Online Trajectory Recovery from Offline Handwritten Japanese Kanji Characters of Multiple Strokes

Hung Tuan Nguyen, Tsubasa Nakamura, Cuong Tuan Nguyen, Masaki Nakagawa

Responsive image

Auto-TLDR; Recovering Dynamic Online Trajectories from Offline Japanese Kanji Character Images for Handwritten Character Recognition

Slides Poster

We propose a deep neural network-based method to recover dynamic online trajectories from offline handwritten Japanese kanji character images. It is a challenging task since Japanese kanji characters consist of multiple strokes. Our proposed model has three main components: Convolutional Neural Network-based encoder, Long Short-Term Memory Network-based decoder with an attention layer, and Gaussian Mixture Model (GMM). The encoder focuses on feature extraction while the decoder refers to the extracted features and generates time-sequences of GMM parameters. The attention layer is the key component for trajectory recovery. The GMM provides robustness to style variations so that the proposed model does not overfit to training samples. In the experiments, the proposed method is evaluated by both visual verification and handwritten character recognition. This is the first attempt to use online recovered trajectories to help improve the performance of offline handwriting recognition. Although the visual verification reveals some problems, the recognition experiments demonstrate the effect of trajectory recovery in improving the accuracy of offline handwritten character recognition when online recognition of the recovered trajectories are combined.

Similar papers

Recursive Recognition of Offline Handwritten Mathematical Expressions

Marco Cotogni, Claudio Cusano, Antonino Nocera

Responsive image

Auto-TLDR; Online Handwritten Mathematical Expression Recognition with Recurrent Neural Network

Slides Poster Similar

In this paper we propose a method for Offline Handwritten Mathematical Expression recognition. The method is a fast and accurate thanks to its architecture, which include both a Convolutional Neural Network and a Recurrent Neural Network. The CNN extracts features from the image to recognize and its output is provided to the RNN which produces the mathematical expression encoded in the LaTeX language. To process both sequential and non-sequential mathematical expressions we also included a deconvolutional module which, in a recursive way, segments the image for additional analysis trough a recursive process. The results obtained show a very high accuracy obtained on a large handwritten data set of 9100 samples of handwritten expressions.

LODENet: A Holistic Approach to Offline Handwritten Chinese and Japanese Text Line Recognition

Huu Tin Hoang, Chun-Jen Peng, Hung Tran, Hung Le, Huy Hoang Nguyen

Responsive image

Auto-TLDR; Logographic DEComposition Encoding for Chinese and Japanese Text Line Recognition

Slides Poster Similar

One of the biggest obstacles in Chinese and Japanese text line recognition is how to present their enormous character sets. The most common solution is to merely choose and represent a small subset of characters using one-hot encoding. However, such an approach is costly to describe huge character sets, and ignores their semantic relationships. Recent studies have attempted to utilize different encoding methods, but they struggle to build a bijection mapping. In this work, we propose a novel encoding method, called LOgographic DEComposition encoding (LODEC), that can efficiently perform a 1-to-1 mapping for all Chinese and Japanese characters with a strong awareness of semantic relationships. As such, LODEC enables to encode over 21,000 Chinese and Japanese characters by only 520 fundamental elements. Moreover, to handle the vast variety of handwritten texts in the two languages, we propose a novel deep learning (DL) architecture, called LODENet, together with an end-to-end training scheme, that leverages auxiliary data generated by LODEC or other radical-based encoding methods. We performed systematic experiments on both Chinese and Japanese datasets, and found that our approach surpassed the performance of state-of-the-art baselines. Furthermore, empirical evidence shows that our method can gain significantly better results using synthesized text line images without the need for domain knowledge.

