Learning with Delayed Feedback

Pranavan Theivendiram, Terence Sim

Responsive image

Auto-TLDR; Unsupervised Machine Learning with Delayed Feedback

Slides Poster

We propose a novel supervised machine learning strategy, inspired by human learning, that enables an Agent to learn continually over its lifetime. A natural consequence is that the Agent must be able to handle an input whose label is delayed until a later time, or may not arrive at all. Our Agent learns in two steps: a short Seeding phase, in which the Agent's model is initialized with labelled inputs, and an indefinitely long Growing phase, in which the Agent refines and assesses its model if the label is given for an input, but stores the input in a finite-length queue if the label is missing. Queued items are matched against future input-label pairs that arrive, and the model is then updated. Our strategy also allows for the delayed feedback to take a different form. For example, in an image captioning task, the feedback could be a semantic segmentation rather than a textual caption. We show with many experiments that our strategy enables an Agent to learn flexibly and efficiently.

Similar papers

Class-Incremental Learning with Pre-Allocated Fixed Classifiers

Federico Pernici, Matteo Bruni, Claudio Baecchi, Francesco Turchini, Alberto Del Bimbo

Responsive image

Auto-TLDR; Class-Incremental Learning with Pre-allocated Output Nodes for Fixed Classifier

Slides Poster Similar

In class-incremental learning, a learning agent faces a stream of data with the goal of learning new classes while not forgetting previous ones. Neural networks are known to suffer under this setting, as they forget previously acquired knowledge. To address this problem, effective methods exploit past data stored in an episodic memory while expanding the final classifier nodes to accommodate the new classes. In this work, we substitute the expanding classifier with a novel fixed classifier in which a number of pre-allocated output nodes are subject to the classification loss right from the beginning of the learning phase. Contrarily to the standard expanding classifier, this allows: (a) the output nodes of future unseen classes to firstly see negative samples since the beginning of learning together with the positive samples that incrementally arrive; (b) to learn features that do not change their geometric configuration as novel classes are incorporated in the learning model. Experiments with public datasets show that the proposed approach is as effective as the expanding classifier while exhibiting intriguing properties of internal feature representation that are otherwise not-existent. Our ablation study on pre-allocating a large number of classes further validates the approach.

Semi-Supervised Class Incremental Learning

Alexis Lechat, Stéphane Herbin, Frederic Jurie

Responsive image

Auto-TLDR; incremental class learning with non-annotated batches

Slides Poster Similar

This paper makes a contribution to the problem of incremental class learning, the principle of which is to sequentially introduce batches of samples annotated with new classes during the learning phase. The main objective is to reduce the drop in classification performance on old classes, a phenomenon commonly called catastrophic forgetting. We propose in this paper a new method which exploits the availability of a large quantity of non-annotated images in addition to the annotated batches. These images are used to regularize the classifier and give the feature space a more stable structure. We demonstrate on several image data sets that our approach is able to improve the global performance of classifiers learned using an incremental learning protocol, even with annotated batches of small size.

Class-Incremental Learning with Topological Schemas of Memory Spaces

Xinyuan Chang, Xiaoyu Tao, Xiaopeng Hong, Xing Wei, Wei Ke, Yihong Gong

Responsive image

Auto-TLDR; Class-incremental Learning with Topological Schematic Model

Slides Poster Similar

Class-incremental learning (CIL) aims to incrementally learn a unified classifier for new classes emerging, which suffers from the catastrophic forgetting problem. To alleviate forgetting and improve the recognition performance, we propose a novel CIL framework, named the topological schemas model (TSM). TSM consists of a Gaussian mixture model arranged on 2D grids (2D-GMM) as the memory of the learned knowledge. To train the 2D-GMM model, we develop a novel competitive expectation-maximization (CEM) method, which contains a global topology embedding step and a local expectation-maximization finetuning step. Meanwhile, we choose the image samples of old classes that have the maximum posterior probability with respect to each Gaussian distribution as the episodic points. When finetuning for new classes, we propose the memory preservation loss (MPL) term to ensure episodic points still have maximum probabilities with respect to the corresponding Gaussian distribution. MPL preserves the distribution of 2D-GMM for old knowledge during incremental learning and alleviates catastrophic forgetting. Comprehensive experimental evaluations on two popular CIL benchmarks CIFAR100 and subImageNet demonstrate the superiority of our TSM.

Rethinking Experience Replay: A Bag of Tricks for Continual Learning

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara

Responsive image

Auto-TLDR; Experience Replay for Continual Learning: A Practical Approach

Slides Poster Similar

In Continual Learning, a Neural Network is trained on a stream of data whose distribution shifts over time. Under these assumptions, it is especially challenging to improve on classes appearing later in the stream while remaining accurate on previous ones. This is due to the infamous problem of catastrophic forgetting, which causes a quick performance degradation when the classifier focuses on learning new categories. Recent literature proposed various approaches to tackle this issue, often resorting to very sophisticated techniques. In this work, we show that naive rehearsal can be patched to achieve similar performance. We point out some shortcomings that restrain Experience Replay (ER) and propose five tricks to mitigate them. Experiments show that ER, thus enhanced, displays an accuracy gain of 51.2 and 26.9 percentage points on the CIFAR-10 and CIFAR-100 datasets respectively (memory buffer size 1000). As a result, it surpasses current state-of-the-art rehearsal-based methods.

Selecting Useful Knowledge from Previous Tasks for Future Learning in a Single Network

Feifei Shi, Peng Wang, Zhongchao Shi, Yong Rui

Responsive image

Auto-TLDR; Continual Learning with Gradient-based Threshold Threshold

Slides Poster Similar

Continual learning is able to learn new tasks incrementally while avoiding catastrophic forgetting. Recent work has shown that packing multiple tasks into a single network incrementally by iterative pruning and re-training network is a promising method. We build upon this idea and propose an improved version of PackNet, specifically, we propose a novel gradient-based threshold method to reuse the knowledge of the previous tasks selectively when learning new tasks. Our experiments on a variety of classification tasks and different network architectures demonstrate that our method obtains competitive results when compared to PackNet.

ARCADe: A Rapid Continual Anomaly Detector

Ahmed Frikha, Denis Krompass, Volker Tresp

Responsive image

Auto-TLDR; ARCADe: A Meta-Learning Approach for Continuous Anomaly Detection

Slides Poster Similar

Although continual learning and anomaly detection have separately been well-studied in previous works, their intersection remains rather unexplored. The present work addresses a learning scenario where a model has to incrementally learn a sequence of anomaly detection tasks, i.e. tasks from which only examples from the normal (majority) class are available for training. We define this novel learning problem of continual anomaly detection (CAD) and formulate it as a meta-learning problem. Moreover, we propose \emph{A Rapid Continual Anomaly Detector (ARCADe)}, an approach to train neural networks to be robust against the major challenges of this new learning problem, namely catastrophic forgetting and overfitting to the majority class. The results of our experiments on three datasets show that, in the CAD problem setting, ARCADe substantially outperforms baselines from the continual learning and anomaly detection literature. Finally, we provide deeper insights into the learning strategy yielded by the proposed meta-learning algorithm.

