A Cheaper Rectified-Nearest-Feature-Line-Segment Classifier Based on Safe Points

Mauricio Orozco-Alzate, Manuele Bicego

Responsive image

Auto-TLDR; Rectified Nearest Feature Line Segment Segment Classifier

Slides Poster

The Rectified Nearest Feature Line Segment (RN-FLS) classifier is an improved version of the Nearest Feature Line (NFL) classification rule. RNFLS corrects two drawbacks of NFL, namely the interpolation and extrapolation inaccuracies, by applying two consecutive processes - segmentation and rectification - to the initial set of feature lines. The main drawbacks of this technique, occurring in both training and test phases, are the high computational cost of the rectification procedure and the exponential explosion of the number of lines. We propose a cheaper version of RNFLS, based on a characterization of the points that should form good lines. The characterization relies on a recent neighborhood-based principle that categorizes objects into four types: safe, borderline, rare and outliers, depending on the position of each point with respect to the other classes. The proposed approach represents a variant of RNFLS in the sense that it only considers lines between safe points. This allows a drastic reduction in the computational burden imposed by RNFLS. We carried out an empirical and thorough analysis based on different public data sets, showing that our proposed approach, in general, is not significantly different from RNFLS, but cheaper since the consideration of likely irrelevant feature line segments is avoided.

Similar papers

PowerHC: Non Linear Normalization of Distances for Advanced Nearest Neighbor Classification

Manuele Bicego, Mauricio Orozco-Alzate

Responsive image

Auto-TLDR; Non linear scaling of distances for advanced nearest neighbor classification

Slides Poster Similar

In this paper we investigate the exploitation of non linear scaling of distances for advanced nearest neighbor classification. Starting from the recently found relation between the Hypersphere Classifier (HC) and the Adaptive Nearest Neighbor rule (ANN), here we propose PowerHC, an improved version of HC in which distances are normalized using a non linear mapping; non linear scaling of data, whose usefulness for feature spaces has been already assessed, has been hardly investigated for distances. A thorough experimental evaluation, involving 24 datasets and a challenging real world scenario of seismic signal classification, confirms the suitability of the proposed approach.

A Novel Random Forest Dissimilarity Measure for Multi-View Learning

Hongliu Cao, Simon Bernard, Robert Sabourin, Laurent Heutte

Responsive image

Auto-TLDR; Multi-view Learning with Random Forest Relation Measure and Instance Hardness

Slides Poster Similar

Multi-view learning is a learning task in which data is described by several concurrent representations. Its main challenge is most often to exploit the complementarities between these representations to help solve a classification/regression task. This is a challenge that can be met nowadays if there is a large amount of data available for learning. However, this is not necessarily true for all real-world problems, where data are sometimes scarce (e.g. problems related to the medical environment). In these situations, an effective strategy is to use intermediate representations based on the dissimilarities between instances. This work presents new ways of constructing these dissimilarity representations, learning them from data with Random Forest classifiers. More precisely, two methods are proposed, which modify the Random Forest proximity measure, to adapt it to the context of High Dimension Low Sample Size (HDLSS) multi-view classification problems. The second method, based on an Instance Hardness measurement, is significantly more accurate than other state-of-the-art measurements including the original RF Proximity measurement and the Large Margin Nearest Neighbor (LMNN) metric learning measurement.

Categorizing the Feature Space for Two-Class Imbalance Learning

Rosa Sicilia, Ermanno Cordelli, Paolo Soda

Responsive image

Auto-TLDR; Efficient Ensemble of Classifiers for Minority Class Inference

Slides Poster Similar

Class imbalance limits the performance of most learning algorithms, resulting in a low recognition rate for samples belonging to the minority class. Although there are different strategies to address this problem, methods that generate ensemble of classifiers have proven to be effective in several applications. This paper presents a new strategy to construct the training set of each classifier in the ensemble by exploiting information in the feature space that can give rise to unreliable classifications, which are determined by a novel algorithm here introduced. The performance of our proposal is compared against multiple standard ensemble approaches on 25 publicly available datasets, showing promising results.

Position-Aware Safe Boundary Interpolation Oversampling

Yongxu Liu, Yan Liu

Responsive image

Auto-TLDR; PABIO: Position-Aware Safe Boundary Interpolation-Based Oversampling for Imbalanced Data

Slides Poster Similar

The class imbalance problem is characterized by the unequal distribution of different class samples, usually resulting in a learning bias toward the majority class. In the past decades, kinds of techniques have been proposed to alleviate this problem. Among those approaches, one promising method, interpolation- based oversampling, proposes to generate synthetic minority samples based on selected reference data, which can effectively solve the skewed distribution of data samples. However, there are several unsolved issues in interpolation-based oversampling. Existing methods often suffer from noisy synthetic samples due to improper data clusterings and unsatisfactory reference selection. In this paper, we propose the position-aware safe boundary interpolation oversampling algorithm (PABIO) to address such issues. We firstly introduce a combined clustering algorithm for minority samples to overcome the shortage of clustering using only distance-based or density-based. Then a position- aware interpolation-based oversampling algorithm is proposed for different minority clusters. Especially, we develop a novel method to leverage the majority class information to learn a safe boundary for generating synthetic points. The proposed PABIO is evaluated on multiple imbalanced data sets classified by two base classifiers: support vector machine (SVM) and C4.5 decision tree classifier. Experimental results show that our proposed PABIO outperforms other baselines among benchmark data sets.

Using Meta Labels for the Training of Weighting Models in a Sample-Specific Late Fusion Classification Architecture

Peter Bellmann, Patrick Thiam, Friedhelm Schwenker

Responsive image

Auto-TLDR; A Late Fusion Architecture for Multiple Classifier Systems

Slides Poster Similar

The performance of multiple classifier systems can be significantly improved by the use of intelligent classifier combination approaches. In this study, we introduce a novel late fusion architecture, which can be interpreted as a combination of the well-known mixture of experts and stacked generalization methods. Our proposed method aggregates the outputs of classification models and corresponding sample-specific weighting models. A special feature of our proposed architecture is that each weighting model is trained on an individual set of meta labels. Using individual sets of meta labels allows each weighting model to separate regions, on which the predictions of the corresponding classification model can be associated to an estimated confidence value. We test our proposed architecture on a set of publicly available databases, including different benchmark data sets. The experimental evaluation shows the effectiveness and potential of our proposed method. Moreover, we discuss different approaches for further improvement of our proposed architecture.

Classifier Pool Generation Based on a Two-Level Diversity Approach

Marcos Monteiro, Alceu Britto, Jean Paul Barddal, Luiz Oliveira, Robert Sabourin

Responsive image

Auto-TLDR; Diversity-Based Pool Generation with Dynamic Classifier Selection and Dynamic Ensemble Selection

Slides Poster Similar

This paper describes a classifier pool generation method guided by the diversity estimated on the data complexity and classifier decisions. First, the behavior of complexity measures is assessed by considering several subsamples of the dataset. The complexity measures with high variability across the subsamples are selected for posterior pool adaptation, where an evolutionary algorithm optimizes diversity in both complexity and decision spaces. A robust experimental protocol with 28 datasets and 20 replications is used to evaluate the proposed method. Results show significant accuracy improvements in 69.4\% of the experiments when Dynamic Classifier Selection and Dynamic Ensemble Selection methods are applied.

