Weakly Supervised Learning through Rank-Based Contextual Measures

João Gabriel Camacho Presotto, Lucas Pascotti Valem, Nikolas Gomes De Sá, Daniel Carlos Guimaraes Pedronette, Joao Paulo Papa

Responsive image

Auto-TLDR; Exploiting Unlabeled Data for Weakly Supervised Classification of Multimedia Data

Slides Poster

Machine learning approaches have achieved remarkable advances over the last decades, especially in supervised learning tasks such as classification. Meanwhile, multimedia data and applications experienced an explosive growth, becoming ubiquitous in diverse domains. Due to the huge increase in multimedia data collections and the lack of labeled data in several scenarios, creating methods capable of exploiting the unlabeled data and operating under weakly supervision is imperative. In this work, we propose a rank-based model to exploit contextual information encoded in the unlabeled data in order to perform weakly supervised classification. We employ different rank-based correlation measures for identifying strong similarities relationships and expanding the labeled set in an unsupervised way. Subsequently, the extended labeled set is used by a classifier to achieve better accuracy results. The proposed weakly supervised approach was evaluated on multimedia classification tasks, considering several combinations of rank correlation measures and classifiers. An experimental evaluation was conducted on 4 public image datasets and different features. Very positive gains were achieved in comparison with various semi-supervised and supervised classifiers taken as baselines when considering the same amount of labeled data.

Similar papers

Soft Label and Discriminant Embedding Estimation for Semi-Supervised Classification

Fadi Dornaika, Abdullah Baradaaji, Youssof El Traboulsi

Responsive image

Auto-TLDR; Semi-supervised Semi-Supervised Learning for Linear Feature Extraction and Label Propagation

Slides Poster Similar

In recent times, graph-based semi-supervised learning proved to be a powerful paradigm for processing and mining large datasets. The main advantage relies on the fact that these methods can be useful in propagating a small set of known labels to a large set of unlabeled data. The scarcity of labeled data may affect the performance of the semi-learning. This paper introduces a new semi-supervised framework for simultaneous linear feature extraction and label propagation. The proposed method simultaneously estimates a discriminant transformation and the unknown label by exploiting both labeled and unlabeled data. In addition, the unknowns of the learning model are estimated by integrating two types of graph-based smoothness constraints. The resulting semi-supervised model is expected to learn more discriminative information. Experiments are conducted on six public image datasets. These experimental results show that the performance of the proposed method can be better than that of many state-of-the-art graph-based semi-supervised algorithms.

Rethinking Deep Active Learning: Using Unlabeled Data at Model Training

Oriane Siméoni, Mateusz Budnik, Yannis Avrithis, Guillaume Gravier

Responsive image

Auto-TLDR; Unlabeled Data for Active Learning

Slides Poster Similar

Active learning typically focuses on training a model on few labeled examples alone, while unlabeled ones are only used for acquisition. In this work we depart from this setting by using both labeled and unlabeled data during model training across active learning cycles. We do so by using unsupervised feature learning at the beginning of the active learning pipeline and semi-supervised learning at every active learning cycle, on all available data. The former has not been investigated before in active learning, while the study of latter in the context of deep learning is scarce and recent findings are not conclusive with respect to its benefit. Our idea is orthogonal to acquisition strategies by using more data, much like ensemble methods use more models. By systematically evaluating on a number of popular acquisition strategies and datasets, we find that the use of unlabeled data during model training brings a spectacular accuracy improvement in image classification, compared to the differences between acquisition strategies. We thus explore smaller label budgets, even one label per class.

Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology

Yigit Ozen, Selim Aksoy, Kemal Kosemehmetoglu, Sevgen Onder, Aysegul Uner

Responsive image

Auto-TLDR; Self-supervised Contrastive Learning for Deep Representation Learning of Histopathology Images

Slides Poster Similar

Deep learning has achieved successful performance in representation learning and content-based retrieval of histopathology images. The commonly used setting in deep learning-based approaches is supervised training of deep neural networks for classification, and using the trained model to extract representations that are used for computing and ranking the distances between images. However, there are two remaining major challenges. First, supervised training of deep neural networks requires large amount of manually labeled data which is often limited in the medical field. Transfer learning has been used to overcome this challenge, but its success remained limited. Second, the clinical practice in histopathology necessitates working with regions of interest (ROI) of multiple diagnostic classes with arbitrary shapes and sizes. The typical solution to this problem is to aggregate the representations of fixed-sized patches cropped from these regions to obtain region-level representations. However, naive methods cannot sufficiently exploit the rich contextual information in the complex tissue structures. To tackle these two challenges, we propose a generic method that utilizes graph neural networks (GNN), combined with a self-supervised training method using a contrastive loss. GNN enables representing arbitrarily-shaped ROIs as graphs and encoding contextual information. Self-supervised contrastive learning improves quality of learned representations without requiring labeled data. The experiments using a challenging breast histopathology data set show that the proposed method achieves better performance than the state-of-the-art.

A Novel Random Forest Dissimilarity Measure for Multi-View Learning

Hongliu Cao, Simon Bernard, Robert Sabourin, Laurent Heutte

Responsive image

Auto-TLDR; Multi-view Learning with Random Forest Relation Measure and Instance Hardness

Slides Poster Similar

Multi-view learning is a learning task in which data is described by several concurrent representations. Its main challenge is most often to exploit the complementarities between these representations to help solve a classification/regression task. This is a challenge that can be met nowadays if there is a large amount of data available for learning. However, this is not necessarily true for all real-world problems, where data are sometimes scarce (e.g. problems related to the medical environment). In these situations, an effective strategy is to use intermediate representations based on the dissimilarities between instances. This work presents new ways of constructing these dissimilarity representations, learning them from data with Random Forest classifiers. More precisely, two methods are proposed, which modify the Random Forest proximity measure, to adapt it to the context of High Dimension Low Sample Size (HDLSS) multi-view classification problems. The second method, based on an Instance Hardness measurement, is significantly more accurate than other state-of-the-art measurements including the original RF Proximity measurement and the Large Margin Nearest Neighbor (LMNN) metric learning measurement.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

Creating Classifier Ensembles through Meta-Heuristic Algorithms for Aerial Scene Classification

Álvaro Roberto Ferreira Jr., Gustavo Gustavo Henrique De Rosa, Joao Paulo Papa, Gustavo Carneiro, Fabio Augusto Faria

Responsive image

Auto-TLDR; Univariate Marginal Distribution Algorithm for Aerial Scene Classification Using Meta-Heuristic Optimization

Slides Poster Similar

Aerial scene classification is a challenging task to be solved in the remote sensing area, whereas deep learning approaches, such as Convolutional Neural Networks (CNN), are being widely employed to overcome such a problem. Nevertheless, it is not straightforward to find single CNN models that can solve all aerial scene classification tasks, allowing the nurturing of a better alternative, which is to fuse CNN-based classifiers into an ensemble. However, an appropriate choice of the classifiers that will belong to the ensemble is a critical factor, as it is unfeasible to employ all the possible classifiers in the literature. Therefore, this work proposes a novel framework based on meta-heuristic optimization for creating optimized-ensembles in the context of aerial scene classification. The experimental results were performed across nine meta-heuristic algorithms and three aerial scene literature datasets, being compared in terms of effectiveness (accuracy), efficiency (execution time), and behavioral performance in different scenarios. Finally, one can observe that the Univariate Marginal Distribution Algorithm (UMDA) overcame popular literature meta-heuristic algorithms, such as Genetic Programming and Particle Swarm Optimization considering the adopted criteria in the performed experiments.