Watch Your Strokes: Improving Handwritten Text Recognition with Deformable Convolutions

Iulian Cojocaru, Silvia Cascianelli, Lorenzo Baraldi, Massimiliano Corsini, Rita Cucchiara

Responsive image

Auto-TLDR; Deformable Convolutional Neural Networks for Handwritten Text Recognition

Slides Poster Similar

Handwritten Text Recognition (HTR) in free-layout pages is a valuable yet challenging task which aims to automatically understand handwritten texts. State-of-the-art approaches in this field usually encode input images with Convolutional Neural Networks, whose kernels are typically defined on a fixed grid and focus on all input pixels independently. However, this is in contrast with the sparse nature of handwritten pages, in which only pixels representing the ink of the writing are useful for the recognition task. Furthermore, the standard convolution operator is not explicitly designed to take into account the great variability in shape, scale, and orientation of handwritten characters. To overcome these limitations, we investigate the use of deformable convolutions for handwriting recognition. This type of convolution deform the convolution kernel according to the content of the neighborhood, and can therefore be more adaptable to geometric variations and other deformations of the text. Experiments conducted on the IAM and RIMES datasets demonstrate that the use of deformable convolutions is a promising direction for the design of novel architectures for handwritten text recognition.

Stroke Based Posterior Attention for Online Handwritten Mathematical Expression Recognition

Changjie Wu, Qing Wang, Jianshu Zhang, Jun Du, Jiaming Wang, Jiajia Wu, Jin-Shui Hu

Responsive image

Auto-TLDR; Posterior Attention for Online Handwritten Mathematical Expression Recognition

Slides Poster Similar

Recently, many researches propose to employ attention based encoder-decoder models to convert a sequence of trajectory points into a LaTeX string for online handwritten mathematical expression recognition (OHMER), and the recognition performance of these models critically relies on the accuracy of the attention. In this paper, unlike previous methods which basically employ a soft attention model, we propose to employ a posterior attention model, which modifies the attention probabilities after observing the output probabilities generated by the soft attention model. In order to further improve the posterior attention mechanism, we propose a stroke average pooling layer to aggregate point-level features obtained from the encoder into stroke-level features. We argue that posterior attention is better to be implemented on stroke-level features than point-level features as the output probabilities generated by stroke is more convincing than generated by point, and we prove that through experimental analysis. Validated on the CROHME competition task, we demonstrate that stroke based posterior attention achieves expression recognition rates of 54.26% on CROHME 2014 and 51.75% on CROHME 2016. According to attention visualization analysis, we empirically demonstrate that the posterior attention mechanism can achieve better alignment accuracy than the soft attention mechanism.

ConvMath : A Convolutional Sequence Network for Mathematical Expression Recognition

Zuoyu Yan, Xiaode Zhang, Liangcai Gao, Ke Yuan, Zhi Tang

Responsive image

Auto-TLDR; Convolutional Sequence Modeling for Mathematical Expressions Recognition

Slides Poster Similar

Despite the recent advances in optical character recognition (OCR), mathematical expressions still face a great challenge to recognize due to their two-dimensional graphical layout. In this paper, we propose a convolutional sequence modeling network, ConvMath, which converts the mathematical expression description in an image into a LaTeX sequence in an end-to-end way. The network combines an image encoder for feature extraction and a convolutional decoder for sequence generation. Compared with other Long Short Term Memory(LSTM) based encoder-decoder models, ConvMath is entirely based on convolution, thus it is easy to perform parallel computation. Besides, the network adopts multi-layer attention mechanism in the decoder, which allows the model to align output symbols with source feature vectors automatically, and alleviates the problem of lacking coverage while training the model. The performance of ConvMath is evaluated on an open dataset named IM2LATEX-100K, including 103556 samples. The experimental results demonstrate that the proposed network achieves state-of-the-art accuracy and much better efficiency than previous methods.

Enhancing Handwritten Text Recognition with N-Gram Sequencedecomposition and Multitask Learning

Vasiliki Tassopoulou, George Retsinas, Petros Maragos

Responsive image

Auto-TLDR; Multi-task Learning for Handwritten Text Recognition

Slides Poster Similar

Current state-of-the-art approaches in the field of Handwritten Text Recognition are predominately single task with unigram, character level target units. In our work, we utilize a Multi-task Learning scheme, training the model to perform decompositions of the target sequence with target units of different granularity, from fine tocoarse. We consider this method as a way to utilize n-gram information, implicitly, in the training process, while the final recognition is performed using only the unigram output. Unigram decoding of sucha multi-task approach highlights the capability of the learned internal representations, imposed by the different n-grams at the training step. We select n-grams as our target units and we experiment from unigrams till fourgrams, namely subword level granularities.These multiple decompositions are learned from the network with task-specific CTC losses. Concerning network architectures, we pro-pose two alternatives, namely the Hierarchical and the Block Multi-task. Overall, our proposed model, even though evaluated only onthe unigram task, outperforms its counterpart single-task by absolute 2.52% WER and 1.02% CER, in the greedy decoding, without any computational overhead during inference, hinting towards success-fully imposing an implicit language model

