Unsupervised deep learning for text line segmentation

Berat Kurar Barakat, Ahmad Droby, Reem Alaasam, Borak Madi, Irina Rabaev, Raed Shammes, Jihad El-Sana

Responsive image

Auto-TLDR; Unsupervised Deep Learning for Handwritten Text Line Segmentation without Annotation

Poster

We present an unsupervised deep learning method for text line segmentation that is inspired by the relative variance between text lines and spaces among text lines. Handwritten text line segmentation is important for the efficiency of further processing. A common method is to train a deep learning network for embedding the document image into an image of blob lines that are tracing the text lines. Previous methods learned such embedding in a supervised manner, requiring the annotation of many document images. This paper presents an unsupervised embedding of document image patches without a need for annotations. The number of foreground pixels over the text lines is relatively different from the number of foreground pixels over the spaces among text lines. Generating similar and different pairs relying on this principle definitely leads to outliers. However, as the results show, the outliers do not harm the convergence and the network learns to discriminate the text lines from the spaces between text lines. Remarkably, with a challenging Arabic handwritten text line segmentation dataset, VML-AHTE, we achieved superior performance over the supervised methods. Additionally, the proposed method was evaluated on the ICDAR 2017 and ICFHR 2010 handwritten text line segmentation datasets.

Similar papers

Combining Deep and Ad-Hoc Solutions to Localize Text Lines in Ancient Arabic Document Images

Olfa Mechi, Maroua Mehri, Rolf Ingold, Najoua Essoukri Ben Amara

Responsive image

Auto-TLDR; Text Line Localization in Ancient Handwritten Arabic Document Images using U-Net and Topological Structural Analysis

Slides Poster Similar

Text line localization in document images is still considered an open research task. The state-of-the-art methods in this regard that are only based on the classical image analysis techniques mostly have unsatisfactory performances especially when the document images i) contain significant degradations and different noise types and scanning defects, and ii) have touching and/or multi-skewed text lines or overlapping words/characters and non-uniform inter-line space. Moreover, localizing text in ancient handwritten Arabic document images is even more complex due to the morphological particularities related to the Arabic script. Thus, in this paper, we propose a hybrid method combining a deep network with classical document image analysis techniques for text line localization in ancient handwritten Arabic document images. The proposed method is firstly based on using the U-Net architecture to extract the main area covering the text core. Then, a modified RLSA combined with topological structural analysis are applied to localize whole text lines (including the ascender and descender components). To analyze the performance of the proposed method, a set of experiments has been conducted on many recent public and private datasets, and a thorough experimental evaluation has been carried out.

Text Baseline Recognition Using a Recurrent Convolutional Neural Network

Matthias Wödlinger, Robert Sablatnig

Responsive image

Auto-TLDR; Automatic Baseline Detection of Handwritten Text Using Recurrent Convolutional Neural Network

Slides Poster Similar

The detection of baselines of text is a necessary pre-processing step for many modern methods of automatic handwriting recognition. In this work a two-stage system for the automatic detection of text baselines of handwritten text is presented. In a first step pixel-wise segmentation on the document image is performed to classify pixels as baselines, start points and end points. This segmentation is then used to extract the start points of lines. Starting from these points the baseline is extracted using a recurrent convolutional neural network that directly outputs the baseline coordinates. This method allows the direct extraction of baseline coordinates as the output of a neural network without the use of any post processing steps. The model is evaluated on the cBAD dataset from the ICDAR 2019 competition on baseline detection.

Multiple Document Datasets Pre-Training Improves Text Line Detection with Deep Neural Networks

Mélodie Boillet, Christopher Kermorvant, Thierry Paquet

Responsive image

Auto-TLDR; A fully convolutional network for document layout analysis

Slides Similar

In this paper, we introduce a fully convolutional network for the document layout analysis task. While state-of-the-art methods are using models pre-trained on natural scene images, our method relies on a U-shaped model trained from scratch for detecting objects from historical documents. We consider the line segmentation task and more generally the layout analysis problem as a pixel-wise classification task then our model outputs a pixel-labeling of the input images. We show that our method outperforms state-of-the-art methods on various datasets and also demonstrate that the pre-trained parts on natural scene images are not required to reach good results. In addition, we show that pre-training on multiple document datasets can improve the performances. We evaluate the models using various metrics to have a fair and complete comparison between the methods.

Ancient Document Layout Analysis: Autoencoders Meet Sparse Coding

Homa Davoudi, Marco Fiorucci, Arianna Traviglia

Responsive image

Auto-TLDR; Unsupervised Unsupervised Representation Learning for Document Layout Analysis

Slides Poster Similar

Layout analysis of historical handwritten documents is a key pre-processing step in document image analysis that, by segmenting the image into its homogeneous regions, facilitates subsequent procedures such as optical character recognition and automatic transcription. Learning-based approaches have shown promising performances in layout analysis, however, the majority of them requires tedious pixel-wise labelled training data to achieve generalisation capabilities, this limitation preventing their application due to the lack of large labelled datasets. This paper proposes a novel unsupervised representation learning method for documents’ layout analysis that reduces the need for labelled data: a sparse autoencoder is first trained in an unsupervised manner on a historical text document’s image; representation of image patches, computed by the sparse encoder, is then used to classify pixels into various region categories of the document using a feed-forward neural network. A new training method, inspired by the ISTA algorithm, is also introduced here to train the sparse encoder. Experimental results on DIVA-HisDB dataset demonstrate that the proposed method outperforms previous approaches based on unsupervised representation learning while achieving performances comparable to the state-of-the-art fully supervised methods.

Learning to Sort Handwritten Text Lines in Reading Order through Estimated Binary Order Relations

Lorenzo Quirós, Enrique Vidal

Responsive image

Auto-TLDR; Automatic Reading Order of Text Lines in Handwritten Text Documents

Slides Similar

Recent advances in Handwritten Text Recognition and Document Layout Analysis make it possible to extract information from digitized documents and make them accessible beyond the archive shelves. But the reading order of the elements in those documents still is an open problem that has to be solved in order to provide that information with the correct structure. Most of the studies on the reading order task are rule-base approaches that focus on printed documents, while less attention has been paid to handwritten text documents. In this work we propose a new approach to automatically determine the reading order of text lines in handwritten text documents. The task is approached as a sorting problem where the order-relation operator is learned directly from examples. We demonstrate the effectiveness of our method on three different datasets.

