Classifier Pool Generation Based on a Two-Level Diversity Approach

Marcos Monteiro, Alceu Britto, Jean Paul Barddal, Luiz Oliveira, Robert Sabourin

Responsive image

Auto-TLDR; Diversity-Based Pool Generation with Dynamic Classifier Selection and Dynamic Ensemble Selection

Slides Poster

This paper describes a classifier pool generation method guided by the diversity estimated on the data complexity and classifier decisions. First, the behavior of complexity measures is assessed by considering several subsamples of the dataset. The complexity measures with high variability across the subsamples are selected for posterior pool adaptation, where an evolutionary algorithm optimizes diversity in both complexity and decision spaces. A robust experimental protocol with 28 datasets and 20 replications is used to evaluate the proposed method. Results show significant accuracy improvements in 69.4\% of the experiments when Dynamic Classifier Selection and Dynamic Ensemble Selection methods are applied.

Similar papers

Categorizing the Feature Space for Two-Class Imbalance Learning

Rosa Sicilia, Ermanno Cordelli, Paolo Soda

Responsive image

Auto-TLDR; Efficient Ensemble of Classifiers for Minority Class Inference

Slides Poster Similar

Class imbalance limits the performance of most learning algorithms, resulting in a low recognition rate for samples belonging to the minority class. Although there are different strategies to address this problem, methods that generate ensemble of classifiers have proven to be effective in several applications. This paper presents a new strategy to construct the training set of each classifier in the ensemble by exploiting information in the feature space that can give rise to unreliable classifications, which are determined by a novel algorithm here introduced. The performance of our proposal is compared against multiple standard ensemble approaches on 25 publicly available datasets, showing promising results.

Boundary Bagging to Address Training Data Issues in Ensemble Classification

Samia Boukir, Wei Feng

Responsive image

Auto-TLDR; Bagging Ensemble Learning for Multi-Class Imbalanced Classification

Poster Similar

The characteristics of training data is a fundamental consideration when constructing any supervised classifier. Class mislabelling and imbalance are major training data issues that often adversely affect machine learning algorithms, including ensembles. This work proposes extended bagging algorithms to better handle noisy and multi-class imbalanced classification tasks. These algorithms upgrade the sampling procedure by taking benefit of the confidence in ensemble classification outcome. The underlying idea is that a bagging ensemble learning algorithm can achieve greater performance if it is allowed to choose the data from which it learns. The effectiveness of the proposed methods is demonstrated in performing classification on 10 various data sets.

Using Meta Labels for the Training of Weighting Models in a Sample-Specific Late Fusion Classification Architecture

Peter Bellmann, Patrick Thiam, Friedhelm Schwenker

Responsive image

Auto-TLDR; A Late Fusion Architecture for Multiple Classifier Systems

Slides Poster Similar

The performance of multiple classifier systems can be significantly improved by the use of intelligent classifier combination approaches. In this study, we introduce a novel late fusion architecture, which can be interpreted as a combination of the well-known mixture of experts and stacked generalization methods. Our proposed method aggregates the outputs of classification models and corresponding sample-specific weighting models. A special feature of our proposed architecture is that each weighting model is trained on an individual set of meta labels. Using individual sets of meta labels allows each weighting model to separate regions, on which the predictions of the corresponding classification model can be associated to an estimated confidence value. We test our proposed architecture on a set of publicly available databases, including different benchmark data sets. The experimental evaluation shows the effectiveness and potential of our proposed method. Moreover, we discuss different approaches for further improvement of our proposed architecture.

Creating Classifier Ensembles through Meta-Heuristic Algorithms for Aerial Scene Classification

Álvaro Roberto Ferreira Jr., Gustavo Gustavo Henrique De Rosa, Joao Paulo Papa, Gustavo Carneiro, Fabio Augusto Faria

Responsive image

Auto-TLDR; Univariate Marginal Distribution Algorithm for Aerial Scene Classification Using Meta-Heuristic Optimization

Slides Poster Similar

Aerial scene classification is a challenging task to be solved in the remote sensing area, whereas deep learning approaches, such as Convolutional Neural Networks (CNN), are being widely employed to overcome such a problem. Nevertheless, it is not straightforward to find single CNN models that can solve all aerial scene classification tasks, allowing the nurturing of a better alternative, which is to fuse CNN-based classifiers into an ensemble. However, an appropriate choice of the classifiers that will belong to the ensemble is a critical factor, as it is unfeasible to employ all the possible classifiers in the literature. Therefore, this work proposes a novel framework based on meta-heuristic optimization for creating optimized-ensembles in the context of aerial scene classification. The experimental results were performed across nine meta-heuristic algorithms and three aerial scene literature datasets, being compared in terms of effectiveness (accuracy), efficiency (execution time), and behavioral performance in different scenarios. Finally, one can observe that the Univariate Marginal Distribution Algorithm (UMDA) overcame popular literature meta-heuristic algorithms, such as Genetic Programming and Particle Swarm Optimization considering the adopted criteria in the performed experiments.

A Novel Adaptive Minority Oversampling Technique for Improved Classification in Data Imbalanced Scenarios

Ayush Tripathi, Rupayan Chakraborty, Sunil Kumar Kopparapu

Responsive image

Auto-TLDR; Synthetic Minority OverSampling Technique for Imbalanced Data

Slides Poster Similar

Imbalance in the proportion of training samples belonging to different classes often poses performance degradation of conventional classifiers. This is primarily due to the tendency of the classifier to be biased towards the majority classes in the imbalanced dataset. In this paper, we propose a novel three step technique to address imbalanced data. As a first step we significantly oversample the minority class distribution by employing the traditional Synthetic Minority OverSampling Technique (SMOTE) algorithm using the neighborhood of the minority class samples and in the next step we partition the generated samples using a Gaussian-Mixture Model based clustering algorithm. In the final step synthetic data samples are chosen based on the weight associated with the cluster, the weight itself being determined by the distribution of the majority class samples. Extensive experiments on several standard datasets from diverse domains show the usefulness of the proposed technique in comparison with the original SMOTE and its state-of-the-art variants algorithms.