Writer Identification Using Deep Neural Networks: Impact of Patch Size and Number of Patches

Akshay Punjabi, José Ramón Prieto Fontcuberta, Enrique Vidal

Responsive image

Auto-TLDR; Writer Recognition Using Deep Neural Networks for Handwritten Text Images

Slides Poster Similar

Traditional approaches for the recognition or identification of the writer of a handwritten text image used to relay on heuristic knowledge about the shape and other features of the strokes of previously segmented characters. However, recent works have done significantly advances on the state of the art thanks to the use of various types of deep neural networks. In most of all of these works, text images are decomposed into patches, which are processed by the networks without any previous character or word segmentation. In this paper, we study how the way images are decomposed into patches impact recognition accuracy, using three publicly available datasets. The study also includes a simpler architecture where no patches are used at all - a single deep neural network inputs a whole text image and directly provides a writer recognition hypothesis. Results show that bigger patches generally lead to improved accuracy, achieving in one of the datasets a significant improvement over the best results reported so far.

A Transformer-Based Radical Analysis Network for Chinese Character Recognition

Chen Yang, Qing Wang, Jun Du, Jianshu Zhang, Changjie Wu, Jiaming Wang

Responsive image

Auto-TLDR; Transformer-based Radical Analysis Network for Chinese Character Recognition

Slides Poster Similar

Recently, a novel radical analysis network (RAN) has the capability of effectively recognizing unseen Chinese character classes and largely reducing the requirement of training data by treating a Chinese character as a hierarchical composition of radicals rather than a single character class.} However, when dealing with more challenging issues, such as the recognition of complicated characters, low-frequency character categories, and characters in natural scenes, RAN still has a lot of room for improvement. In this paper, we explore options to further improve the structure generalization and robustness capability of RAN with the Transformer architecture, which has achieved start-of-the-art results for many sequence-to-sequence tasks. More specifically, we propose to replace the original attention module in RAN with the transformer decoder, which is named as a transformer-based radical analysis network (RTN). The experimental results show that the proposed approach can significantly outperform the RAN on both printed Chinese character database and natural scene Chinese character database. Meanwhile, further analysis proves that RTN can be better generalized to complex samples and low-frequency characters, and has better robustness in recognizing Chinese characters with different attributes.

A Few-Shot Learning Approach for Historical Ciphered Manuscript Recognition

Mohamed Ali Souibgui, Alicia Fornés, Yousri Kessentini, Crina Tudor

Responsive image

Auto-TLDR; Handwritten Ciphers Recognition Using Few-Shot Object Detection

Slides Similar

Encoded (or ciphered) manuscripts are a special type of historical documents that contain encrypted text. The automatic recognition of this kind of documents is challenging because: 1) the cipher alphabet changes from one document to another, 2) there is a lack of annotated corpus for training and 3) touching symbols make the symbol segmentation difficult and complex. To overcome these difficulties, we propose a novel method for handwritten ciphers recognition based on few-shot object detection. Our method first detects all symbols of a given alphabet in a line image, and then a decoding step maps the symbol similarity scores to the final sequence of transcribed symbols. By training on synthetic data, we show that the proposed architecture is able to recognize handwritten ciphers with unseen alphabets. In addition, if few labeled pages with the same alphabet are used for fine tuning, our method surpasses existing unsupervised and supervised HTR methods for ciphers recognition.

Multi-Task Learning Based Traditional Mongolian Words Recognition

Hongxi Wei, Hui Zhang, Jing Zhang, Kexin Liu

Responsive image

Auto-TLDR; Multi-task Learning for Mongolian Words Recognition

Slides Poster Similar

In this paper, a multi-task learning framework has been proposed for solving and improving traditional Mongolian words recognition. To be specific, a sequence-to-sequence model with attention mechanism was utilized to accomplish the task of recognition. Therein, the attention mechanism is designed to fulfill the task of glyph segmentation during the process of recognition. Although the glyph segmentation is an implicit operation, the information of glyph segmentation can be integrated into the process of recognition. After that, the two tasks can be accomplished simultaneously under the framework of multi-task learning. By this way, adjacent image frames can be decoded into a glyph more precisely, which results in improving not only the performance of words recognition but also the accuracy of character segmentation. Experimental results demonstrate that the proposed multi-task learning based scheme outperforms the conventional glyph segmentation-based method and various segmentation-free (i.e. holistic recognition) methods.