The HisClima Database: Historical Weather Logs for Automatic Transcription and Information Extraction

Verónica Romero, Joan Andreu Sánchez

Responsive image

Auto-TLDR; Automatic Handwritten Text Recognition and Information Extraction from Historical Weather Logs

Slides Poster Similar

Knowing the weather and atmospheric conditions from the past can help weather researchers to generate models like the ones used to predict how weather conditions are likely to change as global temperatures continue to rise. Many historical weather records are available from the past registered on a systemic basis. Historical weather logs were registered in ships, when they were on the high seas, recording daily weather conditions such as: wind speed, temperature, coordinates, etc. These historical documents represent an important source of knowledge with valuable information to extract climatic information of several centuries ago. Such information is usually collected by experts that devote a lot of time. This paper presents a new database, compiled from a ship log mainly composed by handwritten tables that contain mainly numerical information, to support research in automatic handwriting recognition and information extraction. In addition, a study is presented about the capability of state-of-the-art handwritten text recognition systems and information extraction techniques, when applied to the presented database. Baseline results are reported for reference in future studies.

A Gated and Bifurcated Stacked U-Net Module for Document Image Dewarping

Hmrishav Bandyopadhyay, Tanmoy Dasgupta, Nibaran Das, Mita Nasipuri

Responsive image

Auto-TLDR; Gated and Bifurcated Stacked U-Net for Dewarping Document Images

Slides Poster Similar

Capturing images of documents is one of the easiest and most used methods of recording them. These images however, being captured with the help of handheld devices, often lead to undesirable distortions that are hard to remove. We propose a supervised Gated and Bifurcated Stacked U-Net module to predict a dewarping grid and create a distortion free image from the input. While the network is trained on synthetically warped document images, results are calculated on the basis of real world images. The novelty in our methods exists not only in a bifurcation of the U-Net to help eliminate the intermingling of the grid coordinates, but also in the use of a gated network which adds boundary and other minute line level details to the model. The end-to-end pipeline proposed by us achieves state-of-the-art performance on the DocUNet dataset after being trained on just 8 percent of the data used in previous methods.

Vision-Based Layout Detection from Scientific Literature Using Recurrent Convolutional Neural Networks

Huichen Yang, William Hsu

Responsive image

Auto-TLDR; Transfer Learning for Scientific Literature Layout Detection Using Convolutional Neural Networks

Slides Poster Similar

We present an approach for adapting convolutional neural networks for object recognition and classification to scientific literature layout detection (SLLD), a shared subtask of several information extraction problems. Scientific publications contain multiple types of information sought by researchers in various disciplines, organized into an abstract, bibliography, and sections documenting related work, experimental methods, and results; however, there is no effective way to extract this information due to their diverse layout. In this paper, we present a novel approach to developing an end-to-end learning framework to segment and classify major regions of a scientific document. We consider scientific document layout analysis as an object detection task over digital images, without any additional text features that need to be added into the network during the training process. Our technical objective is to implement transfer learning via fine-tuning of pre-trained networks and thereby demonstrate that this deep learning architecture is suitable for tasks that lack very large document corpora for training. As part of the experimental test bed for empirical evaluation of this approach, we created a merged multi-corpus data set for scientific publication layout detection tasks. Our results show good improvement with fine-tuning of a pre-trained base network using this merged data set, compared to the baseline convolutional neural network architecture.

Writer Identification Using Deep Neural Networks: Impact of Patch Size and Number of Patches

Akshay Punjabi, José Ramón Prieto Fontcuberta, Enrique Vidal

Responsive image

Auto-TLDR; Writer Recognition Using Deep Neural Networks for Handwritten Text Images

Slides Poster Similar

Traditional approaches for the recognition or identification of the writer of a handwritten text image used to relay on heuristic knowledge about the shape and other features of the strokes of previously segmented characters. However, recent works have done significantly advances on the state of the art thanks to the use of various types of deep neural networks. In most of all of these works, text images are decomposed into patches, which are processed by the networks without any previous character or word segmentation. In this paper, we study how the way images are decomposed into patches impact recognition accuracy, using three publicly available datasets. The study also includes a simpler architecture where no patches are used at all - a single deep neural network inputs a whole text image and directly provides a writer recognition hypothesis. Results show that bigger patches generally lead to improved accuracy, achieving in one of the datasets a significant improvement over the best results reported so far.

Watch Your Strokes: Improving Handwritten Text Recognition with Deformable Convolutions

Iulian Cojocaru, Silvia Cascianelli, Lorenzo Baraldi, Massimiliano Corsini, Rita Cucchiara

Responsive image

Auto-TLDR; Deformable Convolutional Neural Networks for Handwritten Text Recognition

Slides Poster Similar

Handwritten Text Recognition (HTR) in free-layout pages is a valuable yet challenging task which aims to automatically understand handwritten texts. State-of-the-art approaches in this field usually encode input images with Convolutional Neural Networks, whose kernels are typically defined on a fixed grid and focus on all input pixels independently. However, this is in contrast with the sparse nature of handwritten pages, in which only pixels representing the ink of the writing are useful for the recognition task. Furthermore, the standard convolution operator is not explicitly designed to take into account the great variability in shape, scale, and orientation of handwritten characters. To overcome these limitations, we investigate the use of deformable convolutions for handwriting recognition. This type of convolution deform the convolution kernel according to the content of the neighborhood, and can therefore be more adaptable to geometric variations and other deformations of the text. Experiments conducted on the IAM and RIMES datasets demonstrate that the use of deformable convolutions is a promising direction for the design of novel architectures for handwritten text recognition.

Generic Document Image Dewarping by Probabilistic Discretization of Vanishing Points

Gilles Simon, Salvatore Tabbone

Responsive image

Auto-TLDR; Robust Document Dewarping using vanishing points

Slides Poster Similar

Document images dewarping is still a challenge especially when documents are captured with one camera in an uncontrolled environment. In this paper we propose a generic approach based on vanishing points (VP) to reconstruct the 3D shape of document pages. Unlike previous methods we do not need to segment the text included in the documents. Therefore, our approach is less sensitive to pre-processing and segmentation errors. The computation of the VPs is robust and relies on the a-contrario framework, which has only one parameter whose setting is based on probabilistic reasoning instead of experimental tuning. Thus, our method can be applied to any kind of document including text and non-text blocks and extended to other kind of images. Experimental results show that the proposed method is robust to a variety of distortions.

LODENet: A Holistic Approach to Offline Handwritten Chinese and Japanese Text Line Recognition

Huu Tin Hoang, Chun-Jen Peng, Hung Tran, Hung Le, Huy Hoang Nguyen

Responsive image

Auto-TLDR; Logographic DEComposition Encoding for Chinese and Japanese Text Line Recognition

Slides Poster Similar

One of the biggest obstacles in Chinese and Japanese text line recognition is how to present their enormous character sets. The most common solution is to merely choose and represent a small subset of characters using one-hot encoding. However, such an approach is costly to describe huge character sets, and ignores their semantic relationships. Recent studies have attempted to utilize different encoding methods, but they struggle to build a bijection mapping. In this work, we propose a novel encoding method, called LOgographic DEComposition encoding (LODEC), that can efficiently perform a 1-to-1 mapping for all Chinese and Japanese characters with a strong awareness of semantic relationships. As such, LODEC enables to encode over 21,000 Chinese and Japanese characters by only 520 fundamental elements. Moreover, to handle the vast variety of handwritten texts in the two languages, we propose a novel deep learning (DL) architecture, called LODENet, together with an end-to-end training scheme, that leverages auxiliary data generated by LODEC or other radical-based encoding methods. We performed systematic experiments on both Chinese and Japanese datasets, and found that our approach surpassed the performance of state-of-the-art baselines. Furthermore, empirical evidence shows that our method can gain significantly better results using synthesized text line images without the need for domain knowledge.