Memetic Evolution of Training Sets with Adaptive Radial Basis Kernels for Support Vector Machines

Jakub Nalepa, Wojciech Dudzik, Michal Kawulok

Responsive image

Auto-TLDR; Memetic Algorithm for Evolving Support Vector Machines with Adaptive Kernels

Slides Poster Similar

Support vector machines (SVMs) are a supervised learning technique that can be applied in both binary and multi-class classification and regression tasks. SVMs seamlessly handle continuous and categorical variables. Their training is, however, both time- and memory-costly for large training data, and selecting an incorrect kernel function or its hyperparameters leads to suboptimal decision hyperplanes. In this paper, we introduce a memetic algorithm for evolving SVM training sets with adaptive radial basis function kernels to not only make the deployment of SVMs easier for emerging big data applications, but also to improve their generalization abilities over the unseen data. We build upon two observations: first, only a small subset of all training vectors, called the support vectors, contribute to the position of the decision boundary, hence the other vectors can be removed from the training set without deteriorating the performance of the model. Second, selecting different kernel hyperparameters for different training vectors may help better reflect the subtle characteristics of the space while determining the hyperplane. The experiments over almost 100 benchmark and synthetic sets showed that our algorithm delivers models outperforming both SVMs optimized using state-of-the-art evolutionary techniques, and other supervised learners.

Algorithm Recommendation for Data Streams

Jáder Martins Camboim De Sá, Andre Luis Debiaso Rossi, Gustavo Enrique De Almeida Prado Alves Batista, Luís Paulo Faina Garcia

Responsive image

Auto-TLDR; Meta-Learning for Algorithm Selection in Time-Changing Data Streams

Slides Poster Similar

In the last decades, many companies are taking advantage of massive data generation at high frequencies through knowledge discovery to identify valuable information. Machine learning techniques can be employed for knowledge discovery, since they are able to extract patterns from data and induce models to predict future events. However, dynamic and evolving environments generate streams of data that usually are non-stationary. Models induced in these scenarios may perish over time due to seasonality or concept drift. The periodic retraining could help but the fixed algorithm's hypothesis space could no longer be appropriate. An alternative solution is to use meta-learning for periodic algorithm selection in time-changing environments, choosing the bias that best suits the current data. In this paper, we present an enhanced framework for data streams algorithm selection based on MetaStream. Our approach uses meta-learning and incremental learning to actively select the best algorithm for the current concept in a time-changing. Different from previous works, a set of cutting edge meta-features and an incremental learning approach in the meta-level based on LightGBM are used. The results show that this new strategy can improve the recommendation of the best algorithm more accurately in time-changing data.

A Novel Random Forest Dissimilarity Measure for Multi-View Learning

Hongliu Cao, Simon Bernard, Robert Sabourin, Laurent Heutte

Responsive image

Auto-TLDR; Multi-view Learning with Random Forest Relation Measure and Instance Hardness

Slides Poster Similar

Multi-view learning is a learning task in which data is described by several concurrent representations. Its main challenge is most often to exploit the complementarities between these representations to help solve a classification/regression task. This is a challenge that can be met nowadays if there is a large amount of data available for learning. However, this is not necessarily true for all real-world problems, where data are sometimes scarce (e.g. problems related to the medical environment). In these situations, an effective strategy is to use intermediate representations based on the dissimilarities between instances. This work presents new ways of constructing these dissimilarity representations, learning them from data with Random Forest classifiers. More precisely, two methods are proposed, which modify the Random Forest proximity measure, to adapt it to the context of High Dimension Low Sample Size (HDLSS) multi-view classification problems. The second method, based on an Instance Hardness measurement, is significantly more accurate than other state-of-the-art measurements including the original RF Proximity measurement and the Large Margin Nearest Neighbor (LMNN) metric learning measurement.

Watermelon: A Novel Feature Selection Method Based on Bayes Error Rate Estimation and a New Interpretation of Feature Relevance and Redundancy

Xiang Xie, Wilhelm Stork

Responsive image

Auto-TLDR; Feature Selection Using Bayes Error Rate Estimation for Dynamic Feature Selection

Slides Poster Similar

Feature selection has become a crucial part of many classification problems in which high-dimensional datasets may contain tens of thousands of features. In this paper, we propose a novel feature selection method scoring the features through estimating the Bayes error rate based on kernel density estimation. Additionally, we update the scores of features dynamically by quantitatively interpreting the effects of feature relevance and redundancy in a new way. Distinguishing from the common heuristic applied by many feature selection methods, which prefers choosing features that are not relevant to each other, our approach penalizes only monotonically correlated features and rewards any other kind of relevance among features based on Spearman’s rank correlation coefficient and normalized mutual information. We conduct extensive experiments on seventeen diverse classification benchmarks, the results show that our approach overperforms other seventeen popular state-of-the-art feature selection methods in most cases.

Multi-annotator Probabilistic Active Learning

Marek Herde, Daniel Kottke, Denis Huseljic, Bernhard Sick

Responsive image

Auto-TLDR; MaPAL: Multi-annotator Probabilistic Active Learning

Slides Poster Similar

Classifiers require annotations of instances, i.e., class labels, for training. An annotation process is often costly due to its manual execution through human annotators. Active learning (AL) aims at reducing the annotation costs by selecting instances from which the classifier is expected to learn the most. Many AL strategies assume the availability of a single omniscient annotator. In this article, we overcome this limitation by considering multiple error-prone annotators. We propose a novel AL strategy multi-annotator probabilistic active learning (MaPAL). Due to the nature of learning with error-prone annotators, it must not only select instances but annotators, too. MaPAL builds on a decision-theoretic framework and selects instance-annotator pairs maximizing the classifier's expected performance. Experiments on a variety of data sets demonstrate MaPAL's superior performance compared to five related AL strategies.

Position-Aware Safe Boundary Interpolation Oversampling

Yongxu Liu, Yan Liu

Responsive image

Auto-TLDR; PABIO: Position-Aware Safe Boundary Interpolation-Based Oversampling for Imbalanced Data

Slides Poster Similar

The class imbalance problem is characterized by the unequal distribution of different class samples, usually resulting in a learning bias toward the majority class. In the past decades, kinds of techniques have been proposed to alleviate this problem. Among those approaches, one promising method, interpolation- based oversampling, proposes to generate synthetic minority samples based on selected reference data, which can effectively solve the skewed distribution of data samples. However, there are several unsolved issues in interpolation-based oversampling. Existing methods often suffer from noisy synthetic samples due to improper data clusterings and unsatisfactory reference selection. In this paper, we propose the position-aware safe boundary interpolation oversampling algorithm (PABIO) to address such issues. We firstly introduce a combined clustering algorithm for minority samples to overcome the shortage of clustering using only distance-based or density-based. Then a position- aware interpolation-based oversampling algorithm is proposed for different minority clusters. Especially, we develop a novel method to leverage the majority class information to learn a safe boundary for generating synthetic points. The proposed PABIO is evaluated on multiple imbalanced data sets classified by two base classifiers: support vector machine (SVM) and C4.5 decision tree classifier. Experimental results show that our proposed PABIO outperforms other baselines among benchmark data sets.