Graph-Based Interpolation of Feature Vectors for Accurate Few-Shot Classification

Yuqing Hu, Vincent Gripon, Stéphane Pateux

Responsive image

Auto-TLDR; Transductive Learning for Few-Shot Classification using Graph Neural Networks

Slides Poster Similar

In few-shot classification, the aim is to learn models able to discriminate classes using only a small number of labeled examples. In this context, works have proposed to introduce Graph Neural Networks (GNNs) aiming at exploiting the information contained in other samples treated concurrently, what is commonly referred to as the transductive setting in the literature. These GNNs are trained all together with a backbone feature extractor. In this paper, we propose a new method that relies on graphs only to interpolate feature vectors instead, resulting in a transductive learning setting with no additional parameters to train. Our proposed method thus exploits two levels of information: a) transfer features obtained on generic datasets, b) transductive information obtained from other samples to be classified. Using standard few-shot vision classification datasets, we demonstrate its ability to bring significant gains compared to other works.

Dealing with Scarce Labelled Data: Semi-Supervised Deep Learning with Mix Match for Covid-19 Detection Using Chest X-Ray Images

Saúl Calderón Ramirez, Raghvendra Giri, Shengxiang Yang, Armaghan Moemeni, Mario Umaña, David Elizondo, Jordina Torrents-Barrena, Miguel A. Molina-Cabello

Responsive image

Auto-TLDR; Semi-supervised Deep Learning for Covid-19 Detection using Chest X-rays

Slides Poster Similar

Coronavirus (Covid-19) is spreading fast, infecting people through contact in various forms including droplets from sneezing and coughing. Therefore, the detection of infected subjects in an early, quick and cheap manner is urgent. Currently available tests are scarce and limited to people in danger of serious illness. The application of deep learning to chest X-ray images for Covid-19 detection is an attractive approach. However, this technology usually relies on the availability of large labelled datasets, a requirement hard to meet in the context of a virus outbreak. To overcome this challenge, a semi-supervised deep learning model using both labelled and unlabelled data is proposed. We developed and tested a semi-supervised deep learning framework based on the Mix Match architecture to classify chest X-rays into Covid-19, pneumonia and healthy cases. The presented approach was calibrated using two publicly available datasets. The results show an accuracy increase of around $15\%$ under low labelled / unlabelled data ratio. This indicates that our semi-supervised framework can help improve performance levels towards Covid-19 detection when the amount of high-quality labelled data is scarce. Also, we introduce a semi-supervised deep learning boost coefficient which is meant to ease the scalability of our approach and performance comparison.

Generative Latent Implicit Conditional Optimization When Learning from Small Sample

Idan Azuri, Daphna Weinshall

Responsive image

Auto-TLDR; GLICO: Generative Latent Implicit Conditional Optimization for Small Sample Learning

Slides Poster Similar

We revisit the long-standing problem of learning from small sample. The generation of new samples from a small training set of labeled points has attracted increased attention in recent years. In this paper, we propose a novel such method called GLICO (Generative Latent Implicit Conditional Optimization). GLICO learns a mapping from the training examples to a latent space and a generator that generates images from vectors in the latent space. Unlike most recent work, which rely on access to large amounts of unlabeled data, GLICO does not require access to any additional data other than the small set of labeled points. In fact, GLICO learns to synthesize completely new samples for every class using as little as 5 or 10 examples per class, with as few as 10 such classes and no data from unknown classes. GLICO is then used to augment the small training set while training a classifier on the small sample. To this end, our proposed method samples the learned latent space using spherical interpolation (slerp) and generates new examples using the trained generator. Empirical results show that the new sampled set is diverse enough, leading to improvement in image classification in comparison with the state of the art when trained on small samples obtained from CIFAR-10, CIFAR-100, and CUB-200.

Local Clustering with Mean Teacher for Semi-Supervised Learning

Zexi Chen, Benjamin Dutton, Bharathkumar Ramachandra, Tianfu Wu, Ranga Raju Vatsavai

Responsive image

Auto-TLDR; Local Clustering for Semi-supervised Learning

Slides Similar

The Mean Teacher (MT) model of Tarvainen and Valpola has shown favorable performance on several semi-supervised benchmark datasets. MT maintains a teacher model's weights as the exponential moving average of a student model's weights and minimizes the divergence between their probability predictions under diverse perturbations of the inputs. However, MT is known to suffer from confirmation bias, that is, reinforcing incorrect teacher model predictions. In this work, we propose a simple yet effective method called Local Clustering (LC) to mitigate the effect of confirmation bias. In MT, each data point is considered independent of other points during training; however, data points are likely to be close to each other in feature space if they share similar features. Motivated by this, we cluster data points locally by minimizing the pairwise distance between neighboring data points in feature space. Combined with a standard classification cross-entropy objective on labeled data points, the misclassified unlabeled data points are pulled towards high-density regions of their correct class with the help of their neighbors, thus improving model performance. We demonstrate on semi-supervised benchmark datasets SVHN and CIFAR-10 that adding our LC loss to MT yields significant improvements compared to MT and performance comparable to the state of the art in semi-supervised learning.

Minority Class Oriented Active Learning for Imbalanced Datasets

Umang Aggarwal, Adrian Popescu, Celine Hudelot

Responsive image

Auto-TLDR; Active Learning for Imbalanced Datasets

Slides Poster Similar

Active learning aims to optimize the dataset annotation process when resources are constrained. Most existing methods are designed for balanced datasets. Their practical applicability is limited by the fact that a majority of real-life datasets are actually imbalanced. Here, we introduce a new active learning method which is designed for imbalanced datasets. It favors samples likely to be in minority classes so as to reduce the imbalance of the labeled subset and create a better representation for these classes. We also compare two training schemes for active learning: (1) the one commonly deployed in deep active learning using model fine tuning for each iteration and (2) a scheme which is inspired by transfer learning and exploits generic pre-trained models and train shallow classifiers for each iteration. Evaluation is run with three imbalanced datasets. Results show that the proposed active learning method outperforms competitive baselines. Equally interesting, they also indicate that the transfer learning training scheme outperforms model fine tuning if features are transferable from the generic dataset to the unlabeled one. This last result is surprising and should encourage the community to explore the design of deep active learning methods.

