a multilinear extension technique as applied in game theory. The aim is to provide a more efficient (sampling) method for estimating Shapley values. Our method is applicable to any machine learning model, in particular for either multiclass classifications or regression problems. We apply the method to estimate Shapley values for multilayer Perceptrons (MLPs) and through experimentation on two datasets, we demonstrate that our method provides more accurate estimations of the Shapley values by reducing the variance of the sampling statistics

Variational Information Bottleneck Model for Accurate Indoor Position Recognition

Weizhu Qian, Franck Gechter

Responsive image

Auto-TLDR; Variational Information Bottleneck for Indoor Positioning with WiFi Fingerprints

Slides Poster Similar

Recognizing user location with WiFi fingerprints is a popular method for accurate indoor positioning problems. In this work, we want to interpret WiFi fingerprints into actual user locations. However, the WiFi fingerprint data can be very high dimensional, we need to find a good representation of the input data for the learning task at first. Otherwise, the neural networks will suffer from sever overfitting problems. In this work, we solve this problem by combining the Information Bottleneck method and Variational Inference. Based on these two approaches, we propose a Variational Information Bottleneck model for accurate indoor positioning. The proposed model consists of an encoder structure and a predictor structure. The encoder is to find a good representation in the input data for the learning task. The predictor is to use the latent representation to predict the final output. To enhance the generalization of our model, we also adopt the Dropout technique for the each hidden layer of the decoder. We conduct the validation experiments on a real world dataset. We also compared the proposed model to other existing methods so as to quantify the performances of our method.

Interpretable Structured Learning with Sparse Gated Sequence Encoder for Protein-Protein Interaction Prediction

Kishan K C, Feng Cui, Anne Haake, Rui Li

Responsive image

Auto-TLDR; Predicting Protein-Protein Interactions Using Sequence Representations

Slides Poster Similar

Predicting protein-protein interactions (PPIs) by learning informative representations from amino acid sequences is a challenging yet important problem in biology. Although various deep learning models in Siamese architecture have been proposed to model PPIs from sequences, these methods are computationally expensive for a large number of PPIs due to the pairwise encoding process. Furthermore, these methods are difficult to interpret because of non-intuitive mappings from protein sequences to their sequence representation. To address these challenges, we present a novel deep framework to model and predict PPIs from sequence alone. Our model incorporates a bidirectional gated recurrent unit to learn sequence representations by leveraging contextualized and sequential information from sequences. We further employ a sparse regularization to model long-range dependencies between amino acids and to select important amino acids (protein motifs), thus enhancing interpretability. Besides, the novel design of the encoding process makes our model computationally efficient and scalable to an increasing number of interactions. Experimental results on up-to-date interaction datasets demonstrate that our model achieves superior performance compared to other state-of-the-art methods. Literature-based case studies illustrate the ability of our model to provide biological insights to interpret the predictions.

PROPEL: Probabilistic Parametric Regression Loss for Convolutional Neural Networks

Muhammad Asad, Rilwan Basaru, S M Masudur Rahman Al Arif, Greg Slabaugh

Responsive image

Auto-TLDR; PRObabilistic Parametric rEgression Loss for Probabilistic Regression Using Convolutional Neural Networks

Slides Similar

In recent years, Convolutional Neural Networks (CNNs) have enabled significant advancements to the state-of-the-art in computer vision. For classification tasks, CNNs have widely employed probabilistic output and have shown the significance of providing additional confidence for predictions. However, such probabilistic methodologies are not widely applicable for addressing regression problems using CNNs, as regression involves learning unconstrained continuous and, in many cases, multi-variate target variables. We propose a PRObabilistic Parametric rEgression Loss (PROPEL) that facilitates CNNs to learn parameters of probability distributions for addressing probabilistic regression problems. PROPEL is fully differentiable and, hence, can be easily incorporated for end-to-end training of existing CNN regression architectures using existing optimization algorithms. The proposed method is flexible as it enables learning complex unconstrained probabilities while being generalizable to higher dimensional multi-variate regression problems. We utilize a PROPEL-based CNN to address the problem of learning hand and head orientation from uncalibrated color images. Our experimental validation and comparison with existing CNN regression loss functions show that PROPEL improves the accuracy of a CNN by enabling probabilistic regression, while significantly reducing required model parameters by 10x, resulting in improved generalization as compared to the existing state-of-the-art.