A Cheaper Rectified-Nearest-Feature-Line-Segment Classifier Based on Safe Points

Mauricio Orozco-Alzate, Manuele Bicego

Responsive image

Auto-TLDR; Rectified Nearest Feature Line Segment Segment Classifier

Slides Poster Similar

The Rectified Nearest Feature Line Segment (RN-FLS) classifier is an improved version of the Nearest Feature Line (NFL) classification rule. RNFLS corrects two drawbacks of NFL, namely the interpolation and extrapolation inaccuracies, by applying two consecutive processes - segmentation and rectification - to the initial set of feature lines. The main drawbacks of this technique, occurring in both training and test phases, are the high computational cost of the rectification procedure and the exponential explosion of the number of lines. We propose a cheaper version of RNFLS, based on a characterization of the points that should form good lines. The characterization relies on a recent neighborhood-based principle that categorizes objects into four types: safe, borderline, rare and outliers, depending on the position of each point with respect to the other classes. The proposed approach represents a variant of RNFLS in the sense that it only considers lines between safe points. This allows a drastic reduction in the computational burden imposed by RNFLS. We carried out an empirical and thorough analysis based on different public data sets, showing that our proposed approach, in general, is not significantly different from RNFLS, but cheaper since the consideration of likely irrelevant feature line segments is avoided.

Mean Decision Rules Method with Smart Sampling for Fast Large-Scale Binary SVM Classification

Alexandra Makarova, Mikhail Kurbakov, Valentina Sulimova

Responsive image

Auto-TLDR; Improving Mean Decision Rule for Large-Scale Binary SVM Problems

Slides Poster Similar

This paper relies on the Mean Decision Rule (MDR) method for solving large-scale binary SVM problems. It consists in taking small random samples of the full dataset and separate training for each of them with consecutive averaging the respective individual decision rules to obtain a final one. This paper proposes two new approaches to improve it. The first proposed approach is a new sampling technique that exploits SVM and MDR properties to fast form so called smart samples by selecting only the objects, that are candidates to be the support ones. The proposed technique essentially increases MDR convergence and allows to reach the highest quality in less time. In the case of kernel-based MDR (KMDR) the proposed sampling technique allows additionally to reduce the number of support objects in the final decision rule and, as a result, to decrease the recognition time. The second proposed approach is a new data strategy to accelerate random access to large datasets stored in the traditional libsvm format. The proposed strategy allows to quickly extract random subsets of objects from a file and load them into RAM, and is it also suitable for any sampling-based methods, including stochastic gradient methods. Joint using of the proposed approaches with (K)MDR allows to obtain the best (or near the best) decision of large-scale binary SVM problems faster, compared to the existing SVM solvers.

PowerHC: Non Linear Normalization of Distances for Advanced Nearest Neighbor Classification

Manuele Bicego, Mauricio Orozco-Alzate

Responsive image

Auto-TLDR; Non linear scaling of distances for advanced nearest neighbor classification

Slides Poster Similar

In this paper we investigate the exploitation of non linear scaling of distances for advanced nearest neighbor classification. Starting from the recently found relation between the Hypersphere Classifier (HC) and the Adaptive Nearest Neighbor rule (ANN), here we propose PowerHC, an improved version of HC in which distances are normalized using a non linear mapping; non linear scaling of data, whose usefulness for feature spaces has been already assessed, has been hardly investigated for distances. A thorough experimental evaluation, involving 24 datasets and a challenging real world scenario of seismic signal classification, confirms the suitability of the proposed approach.

Comparison of Stacking-Based Classifier Ensembles Using Euclidean and Riemannian Geometries

Vitaliy Tayanov, Adam Krzyzak, Ching Y Suen

Responsive image

Auto-TLDR; Classifier Stacking in Riemannian Geometries using Cascades of Random Forest and Extra Trees

Slides Poster Similar

This paper considers three different classifier stacking algorithms: simple stacking, cascades of classifier ensembles and nonlinear version of classifier stacking based on classifier interactions. Classifier interactions can be expressed using classifier prediction pairwise matrix (CPPM). As a meta-learner for the last algorithm Convolutional Neural Networks (CNNs) and two other classifier stacking algorithms (simple classifier stacking and cascades of classifier ensembles) have been applied. This allows applying classical stacking and cascade-based recursive stacking in the Euclidean and the Riemannian geometries. The cascades of random forests (RFs) and extra trees (ETs) are considered as a forest-based alternative to deep neural networks [1]. Our goal is to compare accuracies of the cascades of RFs and CNN-based stacking or deep multi-layer perceptrons (MLPs) for different classifications problems. We use gesture phase dataset from UCI repository [2] to compare and analyze cascades of RFs and extra trees (ETs) in both geometries and CNN-based version of classifier stacking. This data set was selected because generally motion is considered as a nonlinear process (patterns do no lie in Euclidean vector space) in computer vision applications. Thus we can assess how good are forest-based deep learning and the Riemannian manifolds (R-manifolds) when applied to nonlinear processes. Some more datasets from UCI repository were used to compare the aforementioned algorithms to some other well-known classifiers and their stacking-based versions in both geometries. Experimental results show that classifier stacking algorithms in Riemannian geometry (R-geometry) are less dependent on some properties of individual classifiers (e.g. depth of decision trees in RFs or ETs) in comparison to Euclidean geometry. More independent individual classifiers allow to obtain R-manifolds with better properties for classification. Generally, accuracy of classification using classifier stacking in R-geometry is higher than in Euclidean one.

Supervised Classification Using Graph-Based Space Partitioning for Multiclass Problems

Nicola Yanev, Ventzeslav Valev, Adam Krzyzak, Karima Ben Suliman

Responsive image

Auto-TLDR; Box Classifier for Multiclass Classification

Slides Poster Similar

We introduce and investigate in multiclass setting an efficient classifier which partitions the training data by means of multidimensional parallelepipeds called boxes. We show that multiclass classification problem at hand can be solved by integrating the heuristic minimum clique cover approach and the k-nearest neighbor rule. Our algorithm is motivated an algorithm for partitioning a graph into a minimal number of maximal. The main advantage of the new classifier called Box classifier is that it optimally utilizes the geometrical structure of the training set by decomposing the l-class problem (l > 2) into l binary classification problems. We discuss computational complexity of the proposed Box classifier. The extensive experiments performed on the simulated and real data for binary and multiclass problems show that in almost all cases the Box classifier performs significantly better than k-NN, SVM and decision trees.