Supervised Feature Embedding for Classification by Learning Rank-Based Neighborhoods

Ghazaal Sheikhi, Hakan Altincay

Responsive image

Auto-TLDR; Supervised Feature Embedding with Representation Learning of Rank-based Neighborhoods

Slides Similar

In feature embedding, the recovery of associated discriminative information in the reduced subspace is critical for downstream classifiers. In this study, a supervised feature embedding method is proposed inspired by the well-known word embedding technique, word2vec. Proposed embedding method is implemented as representative learning of rank-based neighborhoods. The notion of context words in word2vec is extended into neighboring instances within a given window. Neighborship is defined using ranks of instances rather than their values so that regions with different densities are captured properly. Each sample is represented by a unique one-hot vector whereas its neighbors are encoded by several two-hot vectors. The two-hot vectors are identical for neighboring samples of the same class. A feed-forward neural network with a continuous projection layer, then learns the mapping from one-hot vectors to multiple two-hot vectors. The hidden layer determines the reduced subspace for the train samples. The obtained transformation is then applied on test data to find a lower-dimensional representation. Proposed method is tested in classification problems on 10 UCI data sets. Experimental results confirm that the proposed method is effective in finding a discriminative representation of the features and outperforms several supervised embedding approaches in terms of classification performance.

A Novel Adaptive Minority Oversampling Technique for Improved Classification in Data Imbalanced Scenarios

Ayush Tripathi, Rupayan Chakraborty, Sunil Kumar Kopparapu

Responsive image

Auto-TLDR; Synthetic Minority OverSampling Technique for Imbalanced Data

Slides Poster Similar

Imbalance in the proportion of training samples belonging to different classes often poses performance degradation of conventional classifiers. This is primarily due to the tendency of the classifier to be biased towards the majority classes in the imbalanced dataset. In this paper, we propose a novel three step technique to address imbalanced data. As a first step we significantly oversample the minority class distribution by employing the traditional Synthetic Minority OverSampling Technique (SMOTE) algorithm using the neighborhood of the minority class samples and in the next step we partition the generated samples using a Gaussian-Mixture Model based clustering algorithm. In the final step synthetic data samples are chosen based on the weight associated with the cluster, the weight itself being determined by the distribution of the majority class samples. Extensive experiments on several standard datasets from diverse domains show the usefulness of the proposed technique in comparison with the original SMOTE and its state-of-the-art variants algorithms.

Memetic Evolution of Training Sets with Adaptive Radial Basis Kernels for Support Vector Machines

Jakub Nalepa, Wojciech Dudzik, Michal Kawulok

Responsive image

Auto-TLDR; Memetic Algorithm for Evolving Support Vector Machines with Adaptive Kernels

Slides Poster Similar

Support vector machines (SVMs) are a supervised learning technique that can be applied in both binary and multi-class classification and regression tasks. SVMs seamlessly handle continuous and categorical variables. Their training is, however, both time- and memory-costly for large training data, and selecting an incorrect kernel function or its hyperparameters leads to suboptimal decision hyperplanes. In this paper, we introduce a memetic algorithm for evolving SVM training sets with adaptive radial basis function kernels to not only make the deployment of SVMs easier for emerging big data applications, but also to improve their generalization abilities over the unseen data. We build upon two observations: first, only a small subset of all training vectors, called the support vectors, contribute to the position of the decision boundary, hence the other vectors can be removed from the training set without deteriorating the performance of the model. Second, selecting different kernel hyperparameters for different training vectors may help better reflect the subtle characteristics of the space while determining the hyperplane. The experiments over almost 100 benchmark and synthetic sets showed that our algorithm delivers models outperforming both SVMs optimized using state-of-the-art evolutionary techniques, and other supervised learners.

Multi-annotator Probabilistic Active Learning

Marek Herde, Daniel Kottke, Denis Huseljic, Bernhard Sick

Responsive image

Auto-TLDR; MaPAL: Multi-annotator Probabilistic Active Learning

Slides Poster Similar

Classifiers require annotations of instances, i.e., class labels, for training. An annotation process is often costly due to its manual execution through human annotators. Active learning (AL) aims at reducing the annotation costs by selecting instances from which the classifier is expected to learn the most. Many AL strategies assume the availability of a single omniscient annotator. In this article, we overcome this limitation by considering multiple error-prone annotators. We propose a novel AL strategy multi-annotator probabilistic active learning (MaPAL). Due to the nature of learning with error-prone annotators, it must not only select instances but annotators, too. MaPAL builds on a decision-theoretic framework and selects instance-annotator pairs maximizing the classifier's expected performance. Experiments on a variety of data sets demonstrate MaPAL's superior performance compared to five related AL strategies.

On Learning Random Forests for Random Forest Clustering

Manuele Bicego, Francisco Escolano

Responsive image

Auto-TLDR; Learning Random Forests for Clustering

Slides Poster Similar

In this paper we study the poorly investigated problem of learning Random Forests for distance-based Random Forest clustering. We studied both classic schemes as well as alternative approaches, novel in this context. In particular, we investigated the suitability of Gaussian Density Forests, Random Forests specifically designed for density estimation. Further, we introduce a novel variant of Random Forest, based on an effective non parametric by-pass estimator of the Renyi entropy, which can be useful when the parametric assumption is too strict. An empirical evaluation involving different datasets and different RF-clustering strategies confirms that the learning step is crucial for RF-clustering. We also present a set of practical guidelines useful to determine the most suitable variant of RF-clustering according to the problem under examination.

MD-kNN: An Instance-Based Approach for Multi-Dimensional Classification

Bin-Bin Jia, Min-Ling Zhang

Responsive image

Auto-TLDR; MD-kNN: Adapting Instance-based Techniques for Multi-dimensional Classification

Slides Poster Similar

Multi-dimensional classification (MDC) deals with the problem where each instance is associated with multiple class variables, each of which corresponds to a specific class space. One of the mainstream solutions for MDC is to adapt traditional machine learning techniques to deal with MDC data. In this paper, a first attempt towards adapting instance-based techniques for MDC is investigated, and a new approach named MD-kNN is proposed. Specifically, MD-kNN identifies unseen instance's k nearest neighbors and obtains its corresponding kNN counting statistics for each class space, based on which maximum a posteriori (MAP) inference is made for each pair of class spaces. After that, the class label w.r.t. each class space is determined by synergizing predictions from the learned classifiers via consulting empirical kNN accuracy. Comparative studies over ten benchmark data sets clearly validate MD-kNN's effectiveness.