Supporting Skin Lesion Diagnosis with Content-Based Image Retrieval

Stefano Allegretti, Federico Bolelli, Federico Pollastri, Sabrina Longhitano, Giovanni Pellacani, Costantino Grana

Responsive image

Auto-TLDR; Skin Images Retrieval Using Convolutional Neural Networks for Skin Lesion Classification and Segmentation

Slides Poster Similar

Given the relevance of skin cancer, many attempts have been dedicated to the creation of automated devices that could assist both expert and beginner dermatologists towards fast and early diagnosis of skin lesions. In recent years, tasks such as skin lesion classification and segmentation have been extensively addressed with deep learning algorithms, which in some cases reach a diagnostic accuracy comparable to that of expert physicians. However, the general lack of interpretability and reliability severely hinders the ability of those approaches to actually support dermatologists in the diagnosis process. In this paper a novel skin images retrieval system is presented, which exploits features extracted by Convolutional Neural Networks to gather similar images from a publicly available dataset, in order to assist the diagnosis process of both expert and novice practitioners. In the proposed framework, Resnet-50 is initially trained for the classification of dermoscopic images; then, the feature extraction part is isolated, and an embedding network is build on top of it. The embedding learns an alternative representation, which allows to check image similarity by means of a distance measure. Experimental results reveal that the proposed method is able to select meaningful images, which can effectively boost the classification accuracy of human dermatologists.

Making Every Label Count: Handling Semantic Imprecision by Integrating Domain Knowledge

Clemens-Alexander Brust, Björn Barz, Joachim Denzler

Responsive image

Auto-TLDR; Class Hierarchies for Imprecise Label Learning and Annotation eXtrapolation

Slides Poster Similar

Noisy data, crawled from the web or supplied by volunteers such as Mechanical Turkers or citizen scientists, is considered an alternative to professionally labeled data. There has been research focused on mitigating the effects of label noise. It is typically modeled as inaccuracy, where the correct label is replaced by an incorrect label from the same set. We consider an additional dimension of label noise: imprecision. For example, a non-breeding snow bunting is labeled as a bird. This label is correct, but not as precise as the task requires. Standard softmax classifiers cannot learn from such a weak label because they consider all classes mutually exclusive, which non-breeding snow bunting and bird are not. We propose CHILLAX (Class Hierarchies for Imprecise Label Learning and Annotation eXtrapolation), a method based on hierarchical classification, to fully utilize labels of any precision. Experiments on noisy variants of NABirds and ILSVRC2012 show that our method outperforms strong baselines by as much as 16.4 percentage points, and the current state of the art by up to 3.9 percentage points.

Feature Extraction by Joint Robust Discriminant Analysis and Inter-Class Sparsity

Fadi Dornaika, Ahmad Khoder

Responsive image

Auto-TLDR; Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS)

Slides Similar

Feature extraction methods have been successfully applied to many real-world applications. The classical Linear Discriminant Analysis (LDA) and its variants are widely used as feature extraction methods. Although they have been used for different classification tasks, these methods have some shortcomings. The main one is that the projection axes obtained are not informative about the relevance of original features. In this paper, we propose a linear embedding method that merges two interesting properties: Robust LDA and inter-class sparsity. Furthermore, the targeted projection transformation focuses on the most discriminant original features. The proposed method is called Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS). Two kinds of sparsity are explicitly included in the proposed model. The first kind is obtained by imposing the $\ell_{2,1}$ constraint on the projection matrix in order to perform feature ranking. The second kind is obtained by imposing the inter-class sparsity constraint used for getting a common sparsity structure in each class. Comprehensive experiments on five real-world image datasets demonstrate the effectiveness and advantages of our framework over existing linear methods.

Local Propagation for Few-Shot Learning

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard

Responsive image

Auto-TLDR; Local Propagation for Few-Shot Inference

Slides Poster Similar

The challenge in few-shot learning is that available data is not enough to capture the underlying distribution. To mitigate this, two emerging directions are (a) using local image representations, essentially multiplying the amount of data by a constant factor, and (b) using more unlabeled data, for instance by transductive inference, jointly on a number of queries. In this work, we bring these two ideas together, introducing local propagation. We treat local image features as independent examples, we build a graph on them and we use it to propagate both the features themselves and the labels, known and unknown. Interestingly, since there is a number of features per image, even a single query gives rise to transductive inference. As a result, we provide a universally safe choice for few-shot inference under both non-transductive and transductive settings, improving accuracy over corresponding methods. This is in contrast to existing solutions, where one needs to choose the method depending on the quantity of available data.

Joint Supervised and Self-Supervised Learning for 3D Real World Challenges

Antonio Alliegro, Davide Boscaini, Tatiana Tommasi

Responsive image

Auto-TLDR; Self-supervision for 3D Shape Classification and Segmentation in Point Clouds

Slides Similar

Point cloud processing and 3D shape understanding are very challenging tasks for which deep learning techniques have demonstrated great potentials. Still further progresses are essential to allow artificial intelligent agents to interact with the real world. In many practical conditions the amount of annotated data may be limited and integrating new sources of knowledge becomes crucial to support autonomous learning. Here we consider several scenarios involving synthetic and real world point clouds where supervised learning fails due to data scarcity and large domain gaps. We propose to enrich standard feature representations by leveraging self-supervision through a multi-task model that can solve a 3D puzzle while learning the main task of shape classification or part segmentation. An extensive analysis investigating few-shot, transfer learning and cross-domain settings shows the effectiveness of our approach with state-of-the-art results for 3D shape classification and part segmentation.

Budgeted Batch Mode Active Learning with Generalized Cost and Utility Functions

Arvind Agarwal, Shashank Mujumdar, Nitin Gupta, Sameep Mehta

Responsive image

Auto-TLDR; Active Learning Based on Utility and Cost Functions

Slides Poster Similar

Active learning reduces the labeling cost by actively querying labels for the most valuable data points. Typical active learning methods select the most informative examples one-at-a-time, their batch variants exist where a set of most informative points are selected. These points are selected in such a way that when added to the training data along with their labels, they provide maximum benefit to the underlying model. In this paper, we present a learning framework that actively selects optimal set of examples (in a batch) within a given budget, based on given utility and cost functions. The framework is generic enough to incorporate any utility and any cost function defined on a set of examples. Furthermore, we propose a novel utility function based on the Facility Location problem that considers three important characteristics of utility i.e., diversity, density and point utility. We also propose a novel cost function, by formulating the cost computation problem as an optimization problem, the solution to which turns out to be the minimum spanning tree. Thus, our framework provides the optimal batch of points within the given budget based on the cost and utility functions. We evaluate our method on several data sets and show its superior performance over baseline methods.

Constrained Spectral Clustering Network with Self-Training

Xinyue Liu, Shichong Yang, Linlin Zong

Responsive image

Auto-TLDR; Constrained Spectral Clustering Network: A Constrained Deep spectral clustering network

Slides Poster Similar

Deep spectral clustering networks have shown their superiorities due to the integration of feature learning and cluster assignment, and the ability to deal with non-convex clusters. Nevertheless, deep spectral clustering is still an ill-posed problem. Specifically, the affinity learned by the most remarkable SpectralNet is not guaranteed to be consistent with local invariance and thus hurts the final clustering performance. In this paper, we propose a novel framework of Constrained Spectral Clustering Network (CSCN) by incorporating pairwise constraints and clustering oriented fine-tuning to deal with the ill-posedness. To the best of our knowledge, this is the first constrained deep spectral clustering method. Another advantage of CSCN over existing constrained deep clustering networks is that it propagates pairwise constraints throughout the entire dataset. In addition, we design a clustering oriented loss by self-training to simultaneously finetune feature representations and perform cluster assignments, which further improve the quality of clustering. Extensive experiments on benchmark datasets demonstrate that our approach outperforms the state-of-the-art clustering methods.