Multimodal Side-Tuning for Document Classification

Stefano Zingaro, Giuseppe Lisanti, Maurizio Gabbrielli

Responsive image

Auto-TLDR; Side-tuning for Multimodal Document Classification

Slides Poster Similar

In this paper, we propose to exploit the side-tuning framework for multimodal document classification. Side-tuning is a methodology for network adaptation recently introduced to solve some of the problems related to previous approaches. Thanks to this technique it is actually possible to overcome model rigidity and catastrophic forgetting of transfer learning by fine-tuning. The proposed solution uses off-the-shelf deep learning architectures leveraging the side-tuning framework to combine a base model with a tandem of two side networks. We show that side-tuning can be successfully employed also when different data sources are considered, e.g. text and images in document classification. The experimental results show that this approach pushes further the limit for document classification accuracy with respect to the state of the art.

Sequential Domain Adaptation through Elastic Weight Consolidation for Sentiment Analysis

Avinash Madasu, Anvesh Rao Vijjini

Responsive image

Auto-TLDR; Sequential Domain Adaptation using Elastic Weight Consolidation for Sentiment Analysis

Slides Poster Similar

Elastic Weight Consolidation (EWC) is a technique used in overcoming catastrophic forgetting between successive tasks trained on a neural network. We use this phenomenon of information sharing between tasks for domain adaptation. Training data for tasks such as sentiment analysis (SA) may not be fairly represented across multiple domains. Domain Adaptation (DA) aims to build algorithms that leverage information from source domains to facilitate performance on an unseen target domain. We propose a model-independent framework - Sequential Domain Adaptation (SDA). SDA draws on EWC for training on successive source domains to move towards a general domain solution, thereby solving the problem of domain adaptation. We test SDA on convolutional, recurrent and attention-based architectures. Our experiments show that the proposed framework enables simple architectures such as CNNs to outperform complex state-of-the-art models in domain adaptation of SA. We further observe the effectiveness of a harder first Anti-Curriculum ordering of source domains leads to maximum performance.

A Novel Actor Dual-Critic Model for Remote Sensing Image Captioning

Ruchika Chavhan, Biplab Banerjee, Xiao Xiang Zhu, Subhasis Chaudhuri

Responsive image

Auto-TLDR; Actor Dual-Critic Training for Remote Sensing Image Captioning Using Deep Reinforcement Learning

Slides Poster Similar

We deal with the problem of generating textual captions from optical remote sensing (RS) images using the notion of deep reinforcement learning. Due to the high inter-class similarity in reference sentences describing remote sensing data, jointly encoding the sentences and images encourages prediction of captions that are semantically more precise than the ground truth in many cases. To this end, we introduce an Actor Dual-Critic training strategy where a second critic model is deployed in the form of an encoder-decoder RNN to encode the latent information corresponding to the original and generated captions. While all actor-critic methods use an actor to predict sentences for an image and a critic to provide rewards, our proposed encoder-decoder RNN guarantees high-level comprehension of images by sentence-to-image translation. We observe that the proposed model generates sentences on the test data highly similar to the ground truth and is successful in generating even better captions in many critical cases. Extensive experiments on the benchmark Remote Sensing Image Captioning Dataset (RSICD) and the UCM-captions dataset confirm the superiority of the proposed approach in comparison to the previous state-of-the-art where we obtain a gain of sharp increments in both the ROUGE-L and CIDEr measures.

RSAC: Regularized Subspace Approximation Classifier for Lightweight Continuous Learning

Chih-Hsing Ho, Shang-Ho Tsai

Responsive image

Auto-TLDR; Regularized Subspace Approximation Classifier for Lightweight Continuous Learning

Slides Poster Similar

Continuous learning seeks to perform the learning on the data that arrives from time to time. While prior works have demonstrated several possible solutions, these approaches require excessive training time as well as memory usage. This is impractical for applications where time and storage are constrained, such as edge computing. In this work, a novel training algorithm, regularized subspace approximation classifier (RSAC), is proposed to achieve lightweight continuous learning. RSAC contains a feature reduction module and classifier module with regularization. Extensive experiments show that RSAC is more efficient than prior continuous learning works and outperforms these works on various experimental settings.

Dual-Memory Model for Incremental Learning: The Handwriting Recognition Use Case

Mélanie Piot, Bérangère Bourdoulous, Aurelia Deshayes, Lionel Prevost

Responsive image

Auto-TLDR; A dual memory model for handwriting recognition

Poster Similar

In this paper, we propose a dual memory model inspired by neural science. Short-term memory processes the data stream before integrating them into long-term memory, which generalizes. The use case is learning the ability to recognize handwriting. This begins with the learning of prototypical letters . It continues throughout life and gives the individual the ability to recognize increasingly varied handwriting. This second task is achieved by incrementally training our dual-memory model. We used a convolution network for encoding and random forests as the memory model. Indeed, the latter have the advantage of being easily enhanced to integrate new data and new classes. Performances on the MNIST database are very encouraging since they exceed 95\% and the complexity of the model remains reasonable.

Transformer Reasoning Network for Image-Text Matching and Retrieval

Nicola Messina, Fabrizio Falchi, Andrea Esuli, Giuseppe Amato

Responsive image

Auto-TLDR; A Transformer Encoder Reasoning Network for Image-Text Matching in Large-Scale Information Retrieval

Slides Poster Similar

Image-text matching is an interesting and fascinating task in modern AI research. Despite the evolution of deep-learning-based image and text processing systems, multi-modal matching remains a challenging problem. In this work, we consider the problem of accurate image-text matching for the task of multi-modal large-scale information retrieval. State-of-the-art results in image-text matching are achieved by inter-playing image and text features from the two different processing pipelines, usually using mutual attention mechanisms. However, this invalidates any chance to extract separate visual and textual features needed for later indexing steps in large-scale retrieval systems. In this regard, we introduce the Transformer Encoder Reasoning Network (TERN), an architecture built upon one of the modern relationship-aware self-attentive architectures, the Transformer Encoder (TE). This architecture is able to separately reason on the two different modalities and to enforce a final common abstract concept space by sharing the weights of the deeper transformer layers. Thanks to this design, the implemented network is able to produce compact and very rich visual and textual features available for the successive indexing step. Experiments are conducted on the MS-COCO dataset, and we evaluate the results using a discounted cumulative gain metric with relevance computed exploiting caption similarities, in order to assess possibly non-exact but relevant search results. We demonstrate that on this metric we are able to achieve state-of-the-art results in the image retrieval task. Our code is freely available at https://github.com/mesnico/TERN.