UDBNET: Unsupervised Document Binarization Network Via Adversarial Game

Amandeep Kumar, Shuvozit Ghose, Pinaki Nath Chowdhury, Partha Pratim Roy, Umapada Pal

Responsive image

Auto-TLDR; Three-player Min-max Adversarial Game for Unsupervised Document Binarization

Slides Poster Similar

Degraded document image binarization is one of the most challenging tasks in the domain of document image analysis. In this paper, we present a novel approach towards document image binarization by introducing three-player min-max adversarial game. We train the network in an unsupervised setup by assuming that we do not have any paired-training data. In our approach, an Adversarial Texture Augmentation Network (ATANet) first superimposes the texture of a degraded reference image over a clean image. Later, the clean image along with its generated degraded version constitute the pseudo paired-data which is used to train the Unsupervised Document Binarization Network (UDBNet). Following this approach, we have enlarged the document binarization datasets as it generates multiple images having same content feature but different textual feature. These generated noisy images are then fed into the UDBNet to get back the clean version. The joint discriminator which is the third-player of our three-player min-max adversarial game tries to couple both the ATANet and UDBNet. The three-player min-max adversarial game stops, when the distributions modelled by the ATANet and the UDBNet align to the same joint distribution over time. Thus, the joint discriminator enforces the UDBNet to perform better on real degraded image. The experimental results indicate the superior performance of the proposed model over existing state-of-the-art algorithm on widely used DIBCO datasets. The source code of the proposed system is publicly available at https://github.com/VIROBO-15/UDBNET.

A Few-Shot Learning Approach for Historical Ciphered Manuscript Recognition

Mohamed Ali Souibgui, Alicia Fornés, Yousri Kessentini, Crina Tudor

Responsive image

Auto-TLDR; Handwritten Ciphers Recognition Using Few-Shot Object Detection

Slides Similar

Encoded (or ciphered) manuscripts are a special type of historical documents that contain encrypted text. The automatic recognition of this kind of documents is challenging because: 1) the cipher alphabet changes from one document to another, 2) there is a lack of annotated corpus for training and 3) touching symbols make the symbol segmentation difficult and complex. To overcome these difficulties, we propose a novel method for handwritten ciphers recognition based on few-shot object detection. Our method first detects all symbols of a given alphabet in a line image, and then a decoding step maps the symbol similarity scores to the final sequence of transcribed symbols. By training on synthetic data, we show that the proposed architecture is able to recognize handwritten ciphers with unseen alphabets. In addition, if few labeled pages with the same alphabet are used for fine tuning, our method surpasses existing unsupervised and supervised HTR methods for ciphers recognition.

End-To-End Hierarchical Relation Extraction for Generic Form Understanding

Tuan Anh Nguyen Dang, Duc-Thanh Hoang, Quang Bach Tran, Chih-Wei Pan, Thanh-Dat Nguyen

Responsive image

Auto-TLDR; Joint Entity Labeling and Link Prediction for Form Understanding in Noisy Scanned Documents

Slides Poster Similar

Form understanding is a challenging problem which aims to recognize semantic entities from the input document and their hierarchical relations. Previous approaches face a significant difficulty dealing with the complexity of the task, thus treat these objectives separately. To this end, we present a novel deep neural network to jointly perform both Entity Labeling and link prediction in an end-to-end fashion. Our model extends the Multi-stage Attentional U-Net architecture with the Part-Intensity Fields and Part-Association Fields for link prediction, enriching the spatial information flow with the additional supervision from Entity Linking. We demonstrate the effectiveness of the model on the \textit{Form Understanding in Noisy Scanned Documents} \textit{(FUNSD)} dataset, where our method substantially outperforms the original model and state-of-the-art baselines in both Entity Labeling and Entity Linking task.

Feature Embedding Based Text Instance Grouping for Largely Spaced and Occluded Text Detection

Pan Gao, Qi Wan, Renwu Gao, Linlin Shen

Responsive image

Auto-TLDR; Text Instance Embedding Based Feature Embeddings for Multiple Text Instance Grouping

Slides Poster Similar

A text instance can be easily detected as multiple ones due to the large space between texts/characters, curved shape and partial occlusion. In this paper, a feature embedding based text instance grouping algorithm is proposed to solve this problem. To learn the feature space, a TIEM (Text Instance Embedding Module) is trained to minimize the within instance scatter and maximize the between instance scatter. Similarity between different text instances are measured in the feature space and merged if they meet certain conditions. Experimental results show that our approach can effectively connect text regions that belong to the same text instance. Competitive performance of our approach has been achieved on CTW1500, Total-Text, IC15 and a subset consists of texts selected from the three datasets, with large spacing and occlusions.

Multimodal Side-Tuning for Document Classification

Stefano Zingaro, Giuseppe Lisanti, Maurizio Gabbrielli

Responsive image

Auto-TLDR; Side-tuning for Multimodal Document Classification

Slides Poster Similar

In this paper, we propose to exploit the side-tuning framework for multimodal document classification. Side-tuning is a methodology for network adaptation recently introduced to solve some of the problems related to previous approaches. Thanks to this technique it is actually possible to overcome model rigidity and catastrophic forgetting of transfer learning by fine-tuning. The proposed solution uses off-the-shelf deep learning architectures leveraging the side-tuning framework to combine a base model with a tandem of two side networks. We show that side-tuning can be successfully employed also when different data sources are considered, e.g. text and images in document classification. The experimental results show that this approach pushes further the limit for document classification accuracy with respect to the state of the art.

Automated Whiteboard Lecture Video Summarization by Content Region Detection and Representation

Bhargava Urala Kota, Alexander Stone, Kenny Davila, Srirangaraj Setlur, Venu Govindaraju

Responsive image

Auto-TLDR; A Framework for Summarizing Whiteboard Lecture Videos Using Feature Representations of Handwritten Content Regions

Poster Similar

Lecture videos are rapidly becoming an invaluable source of information for students across the globe. Given the large number of online courses currently available, it is important to condense the information within these videos into a compact yet representative summary that can be used for search-based applications. We propose a framework to summarize whiteboard lecture videos by finding feature representations of detected handwritten content regions to determine unique content. We investigate multi-scale histogram of gradients and embeddings from deep metric learning for feature representation. We explicitly handle occluded, growing and disappearing handwritten content. Our method is capable of producing two kinds of lecture video summaries - the unique regions themselves or so-called key content and keyframes (which contain all unique content in a video segment). We use weighted spatio-temporal conflict minimization to segment the lecture and produce keyframes from detected regions and features. We evaluate both types of summaries and find that we obtain state-of-the-art peformance in terms of number of summary keyframes while our unique content recall and precision are comparable to state-of-the-art.