Drift Anticipation with Forgetting to Improve Evolving Fuzzy System

Clément Leroy, Eric Anquetil, Nathalie Girard

Responsive image

Auto-TLDR; A coherent method to integrate forgetting in Evolving Fuzzy System

Slides Poster Similar

Working with a non-stationary stream of data requires for the analysis system to evolve its model (the parameters as well as the structure) over time. In particular, concept drifts can occur, which makes it necessary to forget knowledge that has become obsolete. However, the forgetting is subjected to the plasticity stability dilemma. It says that increase forgetting improve reactivity of the adaptation to the new data while reducing the robustness of the system. Based on a set of inference rules, Evolving Fuzzy Systems - EFS - have proven to be effective in addressing the data stream learning problem. However tackling the stability plasticity dilemma is still an open question. This paper proposes a coherent method to integrate forgetting in Evolving Fuzzy System, based on the recently introduced notion of concept drift anticipation. The forgetting is applied with two methods: an exponential forgetting of the premise part and a differed directional forgetting of the conclusion part of EFS to preserve the coherence between both parts. The originality of the approach consists in applying the forgetting only in the anticipation module and in keeping the EFS (called principal system) learned without any forgetting. Then, when a drift is detected in the stream, a selection mechanism is proposed to replace the obsolete parameters of the principal system with more suitable parameters of the anticipation module. An evaluation of the proposed methods is carried out on benchmark online datasets, with a comparison with state-of-the-art online classifiers (Learn++.NSE, PENsemble, pclass) as well as with the original system using different forgetting strategies.

How to Define a Rejection Class Based on Model Learning?

Sarah Laroui, Xavier Descombes, Aurelia Vernay, Florent Villiers, Francois Villalba, Eric Debreuve

Responsive image

Auto-TLDR; An innovative learning strategy for supervised classification that is able, by design, to reject a sample as not belonging to any of the known classes

Slides Poster Similar

In supervised classification, the learning process typically trains a classifier to optimize the accuracy of classifying data into the classes that appear in the learning set, and only them. While this framework fits many use cases, there are situations where the learning process is knowingly performed using a learning set that only represents the data that have been observed so far among a virtually unconstrained variety of possible samples. It is then crucial to define a classifier which has the ability to reject a sample, i.e., to classify it into a rejection class that has not been yet defined. Although obvious solutions can add this ability a posteriori to a classifier that has been learned classically, a better approach seems to directly account for this requirement in the classifier design. In this paper, we propose an innovative learning strategy for supervised classification that is able, by design, to reject a sample as not belonging to any of the known classes. For that, we rely on modeling each class as the combination of a probability density function (PDF) and a threshold that is computed with respect to the other classes. Several alternatives are proposed and compared in this framework. A comparison with straightforward approaches is also provided.

Aggregating Dependent Gaussian Experts in Local Approximation

Hamed Jalali, Gjergji Kasneci

Responsive image

Auto-TLDR; A novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence

Slides Poster Similar

Distributed Gaussian processes (DGPs) are prominent local approximation methods to scale Gaussian processes (GPs) to large datasets. Instead of a global estimation, they train local experts by dividing the training set into subsets, thus reducing the time complexity. This strategy is based on the conditional independence assumption, which basically means that there is a perfect diversity between the local experts. In practice, however, this assumption is often violated, and the aggregation of experts leads to sub-optimal and inconsistent solutions. In this paper, we propose a novel approach for aggregating the Gaussian experts by detecting strong violations of conditional independence. The dependency between experts is determined by using a Gaussian graphical model, which yields the precision matrix. The precision matrix encodes conditional dependencies between experts and is used to detect strongly dependent experts and construct an improved aggregation. Using both synthetic and real datasets, our experimental evaluations illustrate that our new method outperforms other state-of-the-art (SOTA) DGP approaches while being substantially more time-efficient than SOTA approaches, which build on independent experts.

Proximity Isolation Forests

Antonella Mensi, Manuele Bicego, David Tax

Responsive image

Auto-TLDR; Proximity Isolation Forests for Non-vectorial Data

Slides Poster Similar

Isolation Forests are a very successful approach for solving outlier detection tasks. Isolation Forests are based on classical Random Forest classifiers that require feature vectors as input. There are many situations where vectorial data is not readily available, for instance when dealing with input sequences or strings. In these situations, one can extract higher level characteristics from the input, which is typically hard and often loses valuable information. An alternative is to define a proximity between the input objects, which can be more intuitive. In this paper we propose the Proximity Isolation Forests that extend the Isolation Forests to non-vectorial data. The introduced methodology has been thoroughly evaluated on 8 different problems and it achieves very good results also when compared to other techniques.

Wasserstein k-Means with Sparse Simplex Projection

Takumi Fukunaga, Hiroyuki Kasai

Responsive image

Auto-TLDR; SSPW $k$-means: Sparse Simplex Projection-based Wasserstein $ k$-Means Algorithm

Slides Poster Similar

This paper presents a proposal of a faster Wasserstein $k$-means algorithm for histogram data by reducing Wasserstein distance computations exploiting sparse simplex projection. We shrink data samples, centroids and ground cost matrix, which enables significant reduction of the computations to solve optimal transport problems without loss of clustering quality. Furthermore, we dynamically reduce computational complexity by removing lower-valued data samples harnessing sparse simplex projection while keeping degradation of clustering quality lower. We designate this proposed algorithm as sparse simplex projection-based Wasserstein $k$-means, for short, SSPW $k$-means. Numerical evaluations against Wasserstein $k$-means algorithm demonstrate the effectiveness of the proposed SSPW $k$-means on real-world datasets.

Adaptive Matching of Kernel Means

Miao Cheng, Xinge You

Responsive image

Auto-TLDR; Adaptive Matching of Kernel Means for Knowledge Discovery and Feature Learning

Slides Poster Similar

As a promising step, the performance of data analysis and feature learning are able to be improved if certain pattern matching mechanism is available. One of the feasible solutions can refer to the importance estimation of instances, and consequently, kernel mean matching (KMM) has become an important method for knowledge discovery and novelty detection in general. Furthermore, the existing KMM methods have focused on concrete learning frameworks. In this work, a novel approach to adaptive matching of kernel means is proposed, and selected data with high importance are adopted to achieve calculation efficiency with optimization. In addition, scalable learning can be conducted in proposed method as a generalized solution with appended data. The experimental results on a wide variety of real-world data sets demonstrate the proposed method is able to give outstanding performance compared with several state-of-the-art methods, while calculation efficiency can be preserved.