Boundary Bagging to Address Training Data Issues in Ensemble Classification

Samia Boukir, Wei Feng

Responsive image

Auto-TLDR; Bagging Ensemble Learning for Multi-Class Imbalanced Classification

Poster Similar

The characteristics of training data is a fundamental consideration when constructing any supervised classifier. Class mislabelling and imbalance are major training data issues that often adversely affect machine learning algorithms, including ensembles. This work proposes extended bagging algorithms to better handle noisy and multi-class imbalanced classification tasks. These algorithms upgrade the sampling procedure by taking benefit of the confidence in ensemble classification outcome. The underlying idea is that a bagging ensemble learning algorithm can achieve greater performance if it is allowed to choose the data from which it learns. The effectiveness of the proposed methods is demonstrated in performing classification on 10 various data sets.

Adaptive Matching of Kernel Means

Miao Cheng, Xinge You

Responsive image

Auto-TLDR; Adaptive Matching of Kernel Means for Knowledge Discovery and Feature Learning

Slides Poster Similar

As a promising step, the performance of data analysis and feature learning are able to be improved if certain pattern matching mechanism is available. One of the feasible solutions can refer to the importance estimation of instances, and consequently, kernel mean matching (KMM) has become an important method for knowledge discovery and novelty detection in general. Furthermore, the existing KMM methods have focused on concrete learning frameworks. In this work, a novel approach to adaptive matching of kernel means is proposed, and selected data with high importance are adopted to achieve calculation efficiency with optimization. In addition, scalable learning can be conducted in proposed method as a generalized solution with appended data. The experimental results on a wide variety of real-world data sets demonstrate the proposed method is able to give outstanding performance compared with several state-of-the-art methods, while calculation efficiency can be preserved.

PIF: Anomaly detection via preference embedding

Filippo Leveni, Luca Magri, Giacomo Boracchi, Cesare Alippi

Responsive image

Auto-TLDR; PIF: Anomaly Detection with Preference Embedding for Structured Patterns

Slides Poster Similar

We address the problem of detecting anomalies with respect to structured patterns. To this end, we conceive a novel anomaly detection method called PIF, that combines the advantages of adaptive isolation methods with the flexibility of preference embedding. Specifically, we propose to embed the data in a high dimensional space where an efficient tree-based method, PI-FOREST, is employed to compute an anomaly score. Experiments on synthetic and real datasets demonstrate that PIF favorably compares with state-of-the-art anomaly detection techniques, and confirm that PI-FOREST is better at measuring arbitrary distances and isolate points in the preference space.

Mean Decision Rules Method with Smart Sampling for Fast Large-Scale Binary SVM Classification

Alexandra Makarova, Mikhail Kurbakov, Valentina Sulimova

Responsive image

Auto-TLDR; Improving Mean Decision Rule for Large-Scale Binary SVM Problems

Slides Poster Similar

This paper relies on the Mean Decision Rule (MDR) method for solving large-scale binary SVM problems. It consists in taking small random samples of the full dataset and separate training for each of them with consecutive averaging the respective individual decision rules to obtain a final one. This paper proposes two new approaches to improve it. The first proposed approach is a new sampling technique that exploits SVM and MDR properties to fast form so called smart samples by selecting only the objects, that are candidates to be the support ones. The proposed technique essentially increases MDR convergence and allows to reach the highest quality in less time. In the case of kernel-based MDR (KMDR) the proposed sampling technique allows additionally to reduce the number of support objects in the final decision rule and, as a result, to decrease the recognition time. The second proposed approach is a new data strategy to accelerate random access to large datasets stored in the traditional libsvm format. The proposed strategy allows to quickly extract random subsets of objects from a file and load them into RAM, and is it also suitable for any sampling-based methods, including stochastic gradient methods. Joint using of the proposed approaches with (K)MDR allows to obtain the best (or near the best) decision of large-scale binary SVM problems faster, compared to the existing SVM solvers.

Killing Four Birds with One Gaussian Process: The Relation between Different Test-Time Attacks

Kathrin Grosse, Michael Thomas Smith, Michael Backes

Responsive image

Auto-TLDR; Security of Gaussian Process Classifiers against Attack Algorithms

Slides Poster Similar

In machine learning (ML) security, attacks like evasion, model stealing or membership inference are generally studied in individually. Previous work has also shown a relationship between some attacks and decision function curvature of the targeted model. Consequently, we study an ML model allowing direct control over the decision surface curvature: Gaussian Process classifiers (GPCs). For evasion, we find that changing GPC's curvature to be robust against one attack algorithm boils down to enabling a different norm or attack algorithm to succeed. This is backed up by our formal analysis showing that static security guarantees are opposed to learning. Concerning intellectual property, we show formally that lazy learning does not necessarily leak all information when applied. In practice, often a seemingly secure curvature can be found. For example, we are able to secure GPC against empirical membership inference by proper configuration. In this configuration, however, the GPC's hyper-parameters are leaked, e.g. model reverse engineering succeeds. We conclude that attacks on classification should not be studied in isolation, but in relation to each other.

How to Define a Rejection Class Based on Model Learning?

Sarah Laroui, Xavier Descombes, Aurelia Vernay, Florent Villiers, Francois Villalba, Eric Debreuve

Responsive image

Auto-TLDR; An innovative learning strategy for supervised classification that is able, by design, to reject a sample as not belonging to any of the known classes

Slides Poster Similar

In supervised classification, the learning process typically trains a classifier to optimize the accuracy of classifying data into the classes that appear in the learning set, and only them. While this framework fits many use cases, there are situations where the learning process is knowingly performed using a learning set that only represents the data that have been observed so far among a virtually unconstrained variety of possible samples. It is then crucial to define a classifier which has the ability to reject a sample, i.e., to classify it into a rejection class that has not been yet defined. Although obvious solutions can add this ability a posteriori to a classifier that has been learned classically, a better approach seems to directly account for this requirement in the classifier design. In this paper, we propose an innovative learning strategy for supervised classification that is able, by design, to reject a sample as not belonging to any of the known classes. For that, we rely on modeling each class as the combination of a probability density function (PDF) and a threshold that is computed with respect to the other classes. Several alternatives are proposed and compared in this framework. A comparison with straightforward approaches is also provided.

3CS Algorithm for Efficient Gaussian Process Model Retrieval

Fabian Berns, Kjeld Schmidt, Ingolf Bracht, Christian Beecks

Responsive image

Auto-TLDR; Efficient retrieval of Gaussian Process Models for large-scale data using divide-&-conquer-based approach

Slides Poster Similar

Gaussian Process Models (GPMs) have been applied for various pattern recognition tasks due to their analytical tractability, ability to quantify uncertainty for their own results as well as to subsume prominent other regression techniques. Despite these promising prospects their super-quadratic computation time complexity for model selection and evaluation impedes its broader application for more than a few thousand data points. Although there have been many proposals towards Gaussian Processes for large-scale data, those only offer a linearly scaling improvement to a cubical scaling problem. In particular, solutions like the Nystrom approximation or sparse matrices are only taking fractions of the given data into account and subsequently lead to inaccurate models. In this paper, we thus propose a divide-&-conquer-based approach, that allows to efficiently retrieve GPMs for large-scale data. The resulting model is composed of independent pattern representations for non-overlapping segments of the given data and consequently reduces computation time significantly. Our performance analysis indicates that our proposal is able to outperform state-of-the-art algorithms for GPM retrieval with respect to the qualities of efficiency and accuracy.