An Evaluation of DNN Architectures for Page Segmentation of Historical Newspapers

Manuel Burghardt, Bernhard Liebl

Responsive image

Auto-TLDR; Evaluation of Backbone Architectures for Optical Character Segmentation of Historical Documents

Slides Poster Similar

One important and particularly challenging step in the optical character recognition of historical documents with complex layouts, such as newspapers, is the separation of text from non-text content (e.g. page borders or illustrations). This step is commonly referred to as page segmentation. While various rule-based algorithms have been proposed, the applicability of Deep Neural Networks for this task recently has gained a lot of attention. In this paper, we perform a systematic evaluation of 11 different published backbone architectures and 9 different tiling and scaling configurations for separating text, tables or table column lines. We also show the influence of the number of labels and the number of training pages on the segmentation quality, which we measure using the Matthews Correlation Coefficient. Our results show that (depending on the task) Inception-ResNet-v2 and EfficientNet backbones work best, vertical tiling is generally preferable to other tiling approaches, and training data that comprises 30 to 40 pages will be sufficient most of the time.

Textual-Content Based Classification of Bundles of Untranscribed of Manuscript Images

José Ramón Prieto Fontcuberta, Enrique Vidal, Vicente Bosch, Carlos Alonso, Carmen Orcero, Lourdes Márquez

Responsive image

Auto-TLDR; Probabilistic Indexing for Text-based Classification of Manuscripts

Slides Poster Similar

Content-based classification of manuscripts is an important task that is generally performed in archives and libraries by experts with a wealth of knowledge on the manuscripts contents. Unfortunately, many manuscript collections are so vast that it is not feasible to rely solely on experts to perform this task. Current approaches for textual-content-based manuscript classification generally require the handwritten images to be first transcribed into text -- but achieving sufficiently accurate transcripts is generally unfeasible for large sets of historical manuscripts. We propose a new approach to automatically perform this classification task which does not rely on any explicit image transcripts. It is based on ``probabilistic indexing'', a relatively novel technology which allows to effectively represent the intrinsic word-level uncertainty generally exhibited by handwritten text images. We assess the performance of this approach on a large collection of complex manuscripts from the Spanish Archivo General de Indias, with promising results.

Image-Based Table Cell Detection: A New Dataset and an Improved Detection Method

Dafeng Wei, Hongtao Lu, Yi Zhou, Kai Chen

Responsive image

Auto-TLDR; TableCell: A Semi-supervised Dataset for Table-wise Detection and Recognition

Slides Poster Similar

The topic of table detection and recognition has been spotlighted in recent years, however, the latest works only aim at the coarse scene in table-wise detection. In this paper, we present TableCell, a new image-based dataset which contains 5262 samples with 170K high precision cell-wised annotations based on a novel semi-supervised method.. Several classical deep learning detection models are evaluated to build a strong baseline using the proposed dataset. Furthermore, we come up with an efficient table projection method to facilitate capturing long-range global feature, which consists of row projection and column projection. Experiments demonstrate that our proposed method improves the accuracy of table detection. Our dataset and code will be made available at https://github.com/weidafeng/TableCell upon publication.

An Accurate Threshold Insensitive Kernel Detector for Arbitrary Shaped Text

Xijun Qian, Yifan Liu, Yu-Bin Yang

Responsive image

Auto-TLDR; TIKD: threshold insensitive kernel detector for arbitrary shaped text

Slides Similar

Recently, segmentation-based methods are popular in scene text detection due to the segmentation results can easily represent scene text of arbitrary shapes. However, previous works segment text instances the same as normal objects. It is obvious that the edge of the text instance differs from normal objects. In this paper, we propose a threshold insensitive kernel detector for arbitrary shaped text called TIKD, which includes a simple but stable base model and a new loss weight called Decay Loss Weight (DLW). By suppressing outlier pixels in a gradual way, the DLW can lead the network to detect more accurate text instances. Our method shows great power in accuracy and stability. It is worth mentioning that we achieve the precision, recall, f-measure of 88.7%, 83.7%, 86.1% respectively on the Total-Text dataset, with a fast speed of 16.3 frames per second. What’s more, even if we set the threshold in an extreme situation range from 0.1 to 0.9, our method can always achieve a stable f-measure over 79.9% on the Total-Text dataset.

Improving Word Recognition Using Multiple Hypotheses and Deep Embeddings

Siddhant Bansal, Praveen Krishnan, C. V. Jawahar

Responsive image

Auto-TLDR; EmbedNet: fuse recognition-based and recognition-free approaches for word recognition using learning-based methods

Slides Poster Similar

We propose to fuse recognition-based and recognition-free approaches for word recognition using learning-based methods. For this purpose, results obtained using a text recognizer and deep embeddings (generated using an End2End network) are fused. To further improve the embeddings, we propose EmbedNet, it uses triplet loss for training and learns an embedding space where the embedding of the word image lies closer to its corresponding text transcription’s embedding. This updated embedding space helps in choosing the correct prediction with higher confidence. To further improve the accuracy, we propose a plug-and-play module called Confidence based Accuracy Booster (CAB). It takes in the confidence scores obtained from the text recognizer and Euclidean distances between the embeddings and generates an updated distance vector. This vector has lower distance values for the correct words and higher distance values for the incorrect words. We rigorously evaluate our proposed method systematically on a collection of books that are in the Hindi language. Our method achieves an absolute improvement of around 10% in terms of word recognition accuracy.

DUET: Detection Utilizing Enhancement for Text in Scanned or Captured Documents

Eun-Soo Jung, Hyeonggwan Son, Kyusam Oh, Yongkeun Yun, Soonhwan Kwon, Min Soo Kim

Responsive image

Auto-TLDR; Text Detection for Document Images Using Synthetic and Real Data

Slides Poster Similar

We present a novel approach to text detection for document images. For robust text detection of noisy scanned or captured document images, the advantages of multi-task learning are adopted by adding an auxiliary task of text enhancement. Consequently, our proposed model trains reducing noise and enhancing text regions as well as detecting text. To overcome the insufficiency of document image data for text detection, train data for our model are enriched with synthesized document images that are fully labeled for text detection and enhancement. For the effective use of synthetic and real data, the proposed model is trained in two phases. The first phase is training only synthetic data in a fully-supervised manner. Then real data with only detection labels are added in the second phase. The enhancement task for real data is weakly-supervised with information from detection labels. Our methods are demonstrated on a real document dataset with performances exceeding those of other methods. Also, we conducted ablations to analyze effects of the synthetic data, multi-task, and weak-supervision. Whereas the existing text detection studies mostly focus on the text in scenes, our proposed method is optimized to the applications for the text in scanned or captured documents.