Iterative Bounding Box Annotation for Object Detection

Bishwo Adhikari, Heikki Juhani Huttunen

Responsive image

Auto-TLDR; Semi-Automatic Bounding Box Annotation for Object Detection in Digital Images

Slides Poster Similar

Manual annotation of bounding boxes for object detection in digital images is tedious, and time and resource consuming. In this paper, we propose a semi-automatic method for efficient bounding box annotation. The method trains the object detector iteratively on small batches of labeled images and learns to propose bounding boxes for the next batch, after which the human annotator only needs to correct possible errors. We propose an experimental setup for simulating the human actions and use it for comparing different iteration strategies, such as the order in which the data is presented to the annotator. We experiment on our method with three datasets and show that it can reduce the human annotation effort significantly, saving up to 75% of total manual annotation work.

Energy Minimum Regularization in Continual Learning

Xiaobin Li, Weiqiang Wang

Responsive image

Auto-TLDR; Energy Minimization Regularization for Continuous Learning

Slides Similar

How to give agents the ability of continuous learning like human and animals is still a challenge. In the regularized continual learning method OWM, the constraint of the model on the energy compression of the learned task is ignored, which results in the poor performance of the method on the dataset with a large number of learning tasks. In this paper, we propose an energy minimization regularization(EMR) method to constrain the energy of learned tasks, providing enough learning space for the following tasks that are not learned, and increasing the capacity of the model to the number of learning tasks. A large number of experiments show that our method can effectively increase the capacity of the model and reduce the sensitivity of the model to the number of tasks and the size of the network.

Attentive Visual Semantic Specialized Network for Video Captioning

Jesus Perez-Martin, Benjamin Bustos, Jorge Pérez

Responsive image

Auto-TLDR; Adaptive Visual Semantic Specialized Network for Video Captioning

Slides Poster Similar

As an essential high-level task of video understanding topic, automatically describing a video with natural language has recently gained attention as a fundamental challenge in computer vision. Previous models for video captioning have several limitations, such as the existence of gaps in current semantic representations and the inexpressibility of the generated captions. To deal with these limitations, in this paper, we present a new architecture that we callAttentive Visual Semantic Specialized Network(AVSSN), which is an encoder-decoder model based on our Adaptive Attention Gate and Specialized LSTM layers. This architecture can selectively decide when to use visual or semantic information into the text generation process. The adaptive gate makes the decoder to automatically select the relevant information for providing a better temporal state representation than the existing decoders. Besides, the model is capable of learning to improve the expressiveness of generated captions attending to their length, using a sentence-length-related loss function. We evaluate the effectiveness of the proposed approach on the Microsoft Video Description(MSVD) and the Microsoft Research Video-to-Text (MSR-VTT) datasets, achieving state-of-the-art performance with several popular evaluation metrics: BLEU-4, METEOR, CIDEr, and ROUGE_L.

Meta Soft Label Generation for Noisy Labels

Görkem Algan, Ilkay Ulusoy

Responsive image

Auto-TLDR; MSLG: Meta-Learning for Noisy Label Generation

Slides Poster Similar

The existence of noisy labels in the dataset causes significant performance degradation for deep neural networks (DNNs). To address this problem, we propose a Meta Soft Label Generation algorithm called MSLG, which can jointly generate soft labels using meta-learning techniques and learn DNN parameters in an end-to-end fashion. Our approach adapts the meta-learning paradigm to estimate optimal label distribution by checking gradient directions on both noisy training data and noise-free meta-data. In order to iteratively update soft labels, meta-gradient descent step is performed on estimated labels, which would minimize the loss of noise-free meta samples. In each iteration, the base classifier is trained on estimated meta labels. MSLG is model-agnostic and can be added on top of any existing model at hand with ease. We performed extensive experiments on CIFAR10, Clothing1M and Food101N datasets. Results show that our approach outperforms other state-of-the-art methods by a large margin. Our code is available at \url{https://github.com/gorkemalgan/MSLG_noisy_label}.

Enriching Video Captions with Contextual Text

Philipp Rimle, Pelin Dogan, Markus Gross

Responsive image

Auto-TLDR; Contextualized Video Captioning Using Contextual Text

Slides Poster Similar

Understanding video content and generating caption with context is an important and challenging task. Unlike prior methods that typically attempt to generate generic video captions without context, our architecture contextualizes captioning by infusing extracted information from relevant text data. We propose an end-to-end sequence-to-sequence model which generates video captions based on visual input, and mines relevant knowledge such as names and locations from contextual text. In contrast to previous approaches, we do not preprocess the text further, and let the model directly learn to attend over it. Guided by the visual input, the model is able to copy words from the contextual text via a pointer-generator network, allowing to produce more specific video captions. We show competitive performance on the News Video Dataset and, through ablation studies, validate the efficacy of contextual video captioning as well as individual design choices in our model architecture.

Text Synopsis Generation for Egocentric Videos

Aidean Sharghi, Niels Lobo, Mubarak Shah

Responsive image

Auto-TLDR; Egocentric Video Summarization Using Multi-task Learning for End-to-End Learning

Slides Similar

Mass utilization of body-worn cameras has led to a huge corpus of available egocentric video. Existing video summarization algorithms can accelerate browsing such videos by selecting (visually) interesting shots from them. Nonetheless, since the system user still has to watch the summary videos, browsing large video databases remain a challenge. Hence, in this work, we propose to generate a textual synopsis, consisting of a few sentences describing the most important events in a long egocentric videos. Users can read the short text to gain insight about the video, and more importantly, efficiently search through the content of a large video database using text queries. Since egocentric videos are long and contain many activities and events, using video-to-text algorithms results in thousands of descriptions, many of which are incorrect. Therefore, we propose a multi-task learning scheme to simultaneously generate descriptions for video segments and summarize the resulting descriptions in an end-to-end fashion. We Input a set of video shots and the network generates a text description for each shot. Next, visual-language content matching unit that is trained with a weakly supervised objective, identifies the correct descriptions. Finally, the last component of our network, called purport network, evaluates the descriptions all together to select the ones containing crucial information. Out of thousands of descriptions generated for the video, a few informative sentences are returned to the user. We validate our framework on the challenging UT Egocentric video dataset, where each video is between 3 to 5 hours long, associated with over 3000 textual descriptions on average. The generated textual summaries, including only 5 percent (or less) of the generated descriptions, are compared to groundtruth summaries in text domain using well-established metrics in natural language processing.