Explainable Online Validation of Machine Learning Models for Practical Applications

Wolfgang Fuhl, Yao Rong, Thomas Motz, Michael Scheidt, Andreas Markus Hartel, Andreas Koch, Enkelejda Kasneci

Responsive image

Auto-TLDR; A Reformulation of Regression and Classification for Machine Learning Algorithm Validation

Slides Poster Similar

We present a reformulation of the regression and classification, which aims to validate the result of a machine learning algorithm. Our reformulation simplifies the original problem and validates the result of the machine learning algorithm using the training data. Since the validation of machine learning algorithms must always be explainable, we perform our experiments with the kNN algorithm as well as with an algorithm based on conditional probabilities, which is proposed in this work. For the evaluation of our approach, three publicly available data sets were used and three classification and two regression problems were evaluated. The presented algorithm based on conditional probabilities is also online capable and requires only a fraction of memory compared to the kNN algorithm.

The Aleatoric Uncertainty Estimation Using a Separate Formulation with Virtual Residuals

Takumi Kawashima, Qing Yu, Akari Asai, Daiki Ikami, Kiyoharu Aizawa

Responsive image

Auto-TLDR; Aleatoric Uncertainty Estimation in Regression Problems

Slides Similar

We propose a new optimization framework for aleatoric uncertainty estimation in regression problems. Existing methods can quantify the error in the target estimation, but they tend to underestimate it. To obtain the predictive uncertainty inherent in an observation, we propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting. By decoupling target estimation and uncertainty estimation, we also control the balance between signal estimation and uncertainty estimation. We conduct three types of experiments: regression with simulation data, age estimation, and depth estimation. We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.

Detecting Rare Cell Populations in Flow Cytometry Data Using UMAP

Lisa Weijler, Markus Diem, Michael Reiter

Responsive image

Auto-TLDR; Unsupervised Manifold Approximation and Projection for Small Cell Population Detection in Flow cytometry Data

Slides Poster Similar

We present an approach for detecting small cell populations in flow cytometry (FCM) samples based on the combination of unsupervised manifold embedding and supervised random forest classification. Each sample consists of hundred thousands to a few million cells where each cell typically corresponds to a measurement vector with 10 to 50 dimensions. The difficulty of the task is that clusters of measurement vectors formed in the data space according to standard clustering criteria often do not correspond to biologically meaningful sub-populations of cells, due to strong variations in shape and size of their distributions. In many cases the relevant population consists of less than 100 scattered events out of millions of events, where supervised approaches perform better than unsupervised clustering. The aim of this paper is to demonstrate that the performance of the standard supervised classifier can be improved significantly by combining it with a preceding unsupervised learning step involving the Uniform Manifold Approximation and Projection (UMAP). We present an experimental evaluation on FCM data from children suffering from Acute Lymphoblastic Leukemia (ALL) showing that the improvement particularly occurs in difficult samples where the size of the relevant population of leukemic cells is low in relation to other sub-populations. Further, the experiments indicate that on such samples the algorithm also outperforms other baseline methods based on Gaussian Mixture Models.

Interpolation in Auto Encoders with Bridge Processes

Carl Ringqvist, Henrik Hult, Judith Butepage, Hedvig Kjellstrom

Responsive image

Auto-TLDR; Stochastic interpolations from auto encoders trained on flattened sequences

Slides Poster Similar

Auto encoding models have been extensively studied in recent years. They provide an efficient framework for sample generation, as well as for analysing feature learning. Furthermore, they are efficient in performing interpolations between data-points in semantically meaningful ways. In this paper, we introduce a method for generating sequence samples from auto encoders trained on flattened sequences (e.g video sample from auto encoders trained to generate a video frame); as well as a canonical, dimension independent method for generating stochastic interpolations. The distribution of interpolation paths is represented as the distribution of a bridge process constructed from an artificial random data generating process in the latent space, having the prior distribution as its invariant distribution.

Movement-Induced Priors for Deep Stereo

Yuxin Hou, Muhammad Kamran Janjua, Juho Kannala, Arno Solin

Responsive image

Auto-TLDR; Fusing Stereo Disparity Estimation with Movement-induced Prior Information

Slides Poster Similar

We propose a method for fusing stereo disparity estimation with movement-induced prior information. Instead of independent inference frame-by-frame, we formulate the problem as a non-parametric learning task in terms of a temporal Gaussian process prior with a movement-driven kernel for inter-frame reasoning. We present a hierarchy of three Gaussian process kernels depending on the availability of motion information, where our main focus is on a new gyroscope-driven kernel for handheld devices with low-quality MEMS sensors, thus also relaxing the requirement of having full 6D camera poses available. We show how our method can be combined with two state-of-the-art deep stereo methods. The method either work in a plug-and-play fashion with pre-trained deep stereo networks, or further improved by jointly training the kernels together with encoder--decoder architectures, leading to consistent improvement.