A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata

Tobia Tesan, Pasquale Coscia, Lamberto Ballan

Responsive image

Auto-TLDR; Context-Based Image Annotation with Multiple Semantic Embeddings and Recurrent Neural Networks

Slides Poster Similar

Images represent a commonly used form of visual communication among people. Nevertheless, image classification may be a challenging task when dealing with unclear or non-common images needing more context to be correctly annotated. Metadata accompanying images on social-media represent an ideal source of additional information for retrieving proper neighborhoods easing image annotation task. To this end, we blend visual features extracted from neighbors and their metadata to jointly leverage context and visual cues. Our models use multiple semantic embeddings to achieve the dual objective of being robust to vocabulary changes between train and test sets and decoupling the architecture from the low-level metadata representation. Convolutional and recurrent neural networks (CNNs-RNNs) are jointly adopted to infer similarity among neighbors and query images. We perform comprehensive experiments on the NUS-WIDE dataset showing that our models outperform state-of-the-art architectures based on images and metadata, and decrease both sensory and semantic gaps to better annotate images.

Learning to Rank for Active Learning: A Listwise Approach

Minghan Li, Xialei Liu, Joost Van De Weijer, Bogdan Raducanu

Responsive image

Auto-TLDR; Learning Loss for Active Learning

Slides Similar

Active learning emerged as an alternative to alleviate the effort to label huge amount of data for data-hungry applications (such as image/video indexing and retrieval, autonomous driving, etc.). The goal of active learning is to automatically select a number of unlabeled samples for annotation (according to a budget), based on an acquisition function, which indicates how valuable a sample is for training the model. The learning loss method is a task-agnostic approach which attaches a module to learn to predict the target loss of unlabeled data, and select data with the highest loss for labeling. In this work, we follow this strategy but we define the acquisition function as a learning to rank problem and rethink the structure of the loss prediction module, using a simple but effective listwise approach. Experimental results on four datasets demonstrate that our method outperforms recent state-of-the-art active learning approaches for both image classification and regression tasks.

Towards Robust Learning with Different Label Noise Distributions

Diego Ortego, Eric Arazo, Paul Albert, Noel E O'Connor, Kevin Mcguinness

Responsive image

Auto-TLDR; Distribution Robust Pseudo-Labeling with Semi-supervised Learning

Slides Similar

Noisy labels are an unavoidable consequence of labeling processes and detecting them is an important step towards preventing performance degradations in Convolutional Neural Networks. Discarding noisy labels avoids a harmful memorization, while the associated image content can still be exploited in a semi-supervised learning (SSL) setup. Clean samples are usually identified using the small loss trick, i.e. they exhibit a low loss. However, we show that different noise distributions make the application of this trick less straightforward and propose to continuously relabel all images to reveal a discriminative loss against multiple distributions. SSL is then applied twice, once to improve the clean-noisy detection and again for training the final model. We design an experimental setup based on ImageNet32/64 for better understanding the consequences of representation learning with differing label noise distributions and find that non-uniform out-of-distribution noise better resembles real-world noise and that in most cases intermediate features are not affected by label noise corruption. Experiments in CIFAR-10/100, ImageNet32/64 and WebVision (real-world noise) demonstrate that the proposed label noise Distribution Robust Pseudo-Labeling (DRPL) approach gives substantial improvements over recent state-of-the-art. Code will be made available.

Automatic Classification of Human Granulosa Cells in Assisted Reproductive Technology Using Vibrational Spectroscopy Imaging

Marina Paolanti, Emanuele Frontoni, Giorgia Gioacchini, Giorgini Elisabetta, Notarstefano Valentina, Zacà Carlotta, Carnevali Oliana, Andrea Borini, Marco Mameli

Responsive image

Auto-TLDR; Predicting Oocyte Quality in Assisted Reproductive Technology Using Machine Learning Techniques

Slides Poster Similar

In the field of reproductive technology, the biochemical composition of female gametes has been successfully investigated with the use of vibrational spectroscopy. Currently, in assistive reproductive technology (ART), there are no shared criteria for the choice of oocyte, and automatic classification methods for the best quality oocytes have not yet been applied. In this paper, considering the lack of criteria in Assisted Reproductive Technology (ART), we use Machine Learning (ML) techniques to predict oocyte quality for a successful pregnancy. To improve the chances of successful implantation and minimize any complications during the pregnancy, Fourier transform infrared microspectroscopy (FTIRM) analysis has been applied on granulosa cells (GCs) collected along with the oocytes during oocyte aspiration, as it is routinely done in ART, and specific spectral biomarkers were selected by multivariate statistical analysis. A proprietary biological reference dataset (BRD) was successfully collected to predict the best oocyte for a successful pregnancy. Personal health information are stored, maintained and backed up using a cloud computing service. Using a user-friendly interface, the user will evaluate whether or not the selected oocyte will have a positive result. This interface includes a dashboard for retrospective analysis, reporting, real-time processing, and statistical analysis. The experimental results are promising and confirm the efficiency of the method in terms of classification metrics: precision, recall, and F1-score (F1) measures.

Exploiting Local Indexing and Deep Feature Confidence Scores for Fast Image-To-Video Search

Savas Ozkan, Gözde Bozdağı Akar

Responsive image

Auto-TLDR; Fast and Robust Image-to-Video Retrieval Using Local and Global Descriptors

Slides Poster Similar

Cost-effective visual representation and fast query-by-example search are two challenging goals hat should be provided for web-scale visual retrieval task on a moderate hardware. In this paper, we introduce a fast yet robust method that ensures both of these goals by obtaining the state-of-the-art results for an image-to-video search scenario. To this end, we present important enhancements to commonly used indexing and visual representation techniques by promoting faster, better and more moderate retrieval performance. We also boost the effectiveness of the method for visual distortion by exploiting the individual decision results of local and global descriptors in the query time. By this way, local content descriptors effectively represent copied / duplicated scenes with large geometric deformations, while global descriptors for near duplicate and semantic searches are more practical. Experiments are conducted on the large-scale Stanford I2V dataset. The experimental results show that the method is effective in terms of complexity and query processing time for large-scale visual retrieval scenarios, even if local and global representations are used together. In addition, the proposed method is fairly accurate and achieves state-of-the-art performance based on the mAP score of the dataset. Lastly, we report additional mAP scores after updating the ground annotations obtained by the retrieval results of the proposed method showing more clearly the actual performance.