Cross-People Mobile-Phone Based Airwriting Character Recognition

Yunzhe Li, Hui Zheng, He Zhu, Haojun Ai, Xiaowei Dong

Responsive image

Auto-TLDR; Cross-People Airwriting Recognition via Motion Sensor Signal via Deep Neural Network

Slides Poster Similar

Airwriting using mobile phones has many applications in human-computer interaction. However, the recognition of airwriting character needs a lot of training data from user, which brings great difficulties to the pratical application. The model learnt from a specific person often cannot yield satisfied results when used on another person. The data gap between people is mainly caused by the following factors: personal writing styles, mobile phone sensors, and ways to hold mobile phones. To address the cross-people problem, we propose a deep neural network(DNN) that combines convolutional neural network(CNN) and bilateral long short-term memory(BLSTM). In each layer of the network, we also add an AdaBN layer which is able to increase the generalization ability of the DNN. Different from the original AdaBN method, we explore the feasibility for semi-supervised learning. We implement it to our design and conduct comprehensive experiments. The evaluation results show that our system can achieve an accuracy of 99% for recognition and an improvement of 10% on average for transfer learning between various factors such as people, devices and postures. To the best of our knowledge, our work is the first to implement cross-people airwriting recognition via motion sensor signal, which is a fundamental step towards ubiquitous sensing.

Global Context-Based Network with Transformer for Image2latex

Nuo Pang, Chun Yang, Xiaobin Zhu, Jixuan Li, Xu-Cheng Yin

Responsive image

Auto-TLDR; Image2latex with Global Context block and Transformer

Slides Poster Similar

Image2latex usually means converts mathematical formulas in images into latex markup. It is a very challenging job due to the complex two-dimensional structure, variant scales of input, and very long representation sequence. Many researchers use encoder-decoder based model to solve this task and achieved good results. However, these methods don't make full use of the structure and position information of the formula. %In this paper, we improve the encoder by employing Global Context block and Transformer. To solve this problem, we propose a global context-based network with transformer that can (1) learn a more powerful and robust intermediate representation via aggregating global features and (2) encode position information explicitly and (3) learn latent dependencies between symbols by using self-attention mechanism. The experimental results on the dataset IM2LATEX-100K demonstrate the effectiveness of our method.

Radical Counter Network for Robust Chinese Character Recognition

Yunqing Li, Yixing Zhu, Jun Du, Changjie Wu, Jianshu Zhang

Responsive image

Auto-TLDR; Radical Counter Network for Chinese Character Recognition

Slides Poster Similar

Chinese character recognition has attracted much interest due to its high challenge and various applications. The whole-character modeling method can recognize common characters well but unable to handle unseen situation. Some radical-based modeling methods have successfully achieved great performance in unseen condition but the decoding takes huge time comsumption. Therefore, a high-efficient model which can recognize unseen characters needs to be proposed. First, this paper introduces a novel radical counter network (RCN) to recognize Chinese characters by identifying radicals and spatial structures. The proposed RCN first extracts visual features from input by employing DenseNet as encoder. Then a decoder based on fully connected layer is employed, aiming at synchronously estimating the number of each caption in character. The manner of simultaneously decoding all the captions greatly saves time of sequence decoding. Additionally, we design a multi-task learning to combine global feature extraction capability of whole-character modeling and local feature extraction capability of radical-based modeling, which further improves the model generalization. Experiments on natural scene character dataset demonstrate that the proposed model significantly outperforms baseline by 4.81\% with a comparable model complexity. That shows great robustness and simplicity of our model.