Proximity Isolation Forests

Antonella Mensi, Manuele Bicego, David Tax

Responsive image

Auto-TLDR; Proximity Isolation Forests for Non-vectorial Data

Slides Poster Similar

Isolation Forests are a very successful approach for solving outlier detection tasks. Isolation Forests are based on classical Random Forest classifiers that require feature vectors as input. There are many situations where vectorial data is not readily available, for instance when dealing with input sequences or strings. In these situations, one can extract higher level characteristics from the input, which is typically hard and often loses valuable information. An alternative is to define a proximity between the input objects, which can be more intuitive. In this paper we propose the Proximity Isolation Forests that extend the Isolation Forests to non-vectorial data. The introduced methodology has been thoroughly evaluated on 8 different problems and it achieves very good results also when compared to other techniques.

Algorithm Recommendation for Data Streams

Jáder Martins Camboim De Sá, Andre Luis Debiaso Rossi, Gustavo Enrique De Almeida Prado Alves Batista, Luís Paulo Faina Garcia

Responsive image

Auto-TLDR; Meta-Learning for Algorithm Selection in Time-Changing Data Streams

Slides Poster Similar

In the last decades, many companies are taking advantage of massive data generation at high frequencies through knowledge discovery to identify valuable information. Machine learning techniques can be employed for knowledge discovery, since they are able to extract patterns from data and induce models to predict future events. However, dynamic and evolving environments generate streams of data that usually are non-stationary. Models induced in these scenarios may perish over time due to seasonality or concept drift. The periodic retraining could help but the fixed algorithm's hypothesis space could no longer be appropriate. An alternative solution is to use meta-learning for periodic algorithm selection in time-changing environments, choosing the bias that best suits the current data. In this paper, we present an enhanced framework for data streams algorithm selection based on MetaStream. Our approach uses meta-learning and incremental learning to actively select the best algorithm for the current concept in a time-changing. Different from previous works, a set of cutting edge meta-features and an incremental learning approach in the meta-level based on LightGBM are used. The results show that this new strategy can improve the recommendation of the best algorithm more accurately in time-changing data.

Inferring Functional Properties from Fluid Dynamics Features

Andrea Schillaci, Maurizio Quadrio, Carlotta Pipolo, Marcello Restelli, Giacomo Boracchi

Responsive image

Auto-TLDR; Exploiting Convective Properties of Computational Fluid Dynamics for Medical Diagnosis

Slides Poster Similar

In a wide range of applied problems involving fluid flows, Computational Fluid Dynamics (CFD) provides detailed quantitative information on the flow field, at various levels of fidelity and computational cost. However, CFD alone cannot predict high-level functional properties of the system that are not easily obtained from the equations of fluid motion. In this work, we present a data-driven framework to extract additional information, such as medical diagnostic output, from CFD solutions. The task is made difficult by the huge data dimensionality of CFD, together with the limited amount of training data implied by its high computational cost. By pursuing a traditional ML pipeline of pre-processing, feature extraction, and model training, we demonstrate that informative features can be extracted from CFD data. Two experiments, pertaining to different application domains, support the claim that the convective properties implicit into a CFD solution can be leveraged to retrieve functional information for which an analytical definition is missing. Despite the preliminary nature of our study and the relative simplicity of both the geometrical and CFD models, for the first time we demonstrate that the combination of ML and CFD can diagnose a complex system in terms of high-level functional information.

The eXPose Approach to Crosslier Detection

Antonio Barata, Frank Takes, Hendrik Van Den Herik, Cor Veenman

Responsive image

Auto-TLDR; EXPose: Crosslier Detection Based on Supervised Category Modeling

Slides Poster Similar

Transit of wasteful materials within the European Union is highly regulated through a system of permits. Waste processing costs vary greatly depending on the waste category of a permit. Therefore, companies may have a financial incentive to allege transporting waste with erroneous categorisation. Our goal is to assist inspectors in selecting potentially manipulated permits for further investigation, making their task more effective and efficient. Due to data limitations, a supervised learning approach based on historical cases is not possible. Standard unsupervised approaches, such as outlier detection and data quality-assurance techniques, are not suited since we are interested in targeting non-random modifications in both category and category-correlated features. For this purpose we (1) introduce the concept of crosslier: an anomalous instance of a category which lies across other categories; (2) propose eXPose: a novel approach to crosslier detection based on supervised category modelling; and (3) present the crosslier diagram: a visualisation tool specifically designed for domain experts to easily assess crossliers. We compare eXPose against traditional outlier detection methods in various benchmark datasets with synthetic crossliers and show the superior performance of our method in targeting these instances.

Towards Tackling Multi-Label Imbalances in Remote Sensing Imagery

Dominik Koßmann, Thorsten Wilhelm, Gernot Fink

Responsive image

Auto-TLDR; Class imbalance in land cover datasets using attribute encoding schemes

Slides Poster Similar

Recent advances in automated image analysis have lead to an increased number of proposed datasets in remote sensing applications. This permits the successful employment of data hungry state-of-the-art deep neural networks. However, the Earth is not covered equally by semantically meaningful classes. Thus, many land cover datasets suffer from a severe class imbalance. We show that by taking appropriate measures, the performance in the minority classes can be improved by up to 30 percent without affecting the performance in the majority classes strongly. Additionally, we investigate the use of an attribute encoding scheme to represent the inherent class hierarchies commonly observed in land cover analysis.

Supervised Classification Using Graph-Based Space Partitioning for Multiclass Problems

Nicola Yanev, Ventzeslav Valev, Adam Krzyzak, Karima Ben Suliman

Responsive image

Auto-TLDR; Box Classifier for Multiclass Classification

Slides Poster Similar

We introduce and investigate in multiclass setting an efficient classifier which partitions the training data by means of multidimensional parallelepipeds called boxes. We show that multiclass classification problem at hand can be solved by integrating the heuristic minimum clique cover approach and the k-nearest neighbor rule. Our algorithm is motivated an algorithm for partitioning a graph into a minimal number of maximal. The main advantage of the new classifier called Box classifier is that it optimally utilizes the geometrical structure of the training set by decomposing the l-class problem (l > 2) into l binary classification problems. We discuss computational complexity of the proposed Box classifier. The extensive experiments performed on the simulated and real data for binary and multiclass problems show that in almost all cases the Box classifier performs significantly better than k-NN, SVM and decision trees.

Learning Dictionaries of Kinematic Primitives for Action Classification

Alessia Vignolo, Nicoletta Noceti, Alessandra Sciutti, Francesca Odone, Giulio Sandini

Responsive image

Auto-TLDR; Action Understanding using Visual Motion Primitives

Slides Poster Similar

This paper proposes a method based on visual motion primitives to address the problem of action understanding. The approach builds in an unsupervised way a dictionary of kinematic primitives from a set of sub-movements obtained by segmenting the velocity profile of an action on the basis of local minima derived directly from the optical flow. The dictionary is then used to describe each sub-movement as a linear combination of atoms using sparse coding. The descriptive capability of the proposed motion representation is experimentally validated on the MoCA dataset, a collection of synchronized multi-view videos and motion capture data of cooking activities. The results show that the approach, despite its simplicity, has a good performance in action classification, especially when the motion primitives are combined over time. Also, the method is proved to be tolerant to view point changes, and can thus support cross-view action recognition. Overall, the method may be seen as a backbone of a general approach to action understanding, with potential applications in robotics.