Naturally Constrained Online Expectation Maximization

Daniela Pamplona, Antoine Manzanera

Responsive image

Auto-TLDR; Constrained Online Expectation-Maximization for Probabilistic Principal Components Analysis

Slides Poster Similar

With the rise of big data sets, learning algorithms must be adapted to piece-wise mechanisms in order to tackle time and memory costs of large scale calculations. Furthermore, for most learning embedded systems the input data are fed in a sequential and contingent manner: one by one, and possibly class by class. Thus, learning algorithms should not only run online but cope with time-varying, non-independent, and non-balanced training data for the system's entire life. Online Expectation-Maximization is a well-known algorithm for learning probabilistic models in real-time, due to its simplicity and convergence properties. However, these properties are only valid in the case of large, independent and identically distributed (iid) samples. In this paper, we propose to constraint the online Expectation-Maximization on the Fisher distance between the parameters. After the presentation of the algorithm, we make a thorough study of its use in Probabilistic Principal Components Analysis. First, we derive the update rules, then we analyse the effect of the constraint on major problems of online and sequential learning: convergence, forgetting and interference. Furthermore we use several algorithmic protocols: iid {\em vs} sequential data, and constraint parameters updated step-wise {\em vs} class-wise. Our results show that this constraint increases the convergence rate of online Expectation-Maximization, decreases forgetting and slightly introduces transfer learning.

Explore and Explain: Self-Supervised Navigation and Recounting

Roberto Bigazzi, Federico Landi, Marcella Cornia, Silvia Cascianelli, Lorenzo Baraldi, Rita Cucchiara

Responsive image

Auto-TLDR; Exploring a Photorealistic Environment for Explanation and Navigation

Slides Similar

Embodied AI has been recently gaining attention as it aims to foster the development of autonomous and intelligent agents. In this paper, we devise a novel embodied setting in which an agent needs to explore a previously unknown environment while recounting what it sees during the path. In this context, the agent needs to navigate the environment driven by an exploration goal, select proper moments for description, and output natural language descriptions of relevant objects and scenes. Our model integrates a novel self-supervised exploration module with penalty, and a fully-attentive captioning model for explanation. Also, we investigate different policies for selecting proper moments for explanation, driven by information coming from both the environment and the navigation. Experiments are conducted on photorealistic environments from the Matterport3D dataset and investigate the navigation and explanation capabilities of the agent as well as the role of their interactions.

Incrementally Zero-Shot Detection by an Extreme Value Analyzer

Sixiao Zheng, Yanwei Fu, Yanxi Hou

Responsive image

Auto-TLDR; IZSD-EVer: Incremental Zero-Shot Detection for Incremental Learning

Slides Similar

Human beings not only have the ability of recogniz-ing novel unseen classes, but also can incrementally incorporatethe new classes to existing knowledge preserved. However, thezero-shot learning models assume that all seen classes should beknown beforehand, while incremental learning models cannotrecognize unseen classes. This paper introduces a novel andchallenging task of Incrementally Zero-Shot Detection (IZSD),a practical strategy for both zero-shot learning and class-incremental learning in real-world object detection. An innovativeend-to-end model – IZSD-EVer was proposed to tackle this taskthat requires incrementally detecting new classes and detectingthe classes that have never been seen. Specifically, we proposea novel extreme value analyzer to simultaneously detect objectsfrom old seen, new seen, and unseen classes. Additionally andtechnically, we propose two innovative losses, i.e., background-foreground mean squared error loss alleviating the extremeimbalance of the background and foreground of images, andprojection distance loss aligning the visual space and semanticspaces of old seen classes. Experiments demonstrate the efficacyof our model in detecting objects from both the seen and unseenclasses, outperforming the alternative models on Pascal VOC andMSCOCO datasets.

Algorithm Recommendation for Data Streams

Jáder Martins Camboim De Sá, Andre Luis Debiaso Rossi, Gustavo Enrique De Almeida Prado Alves Batista, Luís Paulo Faina Garcia

Responsive image

Auto-TLDR; Meta-Learning for Algorithm Selection in Time-Changing Data Streams

Slides Poster Similar

In the last decades, many companies are taking advantage of massive data generation at high frequencies through knowledge discovery to identify valuable information. Machine learning techniques can be employed for knowledge discovery, since they are able to extract patterns from data and induce models to predict future events. However, dynamic and evolving environments generate streams of data that usually are non-stationary. Models induced in these scenarios may perish over time due to seasonality or concept drift. The periodic retraining could help but the fixed algorithm's hypothesis space could no longer be appropriate. An alternative solution is to use meta-learning for periodic algorithm selection in time-changing environments, choosing the bias that best suits the current data. In this paper, we present an enhanced framework for data streams algorithm selection based on MetaStream. Our approach uses meta-learning and incremental learning to actively select the best algorithm for the current concept in a time-changing. Different from previous works, a set of cutting edge meta-features and an incremental learning approach in the meta-level based on LightGBM are used. The results show that this new strategy can improve the recommendation of the best algorithm more accurately in time-changing data.

Enhancing Semantic Segmentation of Aerial Images with Inhibitory Neurons

Ihsan Ullah, Sean Reilly, Michael Madden

Responsive image

Auto-TLDR; Lateral Inhibition in Deep Neural Networks for Object Recognition and Semantic Segmentation

Slides Poster Similar

In a Convolutional Neural Network, each neuron in the output feature map takes input from the neurons in its receptive field. This receptive field concept plays a vital role in today's deep neural networks. However, inspired by neuro-biological research, it has been proposed to add inhibitory neurons outside the receptive field, which may enhance the performance of neural network models. In this paper, we begin with deep network architectures such as VGG and ResNet, and propose an approach to add lateral inhibition in each output neuron to reduce its impact on its neighbours, both in fine-tuning pre-trained models and training from scratch. Our experiments show that notable improvements upon prior baseline deep models can be achieved. A key feature of our approach is that it is easy to add to baseline models; it can be adopted in any model containing convolution layers, and we demonstrate its value in applications including object recognition and semantic segmentation of aerial images, where we show state-of-the-art result on the Aeroscape dataset. On semantic segmentation tasks, our enhancement shows 17.43% higher mIoU than a single baseline model on a single source (the Aeroscape dataset), 13.43% higher performance than an ensemble model on the same single source, and 7.03% higher than an ensemble model on multiple sources (segmentation datasets). Our experiments illustrate the potential impact of using inhibitory neurons in deep learning models, and they also show better results than the baseline models that have standard convolutional layer.