Named Entity Recognition and Relation Extraction with Graph Neural Networks in Semi Structured Documents

Manuel Carbonell, Pau Riba, Mauricio Villegas, Alicia Fornés, Josep Llados

Responsive image

Auto-TLDR; Graph Neural Network for Entity Recognition and Relation Extraction in Semi-Structured Documents

Slides Similar

The use of administrative documents to communicate and leave record of business information requires of methods able to automatically extract and understand the content from such documents in a robust and efficient way. In addition, the semi-structured nature of these reports is specially suited for the use of graph-based representations which are flexible enough to adapt to the deformations from the different document templates. Moreover, Graph Neural Networks provide the proper methodology to learn relations among the data elements in these documents. In this work we study the use of Graph Neural Network architectures to tackle the problem of entity recognition and relation extraction in semi-structured documents. Our approach achieves state of the art results on the three tasks involved in the process. Moreover, the experimentation with two datasets of different nature demonstrates the good generalization ability of our approach.

Approach for Document Detection by Contours and Contrasts

Daniil Tropin, Sergey Ilyuhin, Dmitry Nikolaev, Vladimir V. Arlazarov

Responsive image

Auto-TLDR; A countor-based method for arbitrary document detection on a mobile device

Slides Poster Similar

This paper considers the task of arbitrary document detection performed on a mobile device. The classical contour-based approach often mishandles cases with occlusion, complex background, or blur. Region-based approach, which relies on the contrast between object and background, does not have limitations, however its known implementations are highly resource-consuming. We propose a modification of a countor-based method, in which the competing hypotheses of the contour location are ranked according to the contrast between the areas inside and outside the border. In the performed experiments such modification leads to the 40% decrease of alternatives ordering errors and 10% decrease of the overall number of detection errors. We updated state-of-the-art performance on the open MIDV-500 dataset and demonstrated competitive results with the state-of-the-art on the SmartDoc dataset.

Multi-Task Learning Based Traditional Mongolian Words Recognition

Hongxi Wei, Hui Zhang, Jing Zhang, Kexin Liu

Responsive image

Auto-TLDR; Multi-task Learning for Mongolian Words Recognition

Slides Poster Similar

In this paper, a multi-task learning framework has been proposed for solving and improving traditional Mongolian words recognition. To be specific, a sequence-to-sequence model with attention mechanism was utilized to accomplish the task of recognition. Therein, the attention mechanism is designed to fulfill the task of glyph segmentation during the process of recognition. Although the glyph segmentation is an implicit operation, the information of glyph segmentation can be integrated into the process of recognition. After that, the two tasks can be accomplished simultaneously under the framework of multi-task learning. By this way, adjacent image frames can be decoded into a glyph more precisely, which results in improving not only the performance of words recognition but also the accuracy of character segmentation. Experimental results demonstrate that the proposed multi-task learning based scheme outperforms the conventional glyph segmentation-based method and various segmentation-free (i.e. holistic recognition) methods.

An Integrated Approach of Deep Learning and Symbolic Analysis for Digital PDF Table Extraction

Mengshi Zhang, Daniel Perelman, Vu Le, Sumit Gulwani

Responsive image

Auto-TLDR; Deep Learning and Symbolic Reasoning for Unstructured PDF Table Extraction

Slides Poster Similar

Deep learning has shown great success at interpreting unstructured data such as object recognition in images. Symbolic/logical-reasoning techniques have shown great success in interpreting structured data such as table extraction in webpages, custom text files, spreadsheets. The tables in PDF documents are often generated from such structured sources (text-based Word/Latex documents, spreadsheets, webpages) but end up being unstructured. We thus explore novel combinations of deep learning and symbolic reasoning techniques to build an effective solution for PDF table extraction. We evaluate effectiveness without granting partial credit for matching part of a table (which may cause silent errors in downstream data processing). Our method achieves a 0.725 F1 score (vs. 0.339 for the state-of-the-art) on detecting correct table bounds---a much stricter metric than the common one of detecting characters within tables---in a well known public benchmark (ICDAR 2013) and a 0.404 F1 score (vs. 0.144 for the state-of-the-art) on our private benchmark with more widely varied table structures.

Scene Text Detection with Selected Anchors

Anna Zhu, Hang Du, Shengwu Xiong

Responsive image

Auto-TLDR; AS-RPN: Anchor Selection-based Region Proposal Network for Scene Text Detection

Slides Poster Similar

Object proposal technique with dense anchoring scheme for scene text detection were applied frequently to achieve high recall. It results in the significant improvement in accuracy but waste of computational searching, regression and classification. In this paper, we propose an anchor selection-based region proposal network (AS-RPN) using effective selected anchors instead of dense anchors to extract text proposals. The center, scales, aspect ratios and orientations of anchors are learnable instead of fixing, which leads to high recall and greatly reduced numbers of anchors. By replacing the anchor-based RPN in Faster RCNN, the AS-RPN-based Faster RCNN can achieve comparable performance with previous state-of-the-art text detecting approaches on standard benchmarks, including COCO-Text, ICDAR2013, ICDAR2015 and MSRA-TD500 when using single-scale and single model (ResNet50) testing only.

ID Documents Matching and Localization with Multi-Hypothesis Constraints

Guillaume Chiron, Nabil Ghanmi, Ahmad Montaser Awal

Responsive image

Auto-TLDR; Identity Document Localization in the Wild Using Multi-hypothesis Exploration

Slides Poster Similar

This paper presents an approach for spotting and accurately localizing identity documents in the wild. Contrary to blind solutions that often rely on borders and corners detection, the proposed approach requires a classification a priori along with a list of predefined models. The matching and accurate localization are performed using specific ID document features. This process is especially difficult due to the intrinsic variable nature of ID models (text fields, multi-pass printing with offset, unstable layouts, added artifacts, blinking security elements, non-rigid materials). We tackle the problem by putting different combinations of features in competition within a multi-hypothesis exploration where only the best document quadrilateral candidate is retained thanks to a custom visual similarity metric. The idea is to find, in a given context, at least one feature able to correctly crop the document. The proposed solution has been tested and has shown its benefits on both the MIDV-500 academic dataset and an industrial one supposedly more representative of a real-life application.