A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes

Maximilian Söchting, Stefano Allegretti, Federico Bolelli, Costantino Grana

Responsive image

Auto-TLDR; Entropy Partitioning Decision Tree for Connected Components Labeling

Slides Poster Similar

Connected Components Labeling represents a fundamental step for many Computer Vision and Image Processing pipelines. Since the first appearance of the task in the sixties, many algorithmic solutions to optimize the computational load needed to label an image have been proposed. Among them, block-based scan approaches and decision trees revealed to be some of the most valuable strategies. However, due to the cost of the manual construction of optimal decision trees and the computational limitations of automatic strategies employed in the past, the application of blocks and decision trees has been restricted to small masks, and thus to 2D algorithms. With this paper we present a novel heuristic algorithm based on decision tree learning methodology, called Entropy Partitioning Decision Tree (EPDT). It allows to compute near-optimal decision trees for large scan masks. Experimental results demonstrate that algorithms based on the generated decision trees outperform state-of-the-art competitors.

A Multilinear Sampling Algorithm to Estimate Shapley Values

Ramin Okhrati, Aldo Lipani

Responsive image

Auto-TLDR; A sampling method for Shapley values for multilayer Perceptrons

Slides Poster Similar

Shapley values are great analytical tools in game theory to measure the importance of a player in a game. Due to their axiomatic and desirable properties such as efficiency, they have become popular for feature importance analysis in data science and machine learning. However, the time complexity to compute Shapley values based on the original formula is exponential, and as the number of features increases, this becomes infeasible. Castro et al. [1] developed a sampling algorithm, to estimate Shapley values. In this work, we propose a new sampling method based on a multilinear extension technique as applied in game theory. The aim is to provide a more efficient (sampling) method for estimating Shapley values. Our method is applicable to any machine learning model, in particular for either multiclass classifications or regression problems. We apply the method to estimate Shapley values for multilayer Perceptrons (MLPs) and through experimentation on two datasets, we demonstrate that our method provides more accurate estimations of the Shapley values by reducing the variance of the sampling statistics

Classification of Spatially Enriched Pixel Time Series with Convolutional Neural Networks

Mohamed Chelali, Camille Kurtz, Anne Puissant, Nicole Vincent

Responsive image

Auto-TLDR; Spatio-Temporal Features Extraction from Satellite Image Time Series Using Random Walk

Slides Poster Similar

Satellite Image Time Series (SITS), MRI sequences, and more generally image time series, constitute 2D+t data providing spatial and temporal information about an observed scene. Given a pattern recognition task such as image classification, considering jointly such rich information is crucial during the decision process. Nevertheless, due to the complex representation of the data-cube, spatio-temporal features extraction from 2D+t data remains difficult to handle. We present in this article an approach to learn such features from this data, and then to proceed to their classification. Our strategy consists in enriching pixel time series with spatial information. It is based on Random Walk to build a novel segment-based representation of the data, passing from a 2D+t dimension to a 2D one, without loosing too much spatial information. Such new representation is then involved in an end-to-end learning process with a classical 2D Convolutional Neural Network (CNN) in order to learn spatio-temporal features for the classification of image time series. Our approach is evaluated on a remote sensing application for the mapping of agricultural crops. Thanks to a visual attention mechanism, the proposed $2D$ spatio-temporal representation makes also easier the interpretation of a SITS to understand spatio-temporal phenomenons related to soil management practices.

Weakly Supervised Learning through Rank-Based Contextual Measures

João Gabriel Camacho Presotto, Lucas Pascotti Valem, Nikolas Gomes De Sá, Daniel Carlos Guimaraes Pedronette, Joao Paulo Papa

Responsive image

Auto-TLDR; Exploiting Unlabeled Data for Weakly Supervised Classification of Multimedia Data

Slides Poster Similar

Machine learning approaches have achieved remarkable advances over the last decades, especially in supervised learning tasks such as classification. Meanwhile, multimedia data and applications experienced an explosive growth, becoming ubiquitous in diverse domains. Due to the huge increase in multimedia data collections and the lack of labeled data in several scenarios, creating methods capable of exploiting the unlabeled data and operating under weakly supervision is imperative. In this work, we propose a rank-based model to exploit contextual information encoded in the unlabeled data in order to perform weakly supervised classification. We employ different rank-based correlation measures for identifying strong similarities relationships and expanding the labeled set in an unsupervised way. Subsequently, the extended labeled set is used by a classifier to achieve better accuracy results. The proposed weakly supervised approach was evaluated on multimedia classification tasks, considering several combinations of rank correlation measures and classifiers. An experimental evaluation was conducted on 4 public image datasets and different features. Very positive gains were achieved in comparison with various semi-supervised and supervised classifiers taken as baselines when considering the same amount of labeled data.

Automatic Classification of Human Granulosa Cells in Assisted Reproductive Technology Using Vibrational Spectroscopy Imaging

Marina Paolanti, Emanuele Frontoni, Giorgia Gioacchini, Giorgini Elisabetta, Notarstefano Valentina, Zacà Carlotta, Carnevali Oliana, Andrea Borini, Marco Mameli

Responsive image

Auto-TLDR; Predicting Oocyte Quality in Assisted Reproductive Technology Using Machine Learning Techniques

Slides Poster Similar

In the field of reproductive technology, the biochemical composition of female gametes has been successfully investigated with the use of vibrational spectroscopy. Currently, in assistive reproductive technology (ART), there are no shared criteria for the choice of oocyte, and automatic classification methods for the best quality oocytes have not yet been applied. In this paper, considering the lack of criteria in Assisted Reproductive Technology (ART), we use Machine Learning (ML) techniques to predict oocyte quality for a successful pregnancy. To improve the chances of successful implantation and minimize any complications during the pregnancy, Fourier transform infrared microspectroscopy (FTIRM) analysis has been applied on granulosa cells (GCs) collected along with the oocytes during oocyte aspiration, as it is routinely done in ART, and specific spectral biomarkers were selected by multivariate statistical analysis. A proprietary biological reference dataset (BRD) was successfully collected to predict the best oocyte for a successful pregnancy. Personal health information are stored, maintained and backed up using a cloud computing service. Using a user-friendly interface, the user will evaluate whether or not the selected oocyte will have a positive result. This interface includes a dashboard for retrospective analysis, reporting, real-time processing, and statistical analysis. The experimental results are promising and confirm the efficiency of the method in terms of classification metrics: precision, recall, and F1-score (F1) measures.