Leveraging Sequential Pattern Information for Active Learning from Sequential Data

Raul Fidalgo-Merino, Lorenzo Gabrielli, Enrico Checchi

Responsive image

Auto-TLDR; Sequential Pattern Information for Active Learning

Slides Poster Similar

This paper presents a novel active learning technique aimed at the selection of sequences for manual annotation from a database of unlabelled sequences. Supervised machine learning algorithms can employ these sequences to build better models than those based on using random sequences for training. The main contribution of the proposed method is the use of sequential pattern information contained in the database to select representative and diverse sequences for annotation. These two characteristics ensure the proper coverage of the instance space of sequences and, at the same time, avoids over-fitting the trained model. The approach, called SPIAL (Sequential Pattern Information for Active Learning), uses sequential pattern mining algorithms to extract frequently occurring sub-sequences from the database and evaluates how representative and diverse each sequence is, based on this information. The output is a list of sequences for annotation sorted by representativeness and diversity. The algorithm is modular and, unlike current techniques, independent of the features taken into account by the machine learning algorithm that trains the model. Experiments done on well-known benchmarks involving sequential data show that the models trained using SPIAL increase their convergence speed while reducing manual effort by selecting small sets of very informative sequences for annotation. In addition, the computation cost using SPIAL is much lower than for the state-of-the-art algorithms evaluated.

MD-kNN: An Instance-Based Approach for Multi-Dimensional Classification

Bin-Bin Jia, Min-Ling Zhang

Responsive image

Auto-TLDR; MD-kNN: Adapting Instance-based Techniques for Multi-dimensional Classification

Slides Poster Similar

Multi-dimensional classification (MDC) deals with the problem where each instance is associated with multiple class variables, each of which corresponds to a specific class space. One of the mainstream solutions for MDC is to adapt traditional machine learning techniques to deal with MDC data. In this paper, a first attempt towards adapting instance-based techniques for MDC is investigated, and a new approach named MD-kNN is proposed. Specifically, MD-kNN identifies unseen instance's k nearest neighbors and obtains its corresponding kNN counting statistics for each class space, based on which maximum a posteriori (MAP) inference is made for each pair of class spaces. After that, the class label w.r.t. each class space is determined by synergizing predictions from the learned classifiers via consulting empirical kNN accuracy. Comparative studies over ten benchmark data sets clearly validate MD-kNN's effectiveness.

Budgeted Batch Mode Active Learning with Generalized Cost and Utility Functions

Arvind Agarwal, Shashank Mujumdar, Nitin Gupta, Sameep Mehta

Responsive image

Auto-TLDR; Active Learning Based on Utility and Cost Functions

Slides Poster Similar

Active learning reduces the labeling cost by actively querying labels for the most valuable data points. Typical active learning methods select the most informative examples one-at-a-time, their batch variants exist where a set of most informative points are selected. These points are selected in such a way that when added to the training data along with their labels, they provide maximum benefit to the underlying model. In this paper, we present a learning framework that actively selects optimal set of examples (in a batch) within a given budget, based on given utility and cost functions. The framework is generic enough to incorporate any utility and any cost function defined on a set of examples. Furthermore, we propose a novel utility function based on the Facility Location problem that considers three important characteristics of utility i.e., diversity, density and point utility. We also propose a novel cost function, by formulating the cost computation problem as an optimization problem, the solution to which turns out to be the minimum spanning tree. Thus, our framework provides the optimal batch of points within the given budget based on the cost and utility functions. We evaluate our method on several data sets and show its superior performance over baseline methods.

PIF: Anomaly detection via preference embedding

Filippo Leveni, Luca Magri, Giacomo Boracchi, Cesare Alippi

Responsive image

Auto-TLDR; PIF: Anomaly Detection with Preference Embedding for Structured Patterns

Slides Poster Similar

We address the problem of detecting anomalies with respect to structured patterns. To this end, we conceive a novel anomaly detection method called PIF, that combines the advantages of adaptive isolation methods with the flexibility of preference embedding. Specifically, we propose to embed the data in a high dimensional space where an efficient tree-based method, PI-FOREST, is employed to compute an anomaly score. Experiments on synthetic and real datasets demonstrate that PIF favorably compares with state-of-the-art anomaly detection techniques, and confirm that PI-FOREST is better at measuring arbitrary distances and isolate points in the preference space.

Minority Class Oriented Active Learning for Imbalanced Datasets

Umang Aggarwal, Adrian Popescu, Celine Hudelot

Responsive image

Auto-TLDR; Active Learning for Imbalanced Datasets

Slides Poster Similar

Active learning aims to optimize the dataset annotation process when resources are constrained. Most existing methods are designed for balanced datasets. Their practical applicability is limited by the fact that a majority of real-life datasets are actually imbalanced. Here, we introduce a new active learning method which is designed for imbalanced datasets. It favors samples likely to be in minority classes so as to reduce the imbalance of the labeled subset and create a better representation for these classes. We also compare two training schemes for active learning: (1) the one commonly deployed in deep active learning using model fine tuning for each iteration and (2) a scheme which is inspired by transfer learning and exploits generic pre-trained models and train shallow classifiers for each iteration. Evaluation is run with three imbalanced datasets. Results show that the proposed active learning method outperforms competitive baselines. Equally interesting, they also indicate that the transfer learning training scheme outperforms model fine tuning if features are transferable from the generic dataset to the unlabeled one. This last result is surprising and should encourage the community to explore the design of deep active learning methods.

Attribute-Based Quality Assessment for Demographic Estimation in Face Videos

Fabiola Becerra-Riera, Annette Morales-González, Heydi Mendez-Vazquez, Jean-Luc Dugelay

Responsive image

Auto-TLDR; Facial Demographic Estimation in Video Scenarios Using Quality Assessment

Slides Similar

Most existing works regarding facial demographic estimation are focused on still image datasets, although nowadays the need to analyze video content in real applications is increasing. We propose to tackle gender, age and ethnicity estimation in the context of video scenarios. Our main contribution is to use an attribute-specific quality assessment procedure to select best quality frames from a video sequence for each of the three demographic modalities. Best quality frames are classified with fine-tuned MobileNet models and a final video prediction is obtained with a majority voting strategy among the best selected frames. Our validation on three different datasets and our comparison with state-of-the-art models, show the effectiveness of the proposed demographic classifiers and the quality pipeline, which allows to reduce both: the number of frames to be classified and the processing time in practical applications; and improves the soft biometrics prediction accuracy.

Learning to Sort Handwritten Text Lines in Reading Order through Estimated Binary Order Relations

Lorenzo Quirós, Enrique Vidal

Responsive image

Auto-TLDR; Automatic Reading Order of Text Lines in Handwritten Text Documents

Slides Similar

Recent advances in Handwritten Text Recognition and Document Layout Analysis make it possible to extract information from digitized documents and make them accessible beyond the archive shelves. But the reading order of the elements in those documents still is an open problem that has to be solved in order to provide that information with the correct structure. Most of the studies on the reading order task are rule-base approaches that focus on printed documents, while less attention has been paid to handwritten text documents. In this work we propose a new approach to automatically determine the reading order of text lines in handwritten text documents. The task is approached as a sorting problem where the order-relation operator is learned directly from examples. We demonstrate the effectiveness of our method on three different datasets.