Documents Counterfeit Detection through a Deep Learning Approach

Darwin Danilo Saire Pilco, Salvatore Tabbone

Responsive image

Auto-TLDR; End-to-End Learning for Counterfeit Documents Detection using Deep Neural Network

Slides Poster Similar

The main topic of this work is on the detection of counterfeit documents and especially banknotes. We propose an end-to-end learning model using a deep learning approach based on Adapnet++ which manages feature extraction at multiple scale levels using several residual units. Unlike previous models based on regions of interest (ROI) and high-resolution documents, our network is feed with simple input images (i.e., a single patch) and we do not need high resolution images. Besides, discriminative regions can be visualized at different scales. Our network learns by itself which regions of interest predict the better results. Experimental results show that we are competitive compared with the state-of-the-art and our deep neural network has good ability to generalize and can be applied to other kind of documents like identity or administrative one.

PICK: Processing Key Information Extraction from Documents Using Improved Graph Learning-Convolutional Networks

Wenwen Yu, Ning Lu, Xianbiao Qi, Ping Gong, Rong Xiao

Responsive image

Auto-TLDR; PICK: A Graph Learning Framework for Key Information Extraction from Documents

Slides Poster Similar

Computer vision with state-of-the-art deep learning models have achieved huge success in the field of Optical Character Recognition (OCR) including text detection and recognition tasks recently. However, Key Information Extraction (KIE) from documents as the downstream task of OCR, having a large number of use scenarios in real-world, remains a challenge because documents not only have textual features extracting from OCR systems but also have semantic visual features that are not fully exploited and play a critical role in KIE. Too little work has been devoted to efficiently make full use of both textual and visual features of the documents. In this paper, we introduce PICK, a framework that is effective and robust in handling complex documents layout for KIE by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Extensive experiments on real-world datasets have been conducted to show that our method outperforms baselines methods by significant margins.

ConvMath : A Convolutional Sequence Network for Mathematical Expression Recognition

Zuoyu Yan, Xiaode Zhang, Liangcai Gao, Ke Yuan, Zhi Tang

Responsive image

Auto-TLDR; Convolutional Sequence Modeling for Mathematical Expressions Recognition

Slides Poster Similar

Despite the recent advances in optical character recognition (OCR), mathematical expressions still face a great challenge to recognize due to their two-dimensional graphical layout. In this paper, we propose a convolutional sequence modeling network, ConvMath, which converts the mathematical expression description in an image into a LaTeX sequence in an end-to-end way. The network combines an image encoder for feature extraction and a convolutional decoder for sequence generation. Compared with other Long Short Term Memory(LSTM) based encoder-decoder models, ConvMath is entirely based on convolution, thus it is easy to perform parallel computation. Besides, the network adopts multi-layer attention mechanism in the decoder, which allows the model to align output symbols with source feature vectors automatically, and alleviates the problem of lacking coverage while training the model. The performance of ConvMath is evaluated on an open dataset named IM2LATEX-100K, including 103556 samples. The experimental results demonstrate that the proposed network achieves state-of-the-art accuracy and much better efficiency than previous methods.

Recursive Recognition of Offline Handwritten Mathematical Expressions

Marco Cotogni, Claudio Cusano, Antonino Nocera

Responsive image

Auto-TLDR; Online Handwritten Mathematical Expression Recognition with Recurrent Neural Network

Slides Poster Similar

In this paper we propose a method for Offline Handwritten Mathematical Expression recognition. The method is a fast and accurate thanks to its architecture, which include both a Convolutional Neural Network and a Recurrent Neural Network. The CNN extracts features from the image to recognize and its output is provided to the RNN which produces the mathematical expression encoded in the LaTeX language. To process both sequential and non-sequential mathematical expressions we also included a deconvolutional module which, in a recursive way, segments the image for additional analysis trough a recursive process. The results obtained show a very high accuracy obtained on a large handwritten data set of 9100 samples of handwritten expressions.

CDeC-Net: Composite Deformable Cascade Network for Table Detection in Document Images

Madhav Agarwal, Ajoy Mondal, C. V. Jawahar

Responsive image

Auto-TLDR; CDeC-Net: An End-to-End Trainable Deep Network for Detecting Tables in Document Images

Slides Similar

Localizing page elements/objects such as tables, figures, equations, etc. is the primary step in extracting information from document images. We propose a novel end-to-end trainable deep network, (CDeC-Net) for detecting tables present in the documents. The proposed network consists of a multistage extension of Mask R-CNN with a dual backbone having deformable convolution for detecting tables varying in scale with high detection accuracy at higher IoU threshold. We empirically evaluate CDeC-Net on all the publicly available benchmark datasets— ICDAR-2013, ICDAR-2017, ICDAR-2019, UNLV, Marmot, PubLayNet, TableBank, and IIIT-AR-13K —with extensive experiments. Our solution has three important properties:(i) a single trained model CDeC-Net‡ performs well across all the popular benchmark datasets; (ii) we report excellent performances across multiple, including higher, thresholds of IoU; (iii) by following the same protocol of the recent papers for each of the benchmarks, we consistently demonstrate the superior quantitative performance. Our code and models will be publicly released for enabling reproducibility of the results.

Local Gradient Difference Based Mass Features for Classification of 2D-3D Natural Scene Text Images

Lokesh Nandanwar, Shivakumara Palaiahnakote, Raghavendra Ramachandra, Tong Lu, Umapada Pal, Daniel Lopresti, Nor Badrul Anuar

Responsive image

Auto-TLDR; Classification of 2D and 3D Natural Scene Images Using COLD

Slides Poster Similar

Methods developed for normal 2D text detection do not work well for a text that is rendered using decorative, 3D effects. This paper proposes a new method for classification of 2D and 3D natural scene images such that an appropriate method can be chosen or modified according to the complexity of the individual classes. The proposed method explores local gradient differences for obtaining candidate pixels, which represent a stroke. To study the spatial distribution of candidate pixels, we propose a measure we call COLD, which is denser for pixels toward the center of strokes and scattered for non-stroke pixels. This observation leads us to introduce mass features for extracting the regular spatial pattern of COLD, which indicates a 2D text image. The extracted features are fed to a Neural Network (NN) for classification. The proposed method is tested on both a new dataset introduced in this work and a standard dataset assembled from different natural scene datasets, and compared to from existing methods to show its effectiveness. The approach improves text detection performance significantly after classification.

Mutually Guided Dual-Task Network for Scene Text Detection

Mengbiao Zhao, Wei Feng, Fei Yin, Xu-Yao Zhang, Cheng-Lin Liu

Responsive image

Auto-TLDR; A dual-task network for word-level and line-level text detection

Slides Similar

Scene text detection has been studied extensively. Existing methods detect either words or text lines and use either word-level or line-level annotated data for training. In this paper, we propose a dual-task network that can perform word-level and line-level text detection simultaneously and use training data of both levels of annotation to boost the performance. The dual-task network has two detection heads for word-level and line-level text detection, respectively. Then we propose a mutual guidance scheme for the joint training of the two tasks with two modules: line filtering module utilizes the output of the text line detector to filter out the non-text regions for the word detector, and word enhancing module provides prior positions of words for the text line detector depending on the output of the word detector. Experimental results of word-level and line-level text detection demonstrate the effectiveness of the proposed dual-task network and mutual guidance scheme, and the results of our method are competitive with state-of-the-art methods.