Deep Convolutional Embedding for Digitized Painting Clustering

Giovanna Castellano, Gennaro Vessio

Responsive image

Auto-TLDR; A Deep Convolutional Embedding Model for Clustering Artworks

Slides Poster Similar

Clustering artworks is difficult because of several reasons. On one hand, recognizing meaningful patterns in accordance with domain knowledge and visual perception is extremely hard. On the other hand, the application of traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, we propose to use a deep convolutional embedding model for digitized painting clustering, in which the task of mapping the input raw data to an abstract, latent space is jointly optimized with the task of finding a set of cluster centroids in this latent feature space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. The model is also able to outperform other state-of-the-art deep clustering approaches to the same problem. The proposed method may be beneficial to several art-related tasks, particularly visual link retrieval and historical knowledge discovery in painting datasets.

Semi-Supervised Person Re-Identification by Attribute Similarity Guidance

Peixian Hong, Ancong Wu, Wei-Shi Zheng

Responsive image

Auto-TLDR; Attribute Similarity Guidance Guidance Loss for Semi-supervised Person Re-identification

Slides Poster Similar

Although supervised person re-identification (RE-ID) has achieved great progress with deep learning, it requires time-consuming annotation of a large number of pedestrian identities. To reduce labeling cost, we attempt to reduce cross-camera identity annotations and exploit pedestrian attribute annotations as auxiliary information instead. The pedestrian attributes, such as outfit styles, contain coarse semantic knowledge. Although pedestrian attributes are annotated without exhaustive searching in a camera network, which is much easier than cross-camera identity annotation, ambiguity exists in attributes when different persons have similar outfits. To solve this problem, we propose an Attribute Similarity Guidance loss (ASG) to guide appearance feature learning for RE-ID by selective attribute similarity preservation to avoid the impact of such ambiguity. Finally, we develop an attribute-guided self training framework to jointly utilize attribute annotations, unlabeled data and limited labeled data for semi-supervised learning. Extensive experiments on Market-1501 and DukeMTMC-ReID show the superiority of our method for semi-supervised RE-ID.

Learning with Delayed Feedback

Pranavan Theivendiram, Terence Sim

Responsive image

Auto-TLDR; Unsupervised Machine Learning with Delayed Feedback

Slides Poster Similar

We propose a novel supervised machine learning strategy, inspired by human learning, that enables an Agent to learn continually over its lifetime. A natural consequence is that the Agent must be able to handle an input whose label is delayed until a later time, or may not arrive at all. Our Agent learns in two steps: a short Seeding phase, in which the Agent's model is initialized with labelled inputs, and an indefinitely long Growing phase, in which the Agent refines and assesses its model if the label is given for an input, but stores the input in a finite-length queue if the label is missing. Queued items are matched against future input-label pairs that arrive, and the model is then updated. Our strategy also allows for the delayed feedback to take a different form. For example, in an image captioning task, the feedback could be a semantic segmentation rather than a textual caption. We show with many experiments that our strategy enables an Agent to learn flexibly and efficiently.

Leveraging Sequential Pattern Information for Active Learning from Sequential Data

Raul Fidalgo-Merino, Lorenzo Gabrielli, Enrico Checchi

Responsive image

Auto-TLDR; Sequential Pattern Information for Active Learning

Slides Poster Similar

This paper presents a novel active learning technique aimed at the selection of sequences for manual annotation from a database of unlabelled sequences. Supervised machine learning algorithms can employ these sequences to build better models than those based on using random sequences for training. The main contribution of the proposed method is the use of sequential pattern information contained in the database to select representative and diverse sequences for annotation. These two characteristics ensure the proper coverage of the instance space of sequences and, at the same time, avoids over-fitting the trained model. The approach, called SPIAL (Sequential Pattern Information for Active Learning), uses sequential pattern mining algorithms to extract frequently occurring sub-sequences from the database and evaluates how representative and diverse each sequence is, based on this information. The output is a list of sequences for annotation sorted by representativeness and diversity. The algorithm is modular and, unlike current techniques, independent of the features taken into account by the machine learning algorithm that trains the model. Experiments done on well-known benchmarks involving sequential data show that the models trained using SPIAL increase their convergence speed while reducing manual effort by selecting small sets of very informative sequences for annotation. In addition, the computation cost using SPIAL is much lower than for the state-of-the-art algorithms evaluated.

Semi-Supervised Domain Adaptation Via Selective Pseudo Labeling and Progressive Self-Training

Yoonhyung Kim, Changick Kim

Responsive image

Auto-TLDR; Semi-supervised Domain Adaptation with Pseudo Labels

Slides Poster Similar

Domain adaptation (DA) is a representation learning methodology that transfers knowledge from a label-sufficient source domain to a label-scarce target domain. While most of early methods are focused on unsupervised DA (UDA), several studies on semi-supervised DA (SSDA) are recently suggested. In SSDA, a small number of labeled target images are given for training, and the effectiveness of those data is demonstrated by the previous studies. However, the previous SSDA approaches solely adopt those data for embedding ordinary supervised losses, overlooking the potential usefulness of the few yet informative clues. Based on this observation, in this paper, we propose a novel method that further exploits the labeled target images for SSDA. Specifically, we utilize labeled target images to selectively generate pseudo labels for unlabeled target images. In addition, based on the observation that pseudo labels are inevitably noisy, we apply a label noise-robust learning scheme, which progressively updates the network and the set of pseudo labels by turns. Extensive experimental results show that our proposed method outperforms other previous state-of-the-art SSDA methods.

Multi-Modal Deep Clustering: Unsupervised Partitioning of Images

Guy Shiran, Daphna Weinshall

Responsive image

Auto-TLDR; Multi-Modal Deep Clustering for Unlabeled Images

Slides Poster Similar

The clustering of unlabeled raw images is a daunting task, which has recently been approached with some success by deep learning methods. Here we propose an unsupervised clustering framework, which learns a deep neural network in an end-to-end fashion, providing direct cluster assignments of images without additional processing. Multi-Modal Deep Clustering (MMDC), trains a deep network to align its image embeddings with target points sampled from a Gaussian Mixture Model distribution. The cluster assignments are then determined by mixture component association of image embeddings. Simultaneously, the same deep network is trained to solve an additional self-supervised task. This pushes the network to learn more meaningful image representations and stabilizes the training. Experimental results show that MMDC achieves or exceeds state-of-the-art performance on four challenging benchmarks. On natural image datasets we improve on previous results with significant margins of up to 11% absolute accuracy points, yielding an accuracy of 70% on CIFAR-10 and 61% on STL-10.

Self-Supervised Learning for Astronomical Image Classification

Ana Martinazzo, Mateus Espadoto, Nina S. T. Hirata

Responsive image

Auto-TLDR; Unlabeled Astronomical Images for Deep Neural Network Pre-training

Slides Poster Similar

In Astronomy, a huge amount of image data is generated daily by photometric surveys, which scan the sky to collect data from stars, galaxies and other celestial objects. In this paper, we propose a technique to leverage unlabeled astronomical images to pre-train deep convolutional neural networks, in order to learn a domain-specific feature extractor which improves the results of machine learning techniques in setups with small amounts of labeled data available. We show that our technique produces results which are in many cases better than using ImageNet pre-training.