Feature Extraction and Selection Via Robust Discriminant Analysis and Class Sparsity

Ahmad Khoder, Fadi Dornaika

Responsive image

Auto-TLDR; Hybrid Linear Discriminant Embedding for supervised multi-class classification

Slides Poster Similar

The main goal of discriminant embedding is to extract features that can be compact and informative representations of the original set of features. This paper introduces a hybrid scheme for linear feature extraction for supervised multi-class classification. We introduce a unifying criterion that is able to retain the advantages of robust sparse LDA and Inter-class sparsity. Thus, the estimated transformation includes two types of discrimination which are the inter-class sparsity and robust Linear Discriminant Analysis with feature selection. In order to optimize the proposed objective function, we deploy an iterative alternating minimization scheme for estimating the linear transformation and the orthogonal matrix. The introduced scheme is generic in the sense that it can be used for combining and tuning many other linear embedding methods. In the lights of the experiments conducted on six image datasets including faces, objects, and digits, the proposed scheme was able to outperform competing methods in most of the cases.

Sparse-Dense Subspace Clustering

Shuai Yang, Wenqi Zhu, Yuesheng Zhu

Responsive image

Auto-TLDR; Sparse-Dense Subspace Clustering with Piecewise Correlation Estimation

Slides Poster Similar

Subspace clustering refers to the problem of clustering high-dimensional data into a union of low-dimensional subspaces. Current subspace clustering approaches are usually based on a two-stage framework. In the first stage, an affinity matrix is generated from data. In the second one, spectral clustering is applied on the affinity matrix. However, the affinity matrix produced by two-stage methods cannot fully reveal the similarity between data points from the same subspace, resulting in inaccurate clustering. Besides, most approaches fail to solve large-scale clustering problems due to poor efficiency. In this paper, we first propose a new scalable sparse method called Iterative Maximum Correlation (IMC) to learn the affinity matrix from data. Then we develop Piecewise Correlation Estimation (PCE) to densify the intra-subspace similarity produced by IMC. Finally we extend our work into a Sparse-Dense Subspace Clustering (SDSC) framework with a dense stage to optimize the affinity matrix for two-stage methods. We show that IMC is efficient for large-scale tasks, and PCE ensures better performance for IMC. We show the universality of our SDSC framework for current two-stage methods as well. Experiments on benchmark data sets demonstrate the effectiveness of our approaches.

Deep Transfer Learning for Alzheimer’s Disease Detection

Nicole Cilia, Claudio De Stefano, Francesco Fontanella, Claudio Marrocco, Mario Molinara, Alessandra Scotto Di Freca

Responsive image

Auto-TLDR; Automatic Detection of Handwriting Alterations for Alzheimer's Disease Diagnosis using Dynamic Features

Slides Poster Similar

Early detection of Alzheimer’s Disease (AD) is essential in order to initiate therapies that can reduce the effects of such a disease, improving both life quality and life expectancy of patients. Among all the activities carried out in our daily life, handwriting seems one of the first to be influenced by the arise of neurodegenerative diseases. For this reason, the analysis of handwriting and the study of its alterations has become of great interest in this research field in order to make a diagnosis as early as possible. In recent years, many studies have tried to use classification algorithms applied to handwritings to implement decision support systems for AD diagnosis. A key issue for the use of these techniques is the detection of effective features, that allow the system to distinguish the natural handwriting alterations due to age, from those caused by neurodegenerative disorders. In this context, many interesting results have been published in the literature in which the features have been typically selected by hand, generally considering the dynamics of the handwriting process in order to detect motor disorders closely related to AD. Features directly derived from handwriting generation models can be also very helpful for AD diagnosis. It should be remarked, however, that the above features do not consider changes in the shape of handwritten traces, which may occur as a consequence of neurodegenerative diseases, as well as the correlation among shape alterations and changes in the dynamics of the handwriting process. Moving from these considerations, the aim of this study is to verify if the combined use of both shape and dynamic features allows a decision support system to improve performance for AD diagnosis. To this purpose, starting from a database of on-line handwriting samples, we generated for each of them a synthetic off-line colour image, where the colour of each elementary trait encodes, in the three RGB channels, the dynamic information associated to that trait. Finally, we exploited the capability of Deep Neural Networks (DNN) to automatically extract features from raw images. The experimental comparison of the results obtained by using standard features and features extracted according the above procedure, confirmed the effectiveness of our approach.

A Novel Computer-Aided Diagnostic System for Early Assessment of Hepatocellular Carcinoma

Ahmed Alksas, Mohamed Shehata, Gehad Saleh, Ahmed Shaffie, Ahmed Soliman, Mohammed Ghazal, Hadil Abukhalifeh, Abdel Razek Ahmed, Ayman El-Baz

Responsive image

Auto-TLDR; Classification of Liver Tumor Lesions from CE-MRI Using Structured Structural Features and Functional Features

Slides Poster Similar

Early assessment of liver cancer patients with hepatocellular carcinoma (HCC) is of immense importance to provide the proper treatment plan. In this paper, we have developed a two-stage classification computer-aided diagnostic (CAD) system that has the ability to detect and grade the liver observations from multiphase contrast enhanced magnetic resonance imaging (CE-MRI). The proposed approach consists of three main steps. First, a pre-processing is applied to the CE-MRI scans to delineate the tumor lesions that will be used as an ROI across the four different phases of the CE-MRI, (namely, the pre-contrast, late-arterial, portal-venous, and delayed-contrast). Second, a group of three features are modeled to provide a quantitative discrimination between the tumor lesions; namely: i) the tumor appearance that is modeled using a set of texture features, (namely; the first-order histogram, second-order gray-level co-occurrence matrix, and second-order gray-level run-length matrix), to capture any discrimination that may appear in the lesion texture, ii) the spherical harmonics (SH) based shape features that have the ability to describe the shape complexity of the liver tumors, and iii) the functional features that are based on the calculation of the wash-in/wash-out through that evaluate the intensity changes across the post-contrast phases. Finally, the aforementioned individual features were then integrated together to obtain the combined features to be fed to a machine learning classifier towards getting the final diagnostic decision. The proposed CAD system has been tested using hepatic observations that was obtained from 85 participating patients, 34 patients with benign tumors, 34 patients with intermediate tumors and 34 with malignant tumors. Using a random forests based classifier with a leave-one-subject-out (LOSO) cross-validation, the developed CAD system achieved an 87.1% accuracy in distinguishing the malignant, intermediate and benign tumors. The classification performance is then evaluated using k-fold (5/10-fold) cross-validation approach to examine the robustness of the system. The LR-1 lesions were classified from LR-2 benign lesions with 91.2% accuracy, while 85.3% accuracy was achieved differentiating between LR-4 and LR-5 malignant tumors. The obtained results hold a promise of the proposed framework to be reliably used as a noninvasive diagnostic tool for the early detection and grading of liver cancer tumors.