Online Trajectory Recovery from Offline Handwritten Japanese Kanji Characters of Multiple Strokes

Hung Tuan Nguyen, Tsubasa Nakamura, Cuong Tuan Nguyen, Masaki Nakagawa

Responsive image

Auto-TLDR; Recovering Dynamic Online Trajectories from Offline Japanese Kanji Character Images for Handwritten Character Recognition

Slides Poster Similar

We propose a deep neural network-based method to recover dynamic online trajectories from offline handwritten Japanese kanji character images. It is a challenging task since Japanese kanji characters consist of multiple strokes. Our proposed model has three main components: Convolutional Neural Network-based encoder, Long Short-Term Memory Network-based decoder with an attention layer, and Gaussian Mixture Model (GMM). The encoder focuses on feature extraction while the decoder refers to the extracted features and generates time-sequences of GMM parameters. The attention layer is the key component for trajectory recovery. The GMM provides robustness to style variations so that the proposed model does not overfit to training samples. In the experiments, the proposed method is evaluated by both visual verification and handwritten character recognition. This is the first attempt to use online recovered trajectories to help improve the performance of offline handwriting recognition. Although the visual verification reveals some problems, the recognition experiments demonstrate the effect of trajectory recovery in improving the accuracy of offline handwritten character recognition when online recognition of the recovered trajectories are combined.

FC-DCNN: A Densely Connected Neural Network for Stereo Estimation

Dominik Hirner, Friedrich Fraundorfer

Responsive image

Auto-TLDR; FC-DCNN: A Lightweight Network for Stereo Estimation

Slides Poster Similar

We propose a novel lightweight network for stereo estimation. Our network consists of a fully-convolutional densely connected neural network (FC-DCNN) that computes matching costs between rectified image pairs. Our FC-DCNN method learns expressive features and performs some simple but effective post-processing steps. The densely connected layer structure connects the output of each layer to the input of each subsequent layer. This network structure in addition to getting rid of any fully-connected layers leads to a very lightweight network. The output of this network is used in order to calculate matching costs and create a cost-volume. Instead of using time and memory-inefficient cost-aggregation methods such as semi-global matching or conditional random fields in order to improve the result, we rely on filtering techniques, namely median filter and guided filter. By computing a left-right consistency check we get rid of inconsistent values. Afterwards we use a watershed foreground-background segmentation on the disparity image with removed inconsistencies. This mask is then used to refine the final prediction. We show that our method works well for both challenging indoor and outdoor scenes by evaluating it on the Middlebury, KITTI and ETH3D benchmarks respectively.

Trainable Spectrally Initializable Matrix Transformations in Convolutional Neural Networks

Michele Alberti, Angela Botros, Schuetz Narayan, Rolf Ingold, Marcus Liwicki, Mathias Seuret

Responsive image

Auto-TLDR; Trainable and Spectrally Initializable Matrix Transformations for Neural Networks

Slides Poster Similar

In this work, we introduce a new architectural component to Neural Networks (NN), i.e., trainable and spectrally initializable matrix transformations on feature maps. While previous literature has already demonstrated the possibility of adding static spectral transformations as feature processors, our focus is on more general trainable transforms. We study the transforms in various architectural configurations on four datasets of different nature: from medical (ColorectalHist, HAM10000) and natural (Flowers) images to historical documents (CB55). With rigorous experiments that control for the number of parameters and randomness, we show that networks utilizing the introduced matrix transformations outperform vanilla neural networks. The observed accuracy increases appreciably across all datasets. In addition, we show that the benefit of spectral initialization leads to significantly faster convergence, as opposed to randomly initialized matrix transformations. The transformations are implemented as auto-differentiable PyTorch modules that can be incorporated into any neural network architecture. The entire code base is open-source.

Radical Counter Network for Robust Chinese Character Recognition

Yunqing Li, Yixing Zhu, Jun Du, Changjie Wu, Jianshu Zhang

Responsive image

Auto-TLDR; Radical Counter Network for Chinese Character Recognition

Slides Poster Similar

Chinese character recognition has attracted much interest due to its high challenge and various applications. The whole-character modeling method can recognize common characters well but unable to handle unseen situation. Some radical-based modeling methods have successfully achieved great performance in unseen condition but the decoding takes huge time comsumption. Therefore, a high-efficient model which can recognize unseen characters needs to be proposed. First, this paper introduces a novel radical counter network (RCN) to recognize Chinese characters by identifying radicals and spatial structures. The proposed RCN first extracts visual features from input by employing DenseNet as encoder. Then a decoder based on fully connected layer is employed, aiming at synchronously estimating the number of each caption in character. The manner of simultaneously decoding all the captions greatly saves time of sequence decoding. Additionally, we design a multi-task learning to combine global feature extraction capability of whole-character modeling and local feature extraction capability of radical-based modeling, which further improves the model generalization. Experiments on natural scene character dataset demonstrate that the proposed model significantly outperforms baseline by 4.81\% with a comparable model complexity. That shows great robustness and simplicity of our model.

Fast Approximate Modelling of the Next Combination Result for Stopping the Text Recognition in a Video

Konstantin Bulatov, Nadezhda Fedotova, Vladimir V. Arlazarov

Responsive image

Auto-TLDR; Stopping Video Stream Recognition of a Text Field Using Optimized Computation Scheme

Slides Poster Similar

In this paper, we consider a task of stopping the video stream recognition process of a text field, in which each frame is recognized independently and the individual results are combined together. The video stream recognition stopping problem is an under-researched topic with regards to computer vision, but its relevance for building high-performance video recognition systems is clear. Firstly, we describe an existing method of optimally stopping such a process based on a modelling of the next combined result. Then, we describe approximations and assumptions which allowed us to build an optimized computation scheme and thus obtain a method with reduced computational complexity. The methods were evaluated for the tasks of document text field recognition and arbitrary text recognition in a video. The experimental comparison shows that the introduced approximations do not diminish the quality of the stopping method in terms of the achieved combined result precision, while dramatically reducing the time required to make the stopping decision. The results were consistent for both text recognition tasks.