On Learning Random Forests for Random Forest Clustering

Manuele Bicego, Francisco Escolano

Responsive image

Auto-TLDR; Learning Random Forests for Clustering

Slides Poster Similar

In this paper we study the poorly investigated problem of learning Random Forests for distance-based Random Forest clustering. We studied both classic schemes as well as alternative approaches, novel in this context. In particular, we investigated the suitability of Gaussian Density Forests, Random Forests specifically designed for density estimation. Further, we introduce a novel variant of Random Forest, based on an effective non parametric by-pass estimator of the Renyi entropy, which can be useful when the parametric assumption is too strict. An empirical evaluation involving different datasets and different RF-clustering strategies confirms that the learning step is crucial for RF-clustering. We also present a set of practical guidelines useful to determine the most suitable variant of RF-clustering according to the problem under examination.

Rank-Based Ordinal Classification

Joan Serrat, Idoia Ruiz

Responsive image

Auto-TLDR; Ordinal Classification with Order

Slides Poster Similar

Differently from the regular classification task, in ordinal classification there is an order in the classes. As a consequence not all classification errors matter the same: a predicted class close to the groundtruth one is better than predicting a farther away class. To account for this, most previous works employ loss functions based on the absolute difference between the predicted and groundtruth class {\em labels}. We argue that there are many cases in ordinal classification where label values are arbitrary (for instance 1\ldots $C$, being $C$ the number of classes) and thus such loss functions may not be the best choice. We instead propose a network architecture that produces not a single class prediction but an ordered vector, or ranking, of all the possible classes from most to less likely. This is tanks to a loss function that compares groundtruth and predicted rankings of these class labels, not the labels themselves. Another advantage of this new formulation is that we can enforce consistency in the predictions, namely, predicted rankings come from some unimodal vector of scores with mode at the groundtruth class. We compare with the state of the art ordinal classification methods, showing that ours attains equal or better performance, as measured by common ordinal classification metrics, on three benchmark datasets. Furthermore, it is also suitable for a new task on image aesthetics assessment, \textit{i.e.}, most voted score prediction. Finally, we also apply it to building damage assessment from satellite images, providing an analysis of its performance depending on the degree of imbalance of the dataset.

3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties

Soha Sadat Mahdi, Nele Nauwelaers, Philip Joris, Giorgos Bouritsas, Imperial London, Sergiy Bokhnyak, Susan Walsh, Mark Shriver, Michael Bronstein, Peter Claes

Responsive image

Auto-TLDR; Multi-biometric Fusion for Biometric Verification using 3D Facial Mesures

Slides Similar

Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naïve Bayes-based score-fuser.

The eXPose Approach to Crosslier Detection

Antonio Barata, Frank Takes, Hendrik Van Den Herik, Cor Veenman

Responsive image

Auto-TLDR; EXPose: Crosslier Detection Based on Supervised Category Modeling

Slides Poster Similar

Transit of wasteful materials within the European Union is highly regulated through a system of permits. Waste processing costs vary greatly depending on the waste category of a permit. Therefore, companies may have a financial incentive to allege transporting waste with erroneous categorisation. Our goal is to assist inspectors in selecting potentially manipulated permits for further investigation, making their task more effective and efficient. Due to data limitations, a supervised learning approach based on historical cases is not possible. Standard unsupervised approaches, such as outlier detection and data quality-assurance techniques, are not suited since we are interested in targeting non-random modifications in both category and category-correlated features. For this purpose we (1) introduce the concept of crosslier: an anomalous instance of a category which lies across other categories; (2) propose eXPose: a novel approach to crosslier detection based on supervised category modelling; and (3) present the crosslier diagram: a visualisation tool specifically designed for domain experts to easily assess crossliers. We compare eXPose against traditional outlier detection methods in various benchmark datasets with synthetic crossliers and show the superior performance of our method in targeting these instances.

Supervised Feature Embedding for Classification by Learning Rank-Based Neighborhoods

Ghazaal Sheikhi, Hakan Altincay

Responsive image

Auto-TLDR; Supervised Feature Embedding with Representation Learning of Rank-based Neighborhoods

Slides Similar

In feature embedding, the recovery of associated discriminative information in the reduced subspace is critical for downstream classifiers. In this study, a supervised feature embedding method is proposed inspired by the well-known word embedding technique, word2vec. Proposed embedding method is implemented as representative learning of rank-based neighborhoods. The notion of context words in word2vec is extended into neighboring instances within a given window. Neighborship is defined using ranks of instances rather than their values so that regions with different densities are captured properly. Each sample is represented by a unique one-hot vector whereas its neighbors are encoded by several two-hot vectors. The two-hot vectors are identical for neighboring samples of the same class. A feed-forward neural network with a continuous projection layer, then learns the mapping from one-hot vectors to multiple two-hot vectors. The hidden layer determines the reduced subspace for the train samples. The obtained transformation is then applied on test data to find a lower-dimensional representation. Proposed method is tested in classification problems on 10 UCI data sets. Experimental results confirm that the proposed method is effective in finding a discriminative representation of the features and outperforms several supervised embedding approaches in terms of classification performance.

Force Banner for the Recognition of Spatial Relations

Robin Deléarde, Camille Kurtz, Laurent Wendling, Philippe Dejean

Responsive image

Auto-TLDR; Spatial Relation Recognition using Force Banners

Slides Similar

Studying the spatial organization of objects in images is fundamental to increase both the understanding of the sensed scene and the accuracy of the perceived similarity between images. This often leads to the problem of spatial relation recognition: given two objects depicted in an image, what is their spatial relation? In this article, we consider this as a classification problem. Instead of considering directly the original image space (or imaging features) to predict the spatial relation, we propose a novel intermediate representation (called Force Banner) modeling rich spatial information between pairs of objects composing a scene. Such a representation captures the relative position between objects using a panel of forces (attraction and repulsion), that take into account the structural shapes of the objects and their distance in a directional fashion. Force Banners are used to feed a classical 2D Convolutional Neural Network (CNN) for the recognition of spatial relations, benefiting from pre-trained models and fine-tuning. Experimental results obtained on a dataset of images with various shapes highlight the interest of this approach, and in particular its benefit to describe spatial information.