Online Domain Adaptation for Person Re-Identification with a Human in the Loop

Rita Delussu, Lorenzo Putzu, Giorgio Fumera, Fabio Roli

Responsive image

Auto-TLDR; Human-in-the-loop for Person Re-Identification in Infeasible Applications

Slides Poster Similar

Supervised deep learning methods have recently achieved remarkable performance in person re-identification. Unsupervised domain adaptation (UDA) approaches have also been proposed for application scenarios where only unlabelled data are available from target camera views. We consider a more challenging scenario when even collecting a suitable amount of representative, unlabelled target data for offline training or fine-tuning is infeasible. In this context we revisit the human-in-the-loop (HITL) approach, which exploits online the operator's feedback on a small amount of target data. We argue that HITL is a kind of online domain adaptation specifically suited to person re-identification. We then reconsider relevance feedback methods for content-based image retrieval that are computationally much cheaper than state-of-the-art HITL methods for person re-identification, and devise a specific feedback protocol for them. Experimental results show that HITL can achieve comparable or better performance than UDA, and is therefore a valid alternative when the lack of unlabelled target data makes UDA infeasible.

Point In: Counting Trees with Weakly Supervised Segmentation Network

Pinmo Tong, Shuhui Bu, Pengcheng Han

Responsive image

Auto-TLDR; Weakly Tree counting using Deep Segmentation Network with Localization and Mask Prediction

Slides Poster Similar

For tree counting tasks, since traditional image processing methods require expensive feature engineering and are not end-to-end frameworks, this will cause additional noise and cannot be optimized overall, so this method has not been widely used in recent trends of tree counting application. Recently, many deep learning based approaches are designed for this task because of the powerful feature extracting ability. The representative way is bounding box based supervised method, but time-consuming annotations are indispensable for them. Moreover, these methods are difficult to overcome the occlusion or overlap. To solve this problem, we propose a weakly tree counting network (WTCNet) based on deep segmentation network with only point supervision. It can simultaneously complete tree counting with localization and output mask of each tree at the same time. We first adopt a novel feature extractor network (FENet) to get features of input images, and then an effective strategy is introduced to deal with different mask predictions. In the end, we propose a basic localization guidance accompany with rectification guidance to train the network. We create two different datasets and select an existing challenging plant dataset to evaluate our method on three different tasks. Experimental results show the good performance improvement of our method compared with other existing methods. Further study shows that our method has great potential to reduce human labor and provide effective ground-truth masks and the results show the superiority of our method over the advanced methods.

MD-kNN: An Instance-Based Approach for Multi-Dimensional Classification

Bin-Bin Jia, Min-Ling Zhang

Responsive image

Auto-TLDR; MD-kNN: Adapting Instance-based Techniques for Multi-dimensional Classification

Slides Poster Similar

Multi-dimensional classification (MDC) deals with the problem where each instance is associated with multiple class variables, each of which corresponds to a specific class space. One of the mainstream solutions for MDC is to adapt traditional machine learning techniques to deal with MDC data. In this paper, a first attempt towards adapting instance-based techniques for MDC is investigated, and a new approach named MD-kNN is proposed. Specifically, MD-kNN identifies unseen instance's k nearest neighbors and obtains its corresponding kNN counting statistics for each class space, based on which maximum a posteriori (MAP) inference is made for each pair of class spaces. After that, the class label w.r.t. each class space is determined by synergizing predictions from the learned classifiers via consulting empirical kNN accuracy. Comparative studies over ten benchmark data sets clearly validate MD-kNN's effectiveness.

Region and Relations Based Multi Attention Network for Graph Classification

Manasvi Aggarwal, M. Narasimha Murty

Responsive image

Auto-TLDR; R2POOL: A Graph Pooling Layer for Non-euclidean Structures

Slides Poster Similar

Graphs are non-euclidean structures that can represent many relational data efficiently. Many studies have proposed the convolution and the pooling operators on the non-euclidean domain. The graph convolution operators have shown astounding performance on various tasks such as node representation and classification. For graph classification, different pooling techniques are introduced, but none of them has considered both neighborhood of the node and the long-range dependencies of the node. In this paper, we propose a novel graph pooling layer R2POOL, which balances the structure information around the node as well as the dependencies with far away nodes. Further, we propose a new training strategy to learn coarse to fine representations. We add supervision at only intermediate levels to generate predictions using only intermediate-level features. For this, we propose the concept of an alignment score. Moreover, each layer's prediction is controlled by our proposed branch training strategy. This complete training helps in learning dominant class features at each layer for representing graphs. We call the combined model by R2MAN. Experiments show that R2MAN the potential to improve the performance of graph classification on various datasets.

Equation Attention Relationship Network (EARN) : A Geometric Deep Metric Framework for Learning Similar Math Expression Embedding

Saleem Ahmed, Kenny Davila, Srirangaraj Setlur, Venu Govindaraju

Responsive image

Auto-TLDR; Representational Learning for Similarity Based Retrieval of Mathematical Expressions

Slides Poster Similar

Representational Learning in the form of high dimensional embeddings have been used for multiple pattern recognition applications. There has been a significant interest in building embedding based systems for learning representationsin the mathematical domain. At the same time, retrieval of structured information such as mathematical expressions is an important need for modern IR systems. In this work, our motivation is to introduce a robust framework for learning representations for similarity based retrieval of mathematical expressions. Given a query by example, the embedding can find the closest matching expression as a function of euclidean distance between them. We leverage recent advancements in image-based and graph-based deep learning algorithms to learn our similarity embeddings. We do this first, by using uni-modal encoders in graph space and image space and then, a multi-modal combination of the same. To overcome the lack of training data, we force the networks to learn a deep metric using triplets generated with a heuristic scoring function. We also adopt a custom strategy for mining hard samples to train our neural networks. Our system produces rankings similar to those generated by the original scoring function, but using only a fraction of the time. Our results establish the viability of using such a multi-modal embedding for this task.

Heterogeneous Graph-Based Knowledge Transfer for Generalized Zero-Shot Learning

Junjie Wang, Xiangfeng Wang, Bo Jin, Junchi Yan, Wenjie Zhang, Hongyuan Zha

Responsive image

Auto-TLDR; Heterogeneous Graph-based Knowledge Transfer for Generalized Zero-Shot Learning

Slides Poster Similar

Generalized zero-shot learning (GZSL) tackles the problem of learning to classify instances involving both seen classes and unseen ones. The key issue is how to effectively transfer the model learned from seen classes to unseen classes. Existing works in GZSL usually assume that some prior information about unseen classes are available. However, such an assumption is unrealistic when new unseen classes appear dynamically. To this end, we propose a novel heterogeneous graph-based knowledge transfer method (HGKT) for GZSL, agnostic to unseen classes and instances, by leveraging graph neural network. Specifically, a structured heterogeneous graph is constructed with high-level representative nodes for seen classes, which are chosen through Wasserstein barycenter in order to simultaneously capture inter-class and intra-class relationship. The aggregation and embedding functions can be learned throughgraph neural network, which can be used to compute the embeddings of unseen classes by transferring the knowledge from their neighbors. Extensive experiments on public benchmark datasets show that our method achieves state-of-the-art results.