Automatic Annotation of Corpora for Emotion Recognition through Facial Expressions Analysis

Alex Mircoli, Claudia Diamantini, Domenico Potena, Emanuele Storti

Responsive image

Auto-TLDR; Automatic annotation of video subtitles on the basis of facial expressions using machine learning algorithms

Slides Poster Similar

The recent diffusion of social networks has made available an unprecedented amount of user-generated content, which may be analyzed in order to determine people's opinions and emotions about a large variety of topics. Research has made many efforts in defining accurate algorithms for analyzing emotions expressed by users in texts; however, their performance often rely on the existence of large annotated datasets, whose current scarcity represents a major issue. The manual creation of such datasets represents a costly and time-consuming activity and hence there is an increasing demand for techniques for the automatic annotation of corpora. In this work we present a methodology for the automatic annotation of video subtitles on the basis of the analysis of facial expressions of people in videos, with the goal of creating annotated corpora that may be used to train emotion recognition algorithms. Facial expressions are analyzed through machine learning algorithms, on the basis of a set of manually-engineered facial features that are extracted from video frames. The soundness of the proposed methodology has been evaluated through an extensive experimentation aimed at determining the performance on real datasets of each methodological step.

Textual-Content Based Classification of Bundles of Untranscribed of Manuscript Images

José Ramón Prieto Fontcuberta, Enrique Vidal, Vicente Bosch, Carlos Alonso, Carmen Orcero, Lourdes Márquez

Responsive image

Auto-TLDR; Probabilistic Indexing for Text-based Classification of Manuscripts

Slides Poster Similar

Content-based classification of manuscripts is an important task that is generally performed in archives and libraries by experts with a wealth of knowledge on the manuscripts contents. Unfortunately, many manuscript collections are so vast that it is not feasible to rely solely on experts to perform this task. Current approaches for textual-content-based manuscript classification generally require the handwritten images to be first transcribed into text -- but achieving sufficiently accurate transcripts is generally unfeasible for large sets of historical manuscripts. We propose a new approach to automatically perform this classification task which does not rely on any explicit image transcripts. It is based on ``probabilistic indexing'', a relatively novel technology which allows to effectively represent the intrinsic word-level uncertainty generally exhibited by handwritten text images. We assess the performance of this approach on a large collection of complex manuscripts from the Spanish Archivo General de Indias, with promising results.

Compression Strategies and Space-Conscious Representations for Deep Neural Networks

Giosuè Marinò, Gregorio Ghidoli, Marco Frasca, Dario Malchiodi

Responsive image

Auto-TLDR; Compression of Large Convolutional Neural Networks by Weight Pruning and Quantization

Slides Poster Similar

Recent advances in deep learning have made available large, powerful convolutional neural networks (CNN) with state-of-the-art performance in several real-world applications. Unfortunately, these large-sized models have millions of parameters, thus they are not deployable on resource-limited platforms (e.g. where RAM is limited). Compression of CNNs thereby becomes a critical problem to achieve memory-efficient and possibly computationally faster model representations. In this paper, we investigate the impact of lossy compression of CNNs by weight pruning and quantization, and lossless weight matrix representations based on source coding. We tested several combinations of these techniques on four benchmark datasets for classification and regression problems, achieving compression rates up to 165 times, while preserving or improving the model performance.

Multi-Attribute Learning with Highly Imbalanced Data

Lady Viviana Beltran Beltran, Mickaël Coustaty, Nicholas Journet, Juan C. Caicedo, Antoine Doucet

Responsive image

Auto-TLDR; Data Imbalance in Multi-Attribute Deep Learning Models: Adaptation to face each one of the problems derived from imbalance

Slides Poster Similar

Data is one of the most important keys for success when studying a simple or a complex phenomenon. With the use of deep-learning exploding and its democratization, non-computer science experts may struggle to use highly complex deep learning architectures, even when straightforward models offer them suitable performances. In this article, we study the specific and common problem of data imbalance in real databases as most of the bad performance problems are due to the data itself. We review two points: first, when the data contains different levels of imbalance. Classical imbalanced learning strategies cannot be directly applied when using multi-attribute deep learning models, i.e., multi-task and multi-label architectures. Therefore, one of our contributions is our proposed adaptations to face each one of the problems derived from imbalance. Second, we demonstrate that with little to no imbalance, straightforward deep learning models work well. However, for non-experts, these models can be seen as black boxes, where all the effort is put in pre-processing the data. To simplify the problem, we performed the classification task ignoring information that is costly to extract, such as part localization which is widely used in the state of the art of attribute classification. We make use of a widely known attribute database, CUB-200-2011 - CUB as our main use case due to its deeply imbalanced nature, along with two better structured databases: celebA and Awa2. All of them contain multi-attribute annotations. The results of highly fine-grained attribute learning over CUB demonstrate that in the presence of imbalance, by using our proposed strategies is possible to have competitive results against the state of the art, while taking advantage of multi-attribute deep learning models. We also report results for two better-structured databases over which our models over-perform the state of the art.

Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection

Oliver Rippel, Patrick Mertens, Dorit Merhof

Responsive image

Auto-TLDR; Deep Feature Representations for Anomaly Detection in Images

Slides Poster Similar

Anomaly Detection (AD) in images is a fundamental computer vision problem and refers to identifying images and/or image substructures that deviate significantly from the norm. Popular AD algorithms commonly try to learn a model of normality from scratch using task specific datasets, but are limited to semi-supervised approaches employing mostly normal data due to the inaccessibility of anomalies on a large scale combined with the ambiguous nature of anomaly appearance. We follow an alternative approach and demonstrate that deep feature representations learned by discriminative models on large natural image datasets are well suited to describe normality and detect even subtle anomalies. Our model of normality is established by fitting a multivariate Gaussian to deep feature representations of classification networks trained on ImageNet using normal data only in a transfer learning setting. By subsequently applying the Mahalanobis distance as the anomaly score we outperform the current state of the art on the public MVTec AD dataset, achieving an Area Under the Receiver Operating Characteristic curve of 95.8 +- 1.2 % (mean +- SEM) over all 15 classes. We further investigate why the learned representations are discriminative to the AD task using Principal Component Analysis. We find that the principal components containing little variance in normal data are the ones crucial for discriminating between normal and anomalous instances. This gives a possible explanation to the often sub-par performance of AD approaches trained from scratch using normal data only. By selectively fitting a multivariate Gaussian to these most relevant components only, we are able to further reduce model complexity while retaining AD performance. We also investigate setting the working point by selecting acceptable False Positive Rate thresholds based on the multivariate Gaussian assumption.

Leveraging Sequential Pattern Information for Active Learning from Sequential Data

Raul Fidalgo-Merino, Lorenzo Gabrielli, Enrico Checchi

Responsive image

Auto-TLDR; Sequential Pattern Information for Active Learning

Slides Poster Similar

This paper presents a novel active learning technique aimed at the selection of sequences for manual annotation from a database of unlabelled sequences. Supervised machine learning algorithms can employ these sequences to build better models than those based on using random sequences for training. The main contribution of the proposed method is the use of sequential pattern information contained in the database to select representative and diverse sequences for annotation. These two characteristics ensure the proper coverage of the instance space of sequences and, at the same time, avoids over-fitting the trained model. The approach, called SPIAL (Sequential Pattern Information for Active Learning), uses sequential pattern mining algorithms to extract frequently occurring sub-sequences from the database and evaluates how representative and diverse each sequence is, based on this information. The output is a list of sequences for annotation sorted by representativeness and diversity. The algorithm is modular and, unlike current techniques, independent of the features taken into account by the machine learning algorithm that trains the model. Experiments done on well-known benchmarks involving sequential data show that the models trained using SPIAL increase their convergence speed while reducing manual effort by selecting small sets of very informative sequences for annotation. In addition, the computation cost using SPIAL is much lower than for the state-of-the-art algorithms evaluated.