Rethinking of Deep Models Parameters with Respect to Data Distribution

Shitala Prasad, Dongyun Lin, Yiqun Li, Sheng Dong, Zaw Min Oo

Responsive image

Auto-TLDR; A progressive stepwise training strategy for deep neural networks

Slides Poster Similar

The performance of deep learning models are driven by various parameters but to tune all of them every time, for every dataset, is a heuristic practice. In this paper, unlike the common practice of decaying the learning rate, we propose a step-wise training strategy where the learning rate and the batch size are tuned based on the dataset size. Here, the given dataset size is progressively increased during the training to boost the network performance without saturating the learning curve, after certain epochs. We conducted extensive experiments on multiple networks and datasets to validate the proposed training strategy. The experimental results proves our hypothesis that the learning rate, the batch size and the data size are interrelated and can improve the network accuracy if an optimal progressive stepwise training strategy is applied. The proposed strategy also the overall training computational cost is reduced.

Multi-Attribute Learning with Highly Imbalanced Data

Lady Viviana Beltran Beltran, Mickaël Coustaty, Nicholas Journet, Juan C. Caicedo, Antoine Doucet

Responsive image

Auto-TLDR; Data Imbalance in Multi-Attribute Deep Learning Models: Adaptation to face each one of the problems derived from imbalance

Slides Poster Similar

Data is one of the most important keys for success when studying a simple or a complex phenomenon. With the use of deep-learning exploding and its democratization, non-computer science experts may struggle to use highly complex deep learning architectures, even when straightforward models offer them suitable performances. In this article, we study the specific and common problem of data imbalance in real databases as most of the bad performance problems are due to the data itself. We review two points: first, when the data contains different levels of imbalance. Classical imbalanced learning strategies cannot be directly applied when using multi-attribute deep learning models, i.e., multi-task and multi-label architectures. Therefore, one of our contributions is our proposed adaptations to face each one of the problems derived from imbalance. Second, we demonstrate that with little to no imbalance, straightforward deep learning models work well. However, for non-experts, these models can be seen as black boxes, where all the effort is put in pre-processing the data. To simplify the problem, we performed the classification task ignoring information that is costly to extract, such as part localization which is widely used in the state of the art of attribute classification. We make use of a widely known attribute database, CUB-200-2011 - CUB as our main use case due to its deeply imbalanced nature, along with two better structured databases: celebA and Awa2. All of them contain multi-attribute annotations. The results of highly fine-grained attribute learning over CUB demonstrate that in the presence of imbalance, by using our proposed strategies is possible to have competitive results against the state of the art, while taking advantage of multi-attribute deep learning models. We also report results for two better-structured databases over which our models over-perform the state of the art.

The Color Out of Space: Learning Self-Supervised Representations for Earth Observation Imagery

Stefano Vincenzi, Angelo Porrello, Pietro Buzzega, Marco Cipriano, Pietro Fronte, Roberto Cuccu, Carla Ippoliti, Annamaria Conte, Simone Calderara

Responsive image

Auto-TLDR; Satellite Image Representation Learning for Remote Sensing

Slides Poster Similar

The recent growth in the number of satellite images fosters the development of effective deep-learning techniques for Remote Sensing (RS). However, their full potential is untapped due to the lack of large annotated datasets. Such a problem is usually countered by fine-tuning a feature extractor that is previously trained on the ImageNet dataset. Unfortunately, the domain of natural images differs from the RS one, which hinders the final performance. In this work, we propose to learn meaningful representations from satellite imagery, leveraging its high-dimensionality spectral bands to reconstruct the visible colors. We conduct experiments on land cover classification (BigEarthNet) and West Nile Virus detection, showing that colorization is a solid pretext task for training a feature extractor. Furthermore, we qualitatively observe that guesses based on natural images and colorization rely on different parts of the input. This paves the way to an ensemble model that eventually outperforms both the above-mentioned techniques.

Stochastic Label Refinery: Toward Better Target Label Distribution

Xi Fang, Jiancheng Yang, Bingbing Ni

Responsive image

Auto-TLDR; Stochastic Label Refinery for Deep Supervised Learning

Slides Poster Similar

This paper proposes a simple yet effective strategy for improving deep supervised learning, named Stochastic Label Refinery (SLR), by refining training labels to more informative labels. When training a neural network, target distributions (or ground-truth) are typically "hard", which means the target label of each category consists of only 0 and 1. However, the fixed "hard" target distributions do not capture association between categories or that between objects. In this study, instead of using the hard target distributions, we iteratively generate "soft" target label distributions for training the neural networks, which leads to better performances. The soft target distributions are obtained via an Expectation-Maximization (EM) iteration, where the "true" target distributions and the learned models are regarded as hidden variables. In E step, the models are optimized to approximate the target distributions on stochastic splits of training data; In M step, the target distributions are updated with predicted pseudo-label on leave-out splits. Extensive experiments on classification and ordinal regression tasks, empirically prove that the refined target distribution consistently leads to considerable performance improvements even applied on competitive baselines. Notably, in DeepDR 2020 Diabetic Retinopathy Grading (DeepDRiD) challenge, our method improves the quadratic weighted kappa on official validation set from 0.8247 to 0.8348 and achieves a state-of-the-art score on online test set. The proposed SLR technique is easy to implement and practically applicable. The code will be open sourced soon.

Context Visual Information-Based Deliberation Network for Video Captioning

Min Lu, Xueyong Li, Caihua Liu

Responsive image

Auto-TLDR; Context visual information-based deliberation network for video captioning

Slides Poster Similar

Video captioning is to automatically and accurately generate a textual description for a video. The typical methods following the encoder-decoder architecture directly utilized hidden states to predict words. Nevertheless, these methods did not amend the inaccurate hidden states before feeding those states into word prediction. This led to a cascade of errors on generating word by word. In this paper, the context visual information-based deliberation network is proposed, abbreviated as CVI-DelNet. Its key idea is to introduce the deliberator into the encoder-decoder framework. The encoder-decoder firstly generates a raw hidden state sequence. Unlike the existing methods, the raw hidden state is no more directly used for word prediction but is fed into the deliberator to generate the refined hidden state. The words are then predicted according to the refined hidden states and the contextual visual features. Results on two datasets shows that the proposed method significantly outperforms the baselines.

Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network

Tengfei Liu, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin

Responsive image

Auto-TLDR; Semantically Extended Graph Convolutional Network for Zero-shot Text Classification

Slides Poster Similar

As a challenging task of Natural Language Processing(NLP), zero-shot text classification has attracted more and more attention recently. It aims to detect classes that the model has never seen in the training set. For this purpose, a feasible way is to construct connection between the seen and unseen classes by semantic extension and classify the unseen classes by information propagation over the connection. Although many related zero-shot text classification methods have been exploited, how to realize semantic extension properly and propagate information effectively is far from solved. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Graph Convolutional Network (SEGCN). In the proposed method, the semantic category knowledge from ConceptNet is utilized to semantic extension for linking seen classes to unseen classes and constructing a graph of all classes. Then, we build upon Graph Convolutional Network (GCN) for predicting the textual classifier for each category, which transfers the category knowledge by the convolution operators on the constructed graph and is trained in a semi-supervised manner using the samples of the seen classes. The experimental results on Dbpedia and 20newsgroup datasets show that our method outperforms the state of the art zero-shot text classification methods.

Generative Latent Implicit Conditional Optimization When Learning from Small Sample

Idan Azuri, Daphna Weinshall

Responsive image

Auto-TLDR; GLICO: Generative Latent Implicit Conditional Optimization for Small Sample Learning

Slides Poster Similar

We revisit the long-standing problem of learning from small sample. The generation of new samples from a small training set of labeled points has attracted increased attention in recent years. In this paper, we propose a novel such method called GLICO (Generative Latent Implicit Conditional Optimization). GLICO learns a mapping from the training examples to a latent space and a generator that generates images from vectors in the latent space. Unlike most recent work, which rely on access to large amounts of unlabeled data, GLICO does not require access to any additional data other than the small set of labeled points. In fact, GLICO learns to synthesize completely new samples for every class using as little as 5 or 10 examples per class, with as few as 10 such classes and no data from unknown classes. GLICO is then used to augment the small training set while training a classifier on the small sample. To this end, our proposed method samples the learned latent space using spherical interpolation (slerp) and generates new examples using the trained generator. Empirical results show that the new sampled set is diverse enough, leading to improvement in image classification in comparison with the state of the art when trained on small samples obtained from CIFAR-10, CIFAR-100, and CUB-200.

Deep Convolutional Embedding for Digitized Painting Clustering

Giovanna Castellano, Gennaro Vessio

Responsive image

Auto-TLDR; A Deep Convolutional Embedding Model for Clustering Artworks

Slides Poster Similar

Clustering artworks is difficult because of several reasons. On one hand, recognizing meaningful patterns in accordance with domain knowledge and visual perception is extremely hard. On the other hand, the application of traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, we propose to use a deep convolutional embedding model for digitized painting clustering, in which the task of mapping the input raw data to an abstract, latent space is jointly optimized with the task of finding a set of cluster centroids in this latent feature space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. The model is also able to outperform other state-of-the-art deep clustering approaches to the same problem. The proposed method may be beneficial to several art-related tasks, particularly visual link retrieval and historical knowledge discovery in painting datasets.

Meta Learning Via Learned Loss

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Thomas Grefenstette, Ludovic Righetti, Gaurav Sukhatme, Franziska Meier

Responsive image

Auto-TLDR; meta-learning for learning parametric loss functions that generalize across different tasks and model architectures

Slides Similar

Typically, loss functions, regularization mechanisms and other important aspects of training parametric models are chosen heuristically from a limited set of options. In this paper, we take the first step towards automating this process, with the view of producing models which train faster and more robustly. Concretely, we present a meta-learning method for learning parametric loss functions that can generalize across different tasks and model architectures. We develop a pipeline for “meta-training” such loss functions, targeted at maximizing the performance of the model trained under them. The loss landscape produced by our learned losses significantly improves upon the original task-specific losses in both supervised and reinforcement learning tasks. Furthermore, we show that our meta-learning framework is flexible enough to incorporate additional information at meta-train time. This information shapes the learned loss function such that the environment does not need to provide this information during meta-test time.

MetaMix: Improved Meta-Learning with Interpolation-based Consistency Regularization

Yangbin Chen, Yun Ma, Tom Ko, Jianping Wang, Qing Li

Responsive image

Auto-TLDR; MetaMix: A Meta-Agnostic Meta-Learning Algorithm for Few-Shot Classification

Slides Poster Similar

Model-Agnostic Meta-Learning (MAML) and its variants are popular few-shot classification methods. They train an initializer across a variety of sampled learning tasks (also known as episodes) such that the initialized model can adapt quickly to new tasks. However, within each episode, current MAML-based algorithms have limitations in forming generalizable decision boundaries using only a few training examples. In this paper, we propose an approach called MetaMix. It generates virtual examples within each episode to regularize the backbone models. MetaMix can be applied in any of the MAML-based algorithms and learn the decision boundaries which are more generalizable to new tasks. Experiments on the mini-ImageNet, CUB, and FC100 datasets show that MetaMix improves the performance of MAML-based algorithms and achieves the state-of-the-art result when applied in Meta-Transfer Learning.

Image Representation Learning by Transformation Regression

Xifeng Guo, Jiyuan Liu, Sihang Zhou, En Zhu, Shihao Dong

Responsive image

Auto-TLDR; Self-supervised Image Representation Learning using Continuous Parameter Prediction

Slides Poster Similar

Self-supervised learning is a thriving research direction since it can relieve the burden of human labeling for machine learning by seeking for supervision from data instead of human annotation. Although demonstrating promising performance in various applications, we observe that the existing methods usually model the auxiliary learning tasks as classification tasks with finite discrete labels, leading to insufficient supervisory signals, which in turn restricts the representation quality. In this paper, to solve the above problem and make full use of the supervision from data, we design a regression model to predict the continuous parameters of a group of transformations, i.e., image rotation, translation, and scaling. Surprisingly, this naive modification stimulates tremendous potential from data and the resulting supervisory signal has largely improved the performance of image representation learning. Extensive experiments on four image datasets, including CIFAR10, CIFAR100, STL10, and SVHN, indicate that our proposed algorithm outperforms the state-of-the-art unsupervised learning methods by a large margin in terms of classification accuracy. Crucially, we find that with our proposed training mechanism as an initialization, the performance of the existing state-of-the-art classification deep architectures can be preferably improved.