Handwritten Digit String Recognition Using Deep Autoencoder Based Segmentation and ResNet Based Recognition Approach

Anuran Chakraborty, Rajonya De, Samir Malakar, Friedhelm Schwenker, Ram Sarkar

Responsive image

Auto-TLDR; Handwritten Digit Strings Recognition Using Residual Network and Deep Autoencoder Based Segmentation

Slides Poster Similar

Recognition of isolated handwritten digits is a well studied research problem and several models show high recognition accuracy on different standard datasets. But the same is not true while we consider recognition of handwritten digit strings although it has many real-life applications like bank cheque processing, postal code recognition, and numeric field understanding from filled-in form images. The problem becomes more difficult when digits in the string are not neatly written which is commonly seen in freestyle handwriting. The performance of any such model primarily suffers due to the presence of touching digits in the string. To handle these issues, in the present work, we first use a deep autoencoder based segmentation technique for isolating the digits from a handwritten digit string, and then we pass the isolated digits to a Residual Network (ResNet) based recognition model to obtain the machine-encoded digit string. The proposed model has been evaluated on the Computer Vision Lab (CVL) Handwritten Digit Strings (HDS) database, used in HDSRC 2013 competition on handwritten digit string recognition, and a competent result with respect to state-of-the-art techniques has been achieved.

Recognizing Bengali Word Images - A Zero-Shot Learning Perspective

Sukalpa Chanda, Daniël Arjen Willem Haitink, Prashant Kumar Prasad, Jochem Baas, Umapada Pal, Lambert Schomaker

Responsive image

Auto-TLDR; Zero-Shot Learning for Word Recognition in Bengali Script

Slides Poster Similar

Zero-Shot Learning(ZSL) techniques could classify a completely unseen class, which it has never seen before during training. Thus, making it more apt for any real-life classification problem, where it is not possible to train a system with annotated data for all possible class types. This work investigates recognition of word images written in Bengali Script in a ZSL framework. The proposed approach performs Zero-Shot word recognition by coupling deep learned features procured from VGG16 architecture along with 13 basic shapes/stroke primitives commonly observed in Bengali script characters. As per the notion of ZSL framework those 13 basic shapes are termed as “Signature Attributes”. The obtained results are promising while evaluation was carried out in a Five-Fold cross-validation setup dealing with samples from 250 word classes.

On-Device Text Image Super Resolution

Dhruval Jain, Arun Prabhu, Gopi Ramena, Manoj Goyal, Debi Mohanty, Naresh Purre, Sukumar Moharana

Responsive image

Auto-TLDR; A Novel Deep Neural Network for Super-Resolution on Low Resolution Text Images

Slides Poster Similar

Recent research on super-resolution (SR) has wit- nessed major developments with the advancements of deep convolutional neural networks. There is a need for information extraction from scenic text images or even document images on device, most of which are low-resolution (LR) images. Therefore, SR becomes an essential pre-processing step as Bicubic Upsampling, which is conventionally present in smartphones, performs poorly on LR images. To give the user more control over his privacy, and to reduce the carbon footprint by reducing the overhead of cloud computing and hours of GPU usage, executing SR models on the edge is a necessity in the recent times. There are various challenges in running and optimizing a model on resource-constrained platforms like smartphones. In this paper, we present a novel deep neural network that reconstructs sharper character edges and thus boosts OCR confidence. The proposed architecture not only achieves significant improvement in PSNR over bicubic upsampling on various benchmark datasets but also runs with an average inference time of 11.7 ms per image. We have outperformed state-of-the-art on the Text330 dataset. We also achieve an OCR accuracy of 75.89% on the ICDAR 2015 TextSR dataset, where ground truth has an accuracy of 78.10%.

The DeepScoresV2 Dataset and Benchmark for Music Object Detection

Lukas Tuggener, Yvan Putra Satyawan, Alexander Pacha, Jürgen Schmidhuber, Thilo Stadelmann

Responsive image

Auto-TLDR; DeepScoresV2: an extended version of the DeepScores dataset for optical music recognition

Slides Poster Similar

In this paper, we present DeepScoresV2, an extended version of the DeepScores dataset for optical music recognition (OMR). We improve upon the original DeepScores dataset by providing much more detailed annotations, namely (a) annotations for 135 classes including fundamental symbols of non-fixed size and shape, increasing the number of annotated symbols by 23%; (b) oriented bounding boxes; (c) higher-level rhythm and pitch information (onset beat for all symbols and line position for noteheads); and (d) a compatibility mode for easy use in conjunction with the MUSCIMA++ dataset for OMR on handwritten documents. These additions open up the potential for future advancement in OMR research. Additionally, we release two state-of-the-art baselines for DeepScoresV2 based on Faster R-CNN and the Deep Watershed Detector. An analysis of the baselines shows that regular orthogonal bounding boxes are unsuitable for objects which are long, small, and potentially rotated, such as ties and beams, which demonstrates the need for detection algorithms that naturally incorporate object angles. Dataset, code and pre-trained models, as well as user instructions, are publicly available at https://tuggeluk.github.io/dsv2_preview/

ReADS: A Rectified Attentional Double Supervised Network for Scene Text Recognition

Qi Song, Qianyi Jiang, Xiaolin Wei, Nan Li, Rui Zhang

Responsive image

Auto-TLDR; ReADS: Rectified Attentional Double Supervised Network for General Scene Text Recognition

Slides Poster Similar

In recent years, scene text recognition is always regarded as a sequence-to-sequence problem. Connectionist Temporal Classification (CTC) and Attentional sequence recognition (Attn) are two very prevailing approaches to tackle this problem while they may fail in some scenarios respectively. CTC concentrates more on every individual character but is weak in text semantic dependency modeling. Attn based methods have better context semantic modeling ability while tends to overfit on limited training data. In this paper, we elaborately design a Rectified Attentional Double Supervised Network (ReADS) for general scene text recognition. To overcome the weakness of CTC and Attn, both of them are applied in our method but with different modules in two supervised branches which can make a complementary to each other. Moreover, effective spatial and channel attention mechanisms are introduced to eliminate background noise and extract valid foreground information. Finally, a simple rectified network is implemented to rectify irregular text. The ReADS can be trained end-to-end and only word-level annotations are required. Extensive experiments on various benchmarks verify the effectiveness of ReADS which achieves state-of-the-art performance.

Cut and Compare: End-To-End Offline Signature Verification Network

Xi Lu, Lin-Lin Huang, Fei Yin

Responsive image

Auto-TLDR; An End-to-End Cut-and-Compare Network for Offline Signature Verification

Slides Poster Similar

Offline signature verification, to determine whether a handwritten signature image is genuine or forged for a claimed identity, is needed in many applications. How to extract salient features and how to calculate similarity scores are the major issues. In this paper, we propose a novel end-to-end cut-and-compare network for offline signature verification. Based on the Spatial Transformer Network (STN), discriminative regions are segmented from a pair of input signature images and are compared attentively with help of Attentive Recurrent Comparator (ARC). An adaptive distance fusion module is proposed to fuse the distances of these regions. To address the intrapersonal variability problem, we design a smoothed double-margin loss to train the network. The proposed network achieves state-of-the-art performance on CEDAR, GPDS Synthetic, BHSig-H and BHSig-B datasets of different languages. Furthermore, our network shows strong generalization ability on cross-language test.