Minority Class Oriented Active Learning for Imbalanced Datasets

Umang Aggarwal, Adrian Popescu, Celine Hudelot

Responsive image

Auto-TLDR; Active Learning for Imbalanced Datasets

Slides Poster Similar

Active learning aims to optimize the dataset annotation process when resources are constrained. Most existing methods are designed for balanced datasets. Their practical applicability is limited by the fact that a majority of real-life datasets are actually imbalanced. Here, we introduce a new active learning method which is designed for imbalanced datasets. It favors samples likely to be in minority classes so as to reduce the imbalance of the labeled subset and create a better representation for these classes. We also compare two training schemes for active learning: (1) the one commonly deployed in deep active learning using model fine tuning for each iteration and (2) a scheme which is inspired by transfer learning and exploits generic pre-trained models and train shallow classifiers for each iteration. Evaluation is run with three imbalanced datasets. Results show that the proposed active learning method outperforms competitive baselines. Equally interesting, they also indicate that the transfer learning training scheme outperforms model fine tuning if features are transferable from the generic dataset to the unlabeled one. This last result is surprising and should encourage the community to explore the design of deep active learning methods.

Unveiling Groups of Related Tasks in Multi-Task Learning

Jordan Frecon, Saverio Salzo, Massimiliano Pontil

Responsive image

Auto-TLDR; Continuous Bilevel Optimization for Multi-Task Learning

Slides Poster Similar

A common approach in multi-task learning is to encourage the tasks to share a low dimensional representation. This has led to the popular method of trace norm regularization, which has proved effective in many applications. In this paper, we extend this approach by allowing the tasks to partition into different groups, within which trace norm regularization is separately applied. We propose a continuous bilevel optimization framework to simultaneously identify groups of related tasks and learn a low dimensional representation within each group. Hinging on recent results on the derivative of generalized matrix functions, we devise a smooth approximation of the upper-level objective via a dual forward-backward algorithm with Bregman distances. This allows us to solve the bilevel problem by a gradient-based scheme. Numerical experiments on synthetic and benchmark datasets support the effectiveness of the proposed method.

Feature Extraction by Joint Robust Discriminant Analysis and Inter-Class Sparsity

Fadi Dornaika, Ahmad Khoder

Responsive image

Auto-TLDR; Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS)

Slides Similar

Feature extraction methods have been successfully applied to many real-world applications. The classical Linear Discriminant Analysis (LDA) and its variants are widely used as feature extraction methods. Although they have been used for different classification tasks, these methods have some shortcomings. The main one is that the projection axes obtained are not informative about the relevance of original features. In this paper, we propose a linear embedding method that merges two interesting properties: Robust LDA and inter-class sparsity. Furthermore, the targeted projection transformation focuses on the most discriminant original features. The proposed method is called Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS). Two kinds of sparsity are explicitly included in the proposed model. The first kind is obtained by imposing the $\ell_{2,1}$ constraint on the projection matrix in order to perform feature ranking. The second kind is obtained by imposing the inter-class sparsity constraint used for getting a common sparsity structure in each class. Comprehensive experiments on five real-world image datasets demonstrate the effectiveness and advantages of our framework over existing linear methods.

Attribute-Based Quality Assessment for Demographic Estimation in Face Videos

Fabiola Becerra-Riera, Annette Morales-González, Heydi Mendez-Vazquez, Jean-Luc Dugelay

Responsive image

Auto-TLDR; Facial Demographic Estimation in Video Scenarios Using Quality Assessment

Slides Similar

Most existing works regarding facial demographic estimation are focused on still image datasets, although nowadays the need to analyze video content in real applications is increasing. We propose to tackle gender, age and ethnicity estimation in the context of video scenarios. Our main contribution is to use an attribute-specific quality assessment procedure to select best quality frames from a video sequence for each of the three demographic modalities. Best quality frames are classified with fine-tuned MobileNet models and a final video prediction is obtained with a majority voting strategy among the best selected frames. Our validation on three different datasets and our comparison with state-of-the-art models, show the effectiveness of the proposed demographic classifiers and the quality pipeline, which allows to reduce both: the number of frames to be classified and the processing time in practical applications; and improves the soft biometrics prediction accuracy.

Learning to Sort Handwritten Text Lines in Reading Order through Estimated Binary Order Relations

Lorenzo Quirós, Enrique Vidal

Responsive image

Auto-TLDR; Automatic Reading Order of Text Lines in Handwritten Text Documents

Slides Similar

Recent advances in Handwritten Text Recognition and Document Layout Analysis make it possible to extract information from digitized documents and make them accessible beyond the archive shelves. But the reading order of the elements in those documents still is an open problem that has to be solved in order to provide that information with the correct structure. Most of the studies on the reading order task are rule-base approaches that focus on printed documents, while less attention has been paid to handwritten text documents. In this work we propose a new approach to automatically determine the reading order of text lines in handwritten text documents. The task is approached as a sorting problem where the order-relation operator is learned directly from examples. We demonstrate the effectiveness of our method on three different datasets.

Watermelon: A Novel Feature Selection Method Based on Bayes Error Rate Estimation and a New Interpretation of Feature Relevance and Redundancy

Xiang Xie, Wilhelm Stork

Responsive image

Auto-TLDR; Feature Selection Using Bayes Error Rate Estimation for Dynamic Feature Selection

Slides Poster Similar

Feature selection has become a crucial part of many classification problems in which high-dimensional datasets may contain tens of thousands of features. In this paper, we propose a novel feature selection method scoring the features through estimating the Bayes error rate based on kernel density estimation. Additionally, we update the scores of features dynamically by quantitatively interpreting the effects of feature relevance and redundancy in a new way. Distinguishing from the common heuristic applied by many feature selection methods, which prefers choosing features that are not relevant to each other, our approach penalizes only monotonically correlated features and rewards any other kind of relevance among features based on Spearman’s rank correlation coefficient and normalized mutual information. We conduct extensive experiments on seventeen diverse classification benchmarks, the results show that our approach overperforms other seventeen popular state-of-the-art feature selection methods in most cases.

Bayesian Active Learning for Maximal Information Gain on Model Parameters

Kasra Arnavaz, Aasa Feragen, Oswin Krause, Marco Loog

Responsive image

Auto-TLDR; Bayesian assumptions for Bayesian classification

Slides Poster Similar

The fact that machine learning models, despite their advancements, are still trained on randomly gathered data is proof that a lasting solution to the problem of optimal data gathering has not yet been found. In this paper, we investigate whether a Bayesian approach to the classification problem can provide assumptions under which one is guaranteed to perform at least as good as random sampling. For a logistic regression model, we show that maximal expected information gain on model parameters is a promising criterion for selecting samples, assuming that our classification model is well-matched to the data. Our derived criterion is closely related to the maximum model change. We experiment with data sets which satisfy this assumption to varying degrees to see how sensitive our performance is to the violation of our assumption in practice.