The HisClima Database: Historical Weather Logs for Automatic Transcription and Information Extraction

Verónica Romero, Joan Andreu Sánchez

Responsive image

Auto-TLDR; Automatic Handwritten Text Recognition and Information Extraction from Historical Weather Logs

Slides Poster Similar

Knowing the weather and atmospheric conditions from the past can help weather researchers to generate models like the ones used to predict how weather conditions are likely to change as global temperatures continue to rise. Many historical weather records are available from the past registered on a systemic basis. Historical weather logs were registered in ships, when they were on the high seas, recording daily weather conditions such as: wind speed, temperature, coordinates, etc. These historical documents represent an important source of knowledge with valuable information to extract climatic information of several centuries ago. Such information is usually collected by experts that devote a lot of time. This paper presents a new database, compiled from a ship log mainly composed by handwritten tables that contain mainly numerical information, to support research in automatic handwriting recognition and information extraction. In addition, a study is presented about the capability of state-of-the-art handwritten text recognition systems and information extraction techniques, when applied to the presented database. Baseline results are reported for reference in future studies.

ReADS: A Rectified Attentional Double Supervised Network for Scene Text Recognition

Qi Song, Qianyi Jiang, Xiaolin Wei, Nan Li, Rui Zhang

Responsive image

Auto-TLDR; ReADS: Rectified Attentional Double Supervised Network for General Scene Text Recognition

Slides Poster Similar

In recent years, scene text recognition is always regarded as a sequence-to-sequence problem. Connectionist Temporal Classification (CTC) and Attentional sequence recognition (Attn) are two very prevailing approaches to tackle this problem while they may fail in some scenarios respectively. CTC concentrates more on every individual character but is weak in text semantic dependency modeling. Attn based methods have better context semantic modeling ability while tends to overfit on limited training data. In this paper, we elaborately design a Rectified Attentional Double Supervised Network (ReADS) for general scene text recognition. To overcome the weakness of CTC and Attn, both of them are applied in our method but with different modules in two supervised branches which can make a complementary to each other. Moreover, effective spatial and channel attention mechanisms are introduced to eliminate background noise and extract valid foreground information. Finally, a simple rectified network is implemented to rectify irregular text. The ReADS can be trained end-to-end and only word-level annotations are required. Extensive experiments on various benchmarks verify the effectiveness of ReADS which achieves state-of-the-art performance.

Improving Word Recognition Using Multiple Hypotheses and Deep Embeddings

Siddhant Bansal, Praveen Krishnan, C. V. Jawahar

Responsive image

Auto-TLDR; EmbedNet: fuse recognition-based and recognition-free approaches for word recognition using learning-based methods

Slides Poster Similar

We propose to fuse recognition-based and recognition-free approaches for word recognition using learning-based methods. For this purpose, results obtained using a text recognizer and deep embeddings (generated using an End2End network) are fused. To further improve the embeddings, we propose EmbedNet, it uses triplet loss for training and learns an embedding space where the embedding of the word image lies closer to its corresponding text transcription’s embedding. This updated embedding space helps in choosing the correct prediction with higher confidence. To further improve the accuracy, we propose a plug-and-play module called Confidence based Accuracy Booster (CAB). It takes in the confidence scores obtained from the text recognizer and Euclidean distances between the embeddings and generates an updated distance vector. This vector has lower distance values for the correct words and higher distance values for the incorrect words. We rigorously evaluate our proposed method systematically on a collection of books that are in the Hindi language. Our method achieves an absolute improvement of around 10% in terms of word recognition accuracy.

IBN-STR: A Robust Text Recognizer for Irregular Text in Natural Scenes

Xiaoqian Li, Jie Liu, Shuwu Zhang

Responsive image

Auto-TLDR; IBN-STR: A Robust Text Recognition System Based on Data and Feature Representation

Poster Similar

Although text recognition methods based on deep neural networks have promising performance, there are still challenges due to the variety of text styles, perspective distortion, text with large curvature, and so on. To obtain a robust text recognizer, we have improved the performance from two aspects: data aspect and feature representation aspect. In terms of data, we transform the input images into S-shape distorted images in order to increase the diversity of training data. Besides, we explore the effects of different training data. In terms of feature representation, the combination of instance normalization and batch normalization improves the model's capacity and generalization ability. This paper proposes a robust text recognizer IBN-STR, which is an attention-based model. Through extensive experiments, the model analysis and comparison have been carried out from the aspects of data and feature representation, and the effectiveness of IBN-STR on both regular and irregular text instances has been verified. Furthermore, IBN-STR is an end-to-end recognition system that can achieve state-of-the-art performance.