Automatic Classification of Human Granulosa Cells in Assisted Reproductive Technology Using Vibrational Spectroscopy Imaging

Marina Paolanti, Emanuele Frontoni, Giorgia Gioacchini, Giorgini Elisabetta, Notarstefano Valentina, Zacà Carlotta, Carnevali Oliana, Andrea Borini, Marco Mameli

Responsive image

Auto-TLDR; Predicting Oocyte Quality in Assisted Reproductive Technology Using Machine Learning Techniques

Slides Poster Similar

In the field of reproductive technology, the biochemical composition of female gametes has been successfully investigated with the use of vibrational spectroscopy. Currently, in assistive reproductive technology (ART), there are no shared criteria for the choice of oocyte, and automatic classification methods for the best quality oocytes have not yet been applied. In this paper, considering the lack of criteria in Assisted Reproductive Technology (ART), we use Machine Learning (ML) techniques to predict oocyte quality for a successful pregnancy. To improve the chances of successful implantation and minimize any complications during the pregnancy, Fourier transform infrared microspectroscopy (FTIRM) analysis has been applied on granulosa cells (GCs) collected along with the oocytes during oocyte aspiration, as it is routinely done in ART, and specific spectral biomarkers were selected by multivariate statistical analysis. A proprietary biological reference dataset (BRD) was successfully collected to predict the best oocyte for a successful pregnancy. Personal health information are stored, maintained and backed up using a cloud computing service. Using a user-friendly interface, the user will evaluate whether or not the selected oocyte will have a positive result. This interface includes a dashboard for retrospective analysis, reporting, real-time processing, and statistical analysis. The experimental results are promising and confirm the efficiency of the method in terms of classification metrics: precision, recall, and F1-score (F1) measures.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

A Multilinear Sampling Algorithm to Estimate Shapley Values

Ramin Okhrati, Aldo Lipani

Responsive image

Auto-TLDR; A sampling method for Shapley values for multilayer Perceptrons

Slides Poster Similar

Shapley values are great analytical tools in game theory to measure the importance of a player in a game. Due to their axiomatic and desirable properties such as efficiency, they have become popular for feature importance analysis in data science and machine learning. However, the time complexity to compute Shapley values based on the original formula is exponential, and as the number of features increases, this becomes infeasible. Castro et al. [1] developed a sampling algorithm, to estimate Shapley values. In this work, we propose a new sampling method based on a multilinear extension technique as applied in game theory. The aim is to provide a more efficient (sampling) method for estimating Shapley values. Our method is applicable to any machine learning model, in particular for either multiclass classifications or regression problems. We apply the method to estimate Shapley values for multilayer Perceptrons (MLPs) and through experimentation on two datasets, we demonstrate that our method provides more accurate estimations of the Shapley values by reducing the variance of the sampling statistics

An Adaptive Video-To-Video Face Identification System Based on Self-Training

Eric Lopez-Lopez, Carlos V. Regueiro, Xosé M. Pardo

Responsive image

Auto-TLDR; Adaptive Video-to-Video Face Recognition using Dynamic Ensembles of SVM's

Slides Poster Similar

Video-to-video face recognition in unconstrained conditions is still a very challenging problem, as the combination of several factors leads to an in general low-quality of facial frames. Besides, in some real contexts, the availability of labelled samples is limited, or data is streaming or it is only available temporarily due to storage constraints or privacy issues. In these cases, dealing with learning as an unsupervised incremental process is a feasible option. This work proposes a system based on dynamic ensembles of SVM's, which uses the ideas of self-training to perform adaptive Video-to-video face identification. The only label requirements of the system are a few frames (5 in our experiments) directly taken from the video-surveillance stream. The system will autonomously use additional video-frames to update and improve the initial model in an unsupervised way. Results show a significant improvement in comparison to other state-of-the-art static models.

Sketch-Based Community Detection Via Representative Node Sampling

Mahlagha Sedghi, Andre Beckus, George Atia

Responsive image

Auto-TLDR; Sketch-based Clustering of Community Detection Using a Small Sketch

Slides Poster Similar

This paper proposes a sketch-based approach to the community detection problem which clusters the full graph through the use of an informative and concise sketch. The reduced sketch is built through an effective sampling approach which selects few nodes that best represent the complete graph and operates on a pairwise node similarity measure based on the average commute time. After sampling, the proposed algorithm clusters the nodes in the sketch, and then infers the cluster membership of the remaining nodes in the full graph based on their aggregate similarity to nodes in the partitioned sketch. By sampling nodes with strong representation power, our approach can improve the success rates over full graph clustering. In challenging cases with large node degree variation, our approach not only maintains competitive accuracy with full graph clustering despite using a small sketch, but also outperforms existing sampling methods. The use of a small sketch allows considerable storage savings, and computational and timing improvements for further analysis such as clustering and visualization. We provide numerical results on synthetic data based on the homogeneous, heterogeneous and degree corrected versions of the stochastic block model, as well as experimental results on real-world data.

ILS-SUMM: Iterated Local Search for Unsupervised Video Summarization

Yair Shemer, Daniel Rotman, Nahum Shimkin

Responsive image

Auto-TLDR; ILS-SUMM: Iterated Local Search for Video Summarization

Slides Similar

In recent years, there has been an increasing interest in building video summarization tools, where the goal is to automatically create a short summary of an input video that properly represents the original content. We consider shot-based video summarization where the summary consists of a subset of the video shots which can be of various lengths. A straightforward approach to maximize the representativeness of a subset of shots is by minimizing the total distance between shots and their nearest selected shots. We formulate the task of video summarization as an optimization problem with a knapsack-like constraint on the total summary duration. Previous studies have proposed greedy algorithms to solve this problem approximately, but no experiments were presented to measure the ability of these methods to obtain solutions with low total distance. Indeed, our experiments on video summarization datasets show that the success of current methods in obtaining results with low total distance still has much room for improvement. In this paper, we develop ILS-SUMM, a novel video summarization algorithm to solve the subset selection problem under the knapsack constraint. Our algorithm is based on the well-known metaheuristic optimization framework -- Iterated Local Search (ILS), known for its ability to avoid weak local minima and obtain a good near-global minimum. Extensive experiments show that our method finds solutions with significantly better total distance than previous methods. Moreover, to indicate the high scalability of ILS-SUMM, we introduce a new dataset consisting of videos of various lengths.

Uncertainty-Aware Data Augmentation for Food Recognition

Eduardo Aguilar, Bhalaji Nagarajan, Rupali Khatun, Marc Bolaños, Petia Radeva

Responsive image

Auto-TLDR; Data Augmentation for Food Recognition Using Epistemic Uncertainty

Slides Poster Similar

Food recognition has recently attracted attention of many researchers. However, high food ambiguity, inter-class variability and intra-class similarity define a real challenge for the Deep learning and Computer Vision algorithms. In order to improve their performance, it is necessary to better understand what the model learns and, from this, to determine the type of data that should be additionally included for being the most beneficial to the training procedure. In this paper, we propose a new data augmentation strategy that estimates and uses the epistemic uncertainty to guide the model training. The method follows an active learning framework, where the new synthetic images are generated from the hard to classify real ones present in the training data based on the epistemic uncertainty. Hence, it allows the food recognition algorithm to focus on difficult images in order to learn their discriminatives features. On the other hand, avoiding data generation from images that do not contribute to the recognition makes it faster and more efficient. We show that the proposed method allows to improve food recognition and provides a better trade-off between micro- and macro-recall measures.