Not All Domains Are Equally Complex: Adaptive Multi-Domain Learning

Ali Senhaji, Jenni Karoliina Raitoharju, Moncef Gabbouj, Alexandros Iosifidis

Responsive image

Auto-TLDR; Adaptive Parameterization for Multi-Domain Learning

Slides Poster Similar

Deep learning approaches are highly specialized and require training separate models for different tasks. Multi-domain learning looks at ways to learn a multitude of different tasks, each coming from a different domain, at once. The most common approach in multi-domain learning is to form a domain agnostic model, the parameters of which are shared among all domains, and learn a small number of extra domain-specific parameters for each individual new domain. However, different domains come with different levels of difficulty; parameterizing the models of all domains using an augmented version of the domain agnostic model leads to unnecessarily inefficient solutions, especially for easy to solve tasks. We propose an adaptive parameterization approach to deep neural networks for multi-domain learning. The proposed approach performs on par with the original approach while reducing by far the number of parameters, leading to efficient multi-domain learning solutions.

A Bayesian Approach to Reinforcement Learning of Vision-Based Vehicular Control

Zahra Gharaee, Karl Holmquist, Linbo He, Michael Felsberg

Responsive image

Auto-TLDR; Bayesian Reinforcement Learning for Autonomous Driving

Slides Poster Similar

In this paper, we present a state-of-the-art reinforcement learning method for autonomous driving. Our approach employs temporal difference learning in a Bayesian framework to learn vehicle control signals from sensor data. The agent has access to images from a forward facing camera, which are pre-processed to generate semantic segmentation maps. We trained our system using both ground truth and estimated semantic segmentation input. Based on our observations from a large set of experiments, we conclude that training the system on ground truth input data leads to better performance than training the system on estimated input even if estimated input is used for evaluation. The system is trained and evaluated in a realistic simulated urban environment using the CARLA simulator. The simulator also contains a benchmark that allows for comparing to other systems and methods. The required training time of the system is shown to be lower and the performance on the benchmark superior to competing approaches.

A Close Look at Deep Learning with Small Data

Lorenzo Brigato, Luca Iocchi

Responsive image

Auto-TLDR; Low-Complex Neural Networks for Small Data Conditions

Slides Poster Similar

In this work, we perform a wide variety of experiments with different Deep Learning architectures in small data conditions. We show that model complexity is a critical factor when only a few samples per class are available. Differently from the literature, we improve the state of the art using low complexity models. We show that standard convolutional neural networks with relatively few parameters are effective in this scenario. In many of our experiments, low complexity models outperform state-of-the-art architectures. Moreover, we propose a novel network that uses an unsupervised loss to regularize its training. Such architecture either improves the results either performs comparably well to low capacity networks. Surprisingly, experiments show that the dynamic data augmentation pipeline is not beneficial in this particular domain. Statically augmenting the dataset might be a promising research direction while dropout maintains its role as a good regularizer.

Information Graphic Summarization Using a Collection of Multimodal Deep Neural Networks

Edward Kim, Connor Onweller, Kathleen F. Mccoy

Responsive image

Auto-TLDR; A multimodal deep learning framework that can generate summarization text supporting the main idea of an information graphic for presentation to blind or visually impaired

Slides Similar

We present a multimodal deep learning framework that can generate summarization text supporting the main idea of an information graphic for presentation to a person who is blind or visually impaired. The framework utilizes the visual, textual, positional, and size characteristics extracted from the image to create the summary. Different and complimentary neural architectures are optimized for each task using crowdsourced training data. From our quantitative experiments and results, we explain the reasoning behind our framework and show the effectiveness of our models. Our qualitative results showcase text generated from our framework and show that Mechanical Turk participants favor them to other automatic and human generated summarizations. We describe the design and of of an experiment to evaluate the utility of our system for people who have visual impairments in the context of understanding Twitter Tweets containing line graphs.

GAP: Quantifying the Generative Adversarial Set and Class Feature Applicability of Deep Neural Networks

Edward Collier, Supratik Mukhopadhyay

Responsive image

Auto-TLDR; Approximating Adversarial Learning in Deep Neural Networks Using Set and Class Adversaries

Slides Poster Similar

Recent work in deep neural networks has sought to characterize the nature in which a network learns features and how applicable learnt features are to various problem sets. Deep neural network applicability can be split into three sub-problems; set applicability, class applicability, and instance applicability. In this work we seek to quantify the applicability of features learned during adversarial training, focusing specifically on set and class applicability. We apply techniques for measuring applicability to both generators and discriminators trained on various data sets to quantify applicability and better observe how both a generator and a discriminator, and generative models as a whole, learn features during adversarial training.

Semantics to Space(S2S): Embedding Semantics into Spatial Space for Zero-Shot Verb-Object Query Inferencing

Sungmin Eum, Heesung Kwon

Responsive image

Auto-TLDR; Semantics-to-Space: Deep Zero-Shot Learning for Verb-Object Interaction with Vectors

Slides Poster Similar

We present a novel deep zero-shot learning (ZSL) model for inferencing human-object-interaction with verb-object (VO) query. While the previous two-stream ZSL approaches only use the semantic/textual information to be fed into the query stream, we seek to incorporate and embed the semantics into the visual representation stream as well. Our approach is powered by Semantics-to-Space (S2S) architecture where semantics derived from the residing objects are embedded into a spatial space of the visual stream. This architecture allows the co-capturing of the semantic attributes of the human and the objects along with their location/size/silhouette information. To validate, we have constructed a new dataset, Verb-Transferability 60 (VT60). VT60 provides 60 different VO pairs with overlapping verbs tailored for testing two-stream ZSL approaches with VO query. Experimental evaluations show that our approach not only outperforms the state-of-the-art, but also shows the capability of consistently improving performance regardless of which ZSL baseline architecture is used.

Is the Meta-Learning Idea Able to Improve the Generalization of Deep Neural Networks on the Standard Supervised Learning?

Xiang Deng, Zhongfei Zhang

Responsive image

Auto-TLDR; Meta-learning Based Training of Deep Neural Networks for Few-Shot Learning

Slides Poster Similar

Substantial efforts have been made on improving the generalization abilities of deep neural networks (DNNs) in order to obtain better performances without introducing more parameters. On the other hand, meta-learning approaches exhibit powerful generalization on new tasks in few-shot learning. Intuitively, few-shot learning is more challenging than the standard supervised learning as each target class only has a very few or no training samples. The natural question that arises is whether the meta-learning idea can be used for improving the generalization of DNNs on the standard supervised learning. In this paper, we propose a novel meta-learning based training procedure (MLTP) for DNNs and demonstrate that the meta-learning idea can indeed improve the generalization abilities of DNNs. MLTP simulates the meta-training process by considering a batch of training samples as a task. The key idea is that the gradient descent step for improving the current task performance should also improve a new task performance, which is ignored by the current standard procedure for training neural networks. MLTP also benefits from all the existing training techniques such as dropout, weight decay, and batch normalization. We evaluate MLTP by training a variety of small and large neural networks on three benchmark datasets, i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet. The experimental results show a consistently improved generalization performance on all the DNNs with different sizes, which verifies the promise of MLTP and demonstrates that the meta-learning idea is indeed able to improve the generalization of DNNs on the standard supervised learning.