2D License Plate Recognition based on Automatic Perspective Rectification

Hui Xu, Zhao-Hong Guo, Da-Han Wang, Xiang-Dong Zhou, Yu Shi

Responsive image

Auto-TLDR; Perspective Rectification Network for License Plate Recognition

Slides Poster Similar

License plate recognition (LPR) remains a challenging task in face of some difficulties such as image deformation and multi-line character distribution. Text rectification that is crucial to eliminate the effects of image deformation has attracted increasing attentions in scene text recognition. However, current text rectification methods are not designed specifically for LPR, which did not take the features of plate deformation into account. Considering the fact that a license plate (LP) can only generate perspective distortion in the image due to its rigid feature, in this paper we propose a novel perspective rectification network (PRN) to automatically estimate the perspective transformation and rectify the distorted LP accordingly. For recognition, we propose a location-aware 2D attention based recognition network that is capable of recognizing both single-line and double-line plates with perspective deformation. The rectification network and recognition network are connected for end-to-end training. Experiments on common datasets show that the proposed method achieves the state-of-the-art performance, demonstrating the effectiveness of the proposed approach.

Handwritten Digit String Recognition Using Deep Autoencoder Based Segmentation and ResNet Based Recognition Approach

Anuran Chakraborty, Rajonya De, Samir Malakar, Friedhelm Schwenker, Ram Sarkar

Responsive image

Auto-TLDR; Handwritten Digit Strings Recognition Using Residual Network and Deep Autoencoder Based Segmentation

Slides Poster Similar

Recognition of isolated handwritten digits is a well studied research problem and several models show high recognition accuracy on different standard datasets. But the same is not true while we consider recognition of handwritten digit strings although it has many real-life applications like bank cheque processing, postal code recognition, and numeric field understanding from filled-in form images. The problem becomes more difficult when digits in the string are not neatly written which is commonly seen in freestyle handwriting. The performance of any such model primarily suffers due to the presence of touching digits in the string. To handle these issues, in the present work, we first use a deep autoencoder based segmentation technique for isolating the digits from a handwritten digit string, and then we pass the isolated digits to a Residual Network (ResNet) based recognition model to obtain the machine-encoded digit string. The proposed model has been evaluated on the Computer Vision Lab (CVL) Handwritten Digit Strings (HDS) database, used in HDSRC 2013 competition on handwritten digit string recognition, and a competent result with respect to state-of-the-art techniques has been achieved.

Cut and Compare: End-To-End Offline Signature Verification Network

Xi Lu, Lin-Lin Huang, Fei Yin

Responsive image

Auto-TLDR; An End-to-End Cut-and-Compare Network for Offline Signature Verification

Slides Poster Similar

Offline signature verification, to determine whether a handwritten signature image is genuine or forged for a claimed identity, is needed in many applications. How to extract salient features and how to calculate similarity scores are the major issues. In this paper, we propose a novel end-to-end cut-and-compare network for offline signature verification. Based on the Spatial Transformer Network (STN), discriminative regions are segmented from a pair of input signature images and are compared attentively with help of Attentive Recurrent Comparator (ARC). An adaptive distance fusion module is proposed to fuse the distances of these regions. To address the intrapersonal variability problem, we design a smoothed double-margin loss to train the network. The proposed network achieves state-of-the-art performance on CEDAR, GPDS Synthetic, BHSig-H and BHSig-B datasets of different languages. Furthermore, our network shows strong generalization ability on cross-language test.