A Systematic Investigation on End-To-End Deep Recognition of Grocery Products in the Wild

Marco Leo, Pierluigi Carcagni, Cosimo Distante

Responsive image

Auto-TLDR; Automatic Recognition of Products on grocery shelf images using Convolutional Neural Networks

Slides Poster Similar

Automatic recognition of products on grocery shelf images is a new and attractive topic in computer vision and machine learning since, it can be exploited in different application areas. This paper introduces a complete end-to-end pipeline (without preliminary radiometric and spatial transformations usually involved while dealing with the considered issue) and it provides a systematic investigation of recent machine learning models based on convolutional neural networks for addressing the product recognition task by exploiting the proposed pipeline on a recent challenging grocery product dataset. The investigated models were never been used in this context: they derive from the successful and more generic object recognition task and have been properly tuned to address this specific issue. Besides, also ensembles of nets built by most advanced theoretical fundaments have been taken into account. Gathered classification results were very encouraging since the recognition accuracy has been improved up to 15\% with respect to the leading approaches in the state of art on the same dataset. A discussion about the pros and cons of the investigated solutions are discussed by paving the path towards new research lines.

The Color Out of Space: Learning Self-Supervised Representations for Earth Observation Imagery

Stefano Vincenzi, Angelo Porrello, Pietro Buzzega, Marco Cipriano, Pietro Fronte, Roberto Cuccu, Carla Ippoliti, Annamaria Conte, Simone Calderara

Responsive image

Auto-TLDR; Satellite Image Representation Learning for Remote Sensing

Slides Poster Similar

The recent growth in the number of satellite images fosters the development of effective deep-learning techniques for Remote Sensing (RS). However, their full potential is untapped due to the lack of large annotated datasets. Such a problem is usually countered by fine-tuning a feature extractor that is previously trained on the ImageNet dataset. Unfortunately, the domain of natural images differs from the RS one, which hinders the final performance. In this work, we propose to learn meaningful representations from satellite imagery, leveraging its high-dimensionality spectral bands to reconstruct the visible colors. We conduct experiments on land cover classification (BigEarthNet) and West Nile Virus detection, showing that colorization is a solid pretext task for training a feature extractor. Furthermore, we qualitatively observe that guesses based on natural images and colorization rely on different parts of the input. This paves the way to an ensemble model that eventually outperforms both the above-mentioned techniques.

Stochastic Label Refinery: Toward Better Target Label Distribution

Xi Fang, Jiancheng Yang, Bingbing Ni

Responsive image

Auto-TLDR; Stochastic Label Refinery for Deep Supervised Learning

Slides Poster Similar

This paper proposes a simple yet effective strategy for improving deep supervised learning, named Stochastic Label Refinery (SLR), by refining training labels to more informative labels. When training a neural network, target distributions (or ground-truth) are typically "hard", which means the target label of each category consists of only 0 and 1. However, the fixed "hard" target distributions do not capture association between categories or that between objects. In this study, instead of using the hard target distributions, we iteratively generate "soft" target label distributions for training the neural networks, which leads to better performances. The soft target distributions are obtained via an Expectation-Maximization (EM) iteration, where the "true" target distributions and the learned models are regarded as hidden variables. In E step, the models are optimized to approximate the target distributions on stochastic splits of training data; In M step, the target distributions are updated with predicted pseudo-label on leave-out splits. Extensive experiments on classification and ordinal regression tasks, empirically prove that the refined target distribution consistently leads to considerable performance improvements even applied on competitive baselines. Notably, in DeepDR 2020 Diabetic Retinopathy Grading (DeepDRiD) challenge, our method improves the quadratic weighted kappa on official validation set from 0.8247 to 0.8348 and achieves a state-of-the-art score on online test set. The proposed SLR technique is easy to implement and practically applicable. The code will be open sourced soon.

Memetic Evolution of Training Sets with Adaptive Radial Basis Kernels for Support Vector Machines

Jakub Nalepa, Wojciech Dudzik, Michal Kawulok

Responsive image

Auto-TLDR; Memetic Algorithm for Evolving Support Vector Machines with Adaptive Kernels

Slides Poster Similar

Support vector machines (SVMs) are a supervised learning technique that can be applied in both binary and multi-class classification and regression tasks. SVMs seamlessly handle continuous and categorical variables. Their training is, however, both time- and memory-costly for large training data, and selecting an incorrect kernel function or its hyperparameters leads to suboptimal decision hyperplanes. In this paper, we introduce a memetic algorithm for evolving SVM training sets with adaptive radial basis function kernels to not only make the deployment of SVMs easier for emerging big data applications, but also to improve their generalization abilities over the unseen data. We build upon two observations: first, only a small subset of all training vectors, called the support vectors, contribute to the position of the decision boundary, hence the other vectors can be removed from the training set without deteriorating the performance of the model. Second, selecting different kernel hyperparameters for different training vectors may help better reflect the subtle characteristics of the space while determining the hyperplane. The experiments over almost 100 benchmark and synthetic sets showed that our algorithm delivers models outperforming both SVMs optimized using state-of-the-art evolutionary techniques, and other supervised learners.

A Unified Framework for Distance-Aware Domain Adaptation

Fei Wang, Youdong Ding, Huan Liang, Yuzhen Gao, Wenqi Che

Responsive image

Auto-TLDR; distance-aware domain adaptation

Slides Poster Similar

Unsupervised domain adaptation has achieved significant results by leveraging knowledge from a source domain to learn a related but unlabeled target domain. Previous methods are insufficient to model domain discrepancy and class discrepancy, which may lead to misalignment and poor adaptation performance. To address this problem, in this paper, we propose a unified framework, called distance-aware domain adaptation, which is fully aware of both cross-domain distance and class-discriminative distance. In addition, second-order statistics distance and manifold alignment are also exploited to extract more information from data. In this manner, the generalization error of the target domain in classification problems can be reduced substantially. To validate the proposed method, we conducted experiments on five public datasets and an ablation study. The results demonstrate the good performance of our proposed method.

SSDL: Self-Supervised Domain Learning for Improved Face Recognition

Samadhi Poornima Kumarasinghe Wickrama Arachchilage, Ebroul Izquierdo

Responsive image

Auto-TLDR; Self-supervised Domain Learning for Face Recognition in unconstrained environments

Slides Poster Similar

Face recognition in unconstrained environments is challenging due to variations in illumination, quality of sensing, motion blur and etc. An individual’s face appearance can vary drastically under different conditions creating a gap between train (source) and varying test (target) data. The domain gap could cause decreased performance levels in direct knowledge transfer from source to target. Despite fine-tuning with domain specific data could be an effective solution, collecting and annotating data for all domains is extremely expensive. To this end, we propose a self-supervised domain learning (SSDL) scheme that trains on triplets mined from unlabelled data. A key factor in effective discriminative learning, is selecting informative triplets. Building on most confident predictions, we follow an “easy-to-hard” scheme of alternate triplet mining and self-learning. Comprehensive experiments on four different benchmarks show that SSDL generalizes well on different domains.