Self-Supervised Learning for Astronomical Image Classification

Ana Martinazzo, Mateus Espadoto, Nina S. T. Hirata

Responsive image

Auto-TLDR; Unlabeled Astronomical Images for Deep Neural Network Pre-training

Slides Poster Similar

In Astronomy, a huge amount of image data is generated daily by photometric surveys, which scan the sky to collect data from stars, galaxies and other celestial objects. In this paper, we propose a technique to leverage unlabeled astronomical images to pre-train deep convolutional neural networks, in order to learn a domain-specific feature extractor which improves the results of machine learning techniques in setups with small amounts of labeled data available. We show that our technique produces results which are in many cases better than using ImageNet pre-training.

Contextual Classification Using Self-Supervised Auxiliary Models for Deep Neural Networks

Sebastian Palacio, Philipp Engler, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Self-Supervised Autogenous Learning for Deep Neural Networks

Slides Poster Similar

Classification problems solved with deep neural networks (DNNs) typically rely on a closed world paradigm, and optimize over a single objective (e.g., minimization of the cross- entropy loss). This setup dismisses all kinds of supporting signals that can be used to reinforce the existence or absence of particular patterns. The increasing need for models that are interpretable by design makes the inclusion of said contextual signals a crucial necessity. To this end, we introduce the notion of Self-Supervised Autogenous Learning (SSAL). A SSAL objective is realized through one or more additional targets that are derived from the original supervised classification task, following architectural principles found in multi-task learning. SSAL branches impose low-level priors into the optimization process (e.g., grouping). The ability of using SSAL branches during inference, allow models to converge faster, focusing on a richer set of class-relevant features. We equip state-of-the-art DNNs with SSAL objectives and report consistent improvements for all of them on CIFAR100 and Imagenet. We show that SSAL models outperform similar state-of-the-art methods focused on contextual loss functions, auxiliary branches and hierarchical priors.

Personalized Models in Human Activity Recognition Using Deep Learning

Hamza Amrani, Daniela Micucci, Paolo Napoletano

Responsive image

Auto-TLDR; Incremental Learning for Personalized Human Activity Recognition

Slides Poster Similar

Current sensor-based human activity recognition techniques that rely on a user-independent model struggle to generalize to new users and on to changes that a person may make over time to his or her way of carrying out activities. Incremental learning is a technique that allows to obtain personalized models which may improve the performance on the classifiers thanks to a continuous learning based on user data. Finally, deep learning techniques have been proven to be more effective with respect to traditional ones in the generation of user-independent models. The aim of our work is therefore to put together deep learning techniques with incremental learning in order to obtain personalized models that perform better with respect to user-independent model and personalized model obtained using traditional machine learning techniques. The experimentation was done by comparing the results obtained by a technique in the state of the art with those obtained by two neural networks (ResNet and a simplified CNN) on three datasets. The experimentation showed that neural networks adapt faster to a new user than the baseline.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

An Adaptive Video-To-Video Face Identification System Based on Self-Training

Eric Lopez-Lopez, Carlos V. Regueiro, Xosé M. Pardo

Responsive image

Auto-TLDR; Adaptive Video-to-Video Face Recognition using Dynamic Ensembles of SVM's

Slides Poster Similar

Video-to-video face recognition in unconstrained conditions is still a very challenging problem, as the combination of several factors leads to an in general low-quality of facial frames. Besides, in some real contexts, the availability of labelled samples is limited, or data is streaming or it is only available temporarily due to storage constraints or privacy issues. In these cases, dealing with learning as an unsupervised incremental process is a feasible option. This work proposes a system based on dynamic ensembles of SVM's, which uses the ideas of self-training to perform adaptive Video-to-video face identification. The only label requirements of the system are a few frames (5 in our experiments) directly taken from the video-surveillance stream. The system will autonomously use additional video-frames to update and improve the initial model in an unsupervised way. Results show a significant improvement in comparison to other state-of-the-art static models.

Few-Shot Few-Shot Learning and the Role of Spatial Attention

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard

Responsive image

Auto-TLDR; Few-shot Learning with Pre-trained Classifier on Large-Scale Datasets

Slides Poster Similar

Few-shot learning is often motivated by the ability of humans to learn new tasks from few examples. However, standard few-shot classification benchmarks assume that the representation is learned on a limited amount of base class data, ignoring the amount of prior knowledge that a human may have accumulated before learning new tasks. At the same time, even if a powerful representation is available, it may happen in some domain that base class data are limited or non-existent. This motivates us to study a problem where the representation is obtained from a classifier pre-trained on a large-scale dataset of a different domain, assuming no access to its training process, while the base class data are limited to few examples per class and their role is to adapt the representation to the domain at hand rather than learn from scratch. We adapt the representation in two stages, namely on the few base class data if available and on the even fewer data of new tasks. In doing so, we obtain from the pre-trained classifier a spatial attention map that allows focusing on objects and suppressing background clutter. This is important in the new problem, because when base class data are few, the network cannot learn where to focus implicitly. We also show that a pre-trained network may be easily adapted to novel classes, without meta-learning.

Visual Oriented Encoder: Integrating Multimodal and Multi-Scale Contexts for Video Captioning

Bang Yang, Yuexian Zou

Responsive image

Auto-TLDR; Visual Oriented Encoder for Video Captioning

Slides Poster Similar

Video captioning is a challenging task which aims at automatically generating a natural language description of a given video. Recent researches have shown that exploiting the intrinsic multi-modalities of videos significantly promotes captioning performance. However, how to integrate multi-modalities to generate effective semantic representations for video captioning is still an open issue. Some researchers proposed to learn multimodal features in parallel during the encoding stage. The downside of these methods lies in the neglect of the interaction among multi-modalities and their rich contextual information. In this study, inspired by the fact that visual contents are generally more important for comprehending videos, we propose a novel Visual Oriented Encoder (VOE) to integrate multimodal features in an interactive manner. Specifically, VOE is designed as a hierarchical structure, where bottom layers are utilized to extract multi-scale contexts from auxiliary modalities while the top layer is exploited to generate joint representations by considering both visual and contextual information. Following the encoder-decoder framework, we systematically develop a VOE-LSTM model and evaluate it on two mainstream benchmarks: MSVD and MSR-VTT. Experimental results show that the proposed VOE surpasses conventional encoders and our VOE-LSTM model achieves competitive results compared with state-of-the-art approaches.