Probability Guided Maxout

Claudio Ferrari, Stefano Berretti, Alberto Del Bimbo

Responsive image

Auto-TLDR; Probability Guided Maxout for CNN Training

Slides Poster Similar

In this paper, we propose an original CNN training strategy that brings together ideas from both dropout-like regularization methods and solutions that learn discriminative features. We propose a dropping criterion that, differently from dropout and its variants, is deterministic rather than random. It grounds on the empirical evidence that feature descriptors with larger $L2$-norm and highly-active nodes are strongly correlated to confident class predictions. Thus, our criterion guides towards dropping a percentage of the most active nodes of the descriptors, proportionally to the estimated class probability. We simultaneously train a per-sample scaling factor to balance the expected output across training and inference. This further allows us to keep high the descriptor's L2-norm, which we show enforces confident predictions. The combination of these two strategies resulted in our ``Probability Guided Maxout'' solution that acts as a training regularizer. We prove the above behaviors by reporting extensive image classification results on the CIFAR10, CIFAR100, and Caltech256 datasets.

A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes

Maximilian Söchting, Stefano Allegretti, Federico Bolelli, Costantino Grana

Responsive image

Auto-TLDR; Entropy Partitioning Decision Tree for Connected Components Labeling

Slides Poster Similar

Connected Components Labeling represents a fundamental step for many Computer Vision and Image Processing pipelines. Since the first appearance of the task in the sixties, many algorithmic solutions to optimize the computational load needed to label an image have been proposed. Among them, block-based scan approaches and decision trees revealed to be some of the most valuable strategies. However, due to the cost of the manual construction of optimal decision trees and the computational limitations of automatic strategies employed in the past, the application of blocks and decision trees has been restricted to small masks, and thus to 2D algorithms. With this paper we present a novel heuristic algorithm based on decision tree learning methodology, called Entropy Partitioning Decision Tree (EPDT). It allows to compute near-optimal decision trees for large scan masks. Experimental results demonstrate that algorithms based on the generated decision trees outperform state-of-the-art competitors.

Time Series Data Augmentation for Neural Networks by Time Warping with a Discriminative Teacher

Brian Kenji Iwana, Seiichi Uchida

Responsive image

Auto-TLDR; Guided Warping for Time Series Data Augmentation

Slides Poster Similar

Neural networks have become a powerful tool in pattern recognition and part of their success is due to generalization from using large datasets. However, unlike other domains, time series classification datasets are often small. In order to address this problem, we propose a novel time series data augmentation called guided warping. While many data augmentation methods are based on random transformations, guided warping exploits the element alignment properties of Dynamic Time Warping (DTW) and shapeDTW, a high-level DTW method based on shape descriptors, to deterministically warp sample patterns. In this way, the time series are mixed by warping the features of a sample pattern to match the time steps of a reference pattern. Furthermore, we introduce a discriminative teacher in order to serve as a directed reference for the guided warping. We evaluate the method on all 85 datasets in the 2015 UCR Time Series Archive with a deep convolutional neural network (CNN) and a recurrent neural network (RNN). The code with an easy to use implementation can be found at https://github.com/uchidalab/time_series_augmentation.

Decision Snippet Features

Pascal Welke, Fouad Alkhoury, Christian Bauckhage, Stefan Wrobel

Responsive image

Auto-TLDR; Decision Snippet Features for Interpretability

Slides Poster Similar

Decision trees excel at interpretability of their prediction results. To achieve required prediction accuracies, however, often large ensembles of decision trees -- random forests -- are considered, reducing interpretability due to large size. Additionally, their size slows down inference on modern hardware and restricts their applicability in low-memory embedded devices. We introduce \emph{Decision Snippet Features}, which are obtained from small subtrees that appear frequently in trained random forests. We subsequently show that linear models on top of these features achieve comparable and sometimes even better predictive performance than the original random forest, while reducing the model size by up to two orders of magnitude.

Online Object Recognition Using CNN-Based Algorithm on High-Speed Camera Imaging

Shigeaki Namiki, Keiko Yokoyama, Shoji Yachida, Takashi Shibata, Hiroyoshi Miyano, Masatoshi Ishikawa

Responsive image

Auto-TLDR; Real-Time Object Recognition with High-Speed Camera Imaging with Population Data Clearing and Data Ensemble

Slides Poster Similar

High-speed camera imaging (e.g., 1,000 fps) is effective to detect and recognize objects moving at high speeds because temporally dense images obtained by a high-speed camera can usually capture the best moment for object detection and recognition. However, the latest recognition algorithms, with their high complexity, are difficult to utilize in real-time applications involving high-speed cameras because a vast amount of images need to be processed with no latency. To tackle this problem, we propose a novel framework for real-time object recognition with high-speed camera imaging. The proposed framework has the key processes of population data cleansing and data ensemble. Population data cleansing improves the recognition accuracy by quantifying the recognizability and by excluding part of the images prior to the recognition process, while data ensemble improves the robustness of object recognition by merging the class probabilities with multiple images of the same object. Experimental results with a real dataset show that our framework is more effective than existing methods.

An Investigation of Feature Selection and Transfer Learning for Writer-Independent Offline Handwritten Signature Verification

Victor Souza, Adriano Oliveira, Rafael Menelau Oliveira E Cruz, Robert Sabourin

Responsive image

Auto-TLDR; Overfitting of SigNet using Binary Particle Swarm Optimization

Slides Poster Similar

SigNet is a state of the art model for feature representation used for handwritten signature verification (HSV). This representation is based on a Deep Convolutional Neural Network (DCNN) and contains 2048 dimensions. When transposed to a dissimilarity space generated by the dichotomy transformation (DT), related to the writer-independent (WI) approach, these features may include redundant information. This paper investigates the presence of overfitting when using Binary Particle Swarm Optimization (BPSO) to perform the feature selection in a wrapper mode. We proposed a method based on a global validation strategy with an external archive to control overfitting during the search for the most discriminant representation. Moreover, an investigation is also carried out to evaluate the use of the selected features in a transfer learning context. The analysis is carried out on a writer-independent approach on the CEDAR, MCYT and GPDS-960 datasets. The experimental results showed the presence of overfitting when no validation is used during the optimization process and the improvement when the global validation strategy with an external archive is used. Also, the space generated after feature selection can be used in a transfer learning context.