Unsupervised Domain Adaptation with Multiple Domain Discriminators and Adaptive Self-Training

Teo Spadotto, Marco Toldo, Umberto Michieli, Pietro Zanuttigh

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation for Semantic Segmentation of Urban Scenes

Slides Poster Similar

Unsupervised Domain Adaptation (UDA) aims at improving the generalization capability of a model trained on a source domain to perform well on a target domain for which no labeled data is available. In this paper, we consider the semantic segmentation of urban scenes and we propose an approach to adapt a deep neural network trained on synthetic data to real scenes addressing the domain shift between the two different data distributions. We introduce a novel UDA framework where a standard supervised loss on labeled synthetic data is supported by an adversarial module and a self-training strategy aiming at aligning the two domain distributions. The adversarial module is driven by a couple of fully convolutional discriminators dealing with different domains: the first discriminates between ground truth and generated maps, while the second between segmentation maps coming from synthetic or real world data. The self-training module exploits the confidence estimated by the discriminators on unlabeled data to select the regions used to reinforce the learning process. Furthermore, the confidence is thresholded with an adaptive mechanism based on the per-class overall confidence. Experimental results prove the effectiveness of the proposed strategy in adapting a segmentation network trained on synthetic datasets like GTA5 and SYNTHIA, to real world datasets like Cityscapes and Mapillary.

Semi-Supervised Class Incremental Learning

Alexis Lechat, Stéphane Herbin, Frederic Jurie

Responsive image

Auto-TLDR; incremental class learning with non-annotated batches

Slides Poster Similar

This paper makes a contribution to the problem of incremental class learning, the principle of which is to sequentially introduce batches of samples annotated with new classes during the learning phase. The main objective is to reduce the drop in classification performance on old classes, a phenomenon commonly called catastrophic forgetting. We propose in this paper a new method which exploits the availability of a large quantity of non-annotated images in addition to the annotated batches. These images are used to regularize the classifier and give the feature space a more stable structure. We demonstrate on several image data sets that our approach is able to improve the global performance of classifiers learned using an incremental learning protocol, even with annotated batches of small size.

An Adaptive Video-To-Video Face Identification System Based on Self-Training

Eric Lopez-Lopez, Carlos V. Regueiro, Xosé M. Pardo

Responsive image

Auto-TLDR; Adaptive Video-to-Video Face Recognition using Dynamic Ensembles of SVM's

Slides Poster Similar

Video-to-video face recognition in unconstrained conditions is still a very challenging problem, as the combination of several factors leads to an in general low-quality of facial frames. Besides, in some real contexts, the availability of labelled samples is limited, or data is streaming or it is only available temporarily due to storage constraints or privacy issues. In these cases, dealing with learning as an unsupervised incremental process is a feasible option. This work proposes a system based on dynamic ensembles of SVM's, which uses the ideas of self-training to perform adaptive Video-to-video face identification. The only label requirements of the system are a few frames (5 in our experiments) directly taken from the video-surveillance stream. The system will autonomously use additional video-frames to update and improve the initial model in an unsupervised way. Results show a significant improvement in comparison to other state-of-the-art static models.

Revisiting ImprovedGAN with Metric Learning for Semi-Supervised Learning

Jaewoo Park, Yoon Gyo Jung, Andrew Teoh

Responsive image

Auto-TLDR; Improving ImprovedGAN with Metric Learning for Semi-supervised Learning

Slides Poster Similar

Semi-supervised Learning (SSL) is a classical problem where a model needs to solve classification as it is trained on a partially labeled train data. After the introduction of generative adversarial network (GAN) and its success, the model has been modified to be applicable to SSL. ImprovedGAN as a representative model for GAN-based SSL, it showed promising performance on the SSL problem. However, the inner mechanism of this model has been only partially revealed. In this work, we revisit ImprovedGAN with a fresh perspective based on metric learning. In particular, we interpret ImprovedGAN by general pair weighting, a recent framework in metric learning. Based on this interpretation, we derive two theoretical properties of ImprovedGAN: (i) its discriminator learns to make confident predictions over real samples, (ii) the adversarial interaction in ImprovedGAN along with semi-supervision results in cluster separation by reducing intra-class variance and increasing the inter-class variance, thereby improving the model generalization. These theoretical implications are experimentally supported. Motivated by the findings, we propose a variant of ImprovedGAN, called Intensified ImprovedGAN (I2GAN), where its cluster separation characteristic is enhanced by two proposed techniques: (a) the unsupervised discriminator loss is scaled up and (b) the generated batch size is enlarged. As a result, I2GAN produces better class-wise cluster separation and, hence, generalization. Extensive experiments on the widely known benchmark data sets verify the effectiveness of our proposed method, showing that its performance is better than or comparable to other GAN based SSL models.

Aggregating Object Features Based on Attention Weights for Fine-Grained Image Retrieval

Hongli Lin, Yongqi Song, Zixuan Zeng, Weisheng Wang

Responsive image

Auto-TLDR; DSAW: Unsupervised Dual-selection for Fine-Grained Image Retrieval

Similar

Object localization and local feature representation are key issues in fine-grained image retrieval. However, the existing unsupervised methods still need to be improved in these two aspects. For conquering these issues in a unified framework, a novel unsupervised scheme, named DSAW for short, is presented in this paper. Firstly, we proposed a dual-selection (DS) method, which achieves more accurate object localization by using adaptive threshold method to perform feature selection on local and global activation map in turn. Secondly, a novel and faster self-attention weights (AW) method is developed to weight local features by measuring their importance in the global context. Finally, we also evaluated the performance of the proposed method on five fine-grained image datasets and the results showed that our DSAW outperformed the existing best method.

The eXPose Approach to Crosslier Detection

Antonio Barata, Frank Takes, Hendrik Van Den Herik, Cor Veenman

Responsive image

Auto-TLDR; EXPose: Crosslier Detection Based on Supervised Category Modeling

Slides Poster Similar

Transit of wasteful materials within the European Union is highly regulated through a system of permits. Waste processing costs vary greatly depending on the waste category of a permit. Therefore, companies may have a financial incentive to allege transporting waste with erroneous categorisation. Our goal is to assist inspectors in selecting potentially manipulated permits for further investigation, making their task more effective and efficient. Due to data limitations, a supervised learning approach based on historical cases is not possible. Standard unsupervised approaches, such as outlier detection and data quality-assurance techniques, are not suited since we are interested in targeting non-random modifications in both category and category-correlated features. For this purpose we (1) introduce the concept of crosslier: an anomalous instance of a category which lies across other categories; (2) propose eXPose: a novel approach to crosslier detection based on supervised category modelling; and (3) present the crosslier diagram: a visualisation tool specifically designed for domain experts to easily assess crossliers. We compare eXPose against traditional outlier detection methods in various benchmark datasets with synthetic crossliers and show the superior performance of our method in targeting these instances.