MEAN: A Multi-Element Attention Based Network for Scene Text Recognition

Ruijie Yan, Liangrui Peng, Shanyu Xiao, Gang Yao, Jaesik Min

Responsive image

Auto-TLDR; Multi-element Attention Network for Scene Text Recognition

Slides Poster Similar

Scene text recognition is a challenging problem due to the wide variances in content, style, orientation, and image quality of text instances in natural scene images. To learn the intrinsic representation of scene texts, a novel multi-element attention (MEA) mechanism is proposed to exploit geometric structures from local to global levels in the feature map extracted from a scene text image. The MEA mechanism is a generalized form of self-attention technique with the incorporation of graph structure modeling. The elements in feature maps are taken as the nodes of an undirected graph, and three kinds of adjacency matrices are introduced to aggregating information at local, neighborhood and global levels before calculating the attention weights. If only the local adjacency matrix is used, the MEA mechanism degenerates to a self-attention form. A multi-element attention network (MEAN) is implemented which includes a CNN for feature extraction, an encoder with MEA mechanism and a decoder for predicting text codes. Orientation positional encoding information is further added to the feature map output by the CNN, and a feature sequence as the encoder's input is obtained by element-level decomposition of the feature map. Experimental results show that MEAN has achieved state-of-the-art or competitive performance on public English scene text datasets. Further experiments and analyses conducted on both English and Chinese scene text datasets show that MEAN can handle horizontal, vertical, and irregular scene text samples.

Switching Dynamical Systems with Deep Neural Networks

Cesar Ali Ojeda Marin, Kostadin Cvejoski, Bogdan Georgiev, Ramses J. Sanchez

Responsive image

Auto-TLDR; Variational RNN for Switching Dynamics

Slides Poster Similar

The problem of uncovering different dynamicalregimes is of pivotal importance in time series analysis. Switchingdynamical systems provide a solution for modeling physical phe-nomena whose time series data exhibit different dynamical modes.In this work we propose a novel variational RNN model forswitching dynamics allowing for both non-Markovian and non-linear dynamical behavior between and within dynamic modes.Attention mechanisms are provided to inform the switchingdistribution. We evaluate our model on synthetic and empiricaldatasets of diverse nature and successfully uncover differentdynamical regimes and predict the switching dynamics.

Recognizing Bengali Word Images - A Zero-Shot Learning Perspective

Sukalpa Chanda, Daniël Arjen Willem Haitink, Prashant Kumar Prasad, Jochem Baas, Umapada Pal, Lambert Schomaker

Responsive image

Auto-TLDR; Zero-Shot Learning for Word Recognition in Bengali Script

Slides Poster Similar

Zero-Shot Learning(ZSL) techniques could classify a completely unseen class, which it has never seen before during training. Thus, making it more apt for any real-life classification problem, where it is not possible to train a system with annotated data for all possible class types. This work investigates recognition of word images written in Bengali Script in a ZSL framework. The proposed approach performs Zero-Shot word recognition by coupling deep learned features procured from VGG16 architecture along with 13 basic shapes/stroke primitives commonly observed in Bengali script characters. As per the notion of ZSL framework those 13 basic shapes are termed as “Signature Attributes”. The obtained results are promising while evaluation was carried out in a Five-Fold cross-validation setup dealing with samples from 250 word classes.

Cross-Lingual Text Image Recognition Via Multi-Task Sequence to Sequence Learning

Zhuo Chen, Fei Yin, Xu-Yao Zhang, Qing Yang, Cheng-Lin Liu

Responsive image

Auto-TLDR; Cross-Lingual Text Image Recognition with Multi-task Learning

Slides Poster Similar

This paper considers recognizing texts shown in a source language and translating into a target language, without generating the intermediate source language text image recognition results. We call this problem Cross-Lingual Text Image Recognition (CLTIR). To solve this problem, we propose a multi-task system containing a main task of CLTIR and an auxiliary task of Mono-Lingual Text Image Recognition (MLTIR) simultaneously. Two different sequence to sequence learning methods, a convolution based attention model and a BLSTM model with CTC, are adopted for these tasks respectively. We evaluate the system on a newly collected Chinese-English bilingual movie subtitle image dataset. Experimental results demonstrate the multi-task learning framework performs superiorly in both languages.

Multiple Document Datasets Pre-Training Improves Text Line Detection with Deep Neural Networks

Mélodie Boillet, Christopher Kermorvant, Thierry Paquet

Responsive image

Auto-TLDR; A fully convolutional network for document layout analysis

Slides Similar

In this paper, we introduce a fully convolutional network for the document layout analysis task. While state-of-the-art methods are using models pre-trained on natural scene images, our method relies on a U-shaped model trained from scratch for detecting objects from historical documents. We consider the line segmentation task and more generally the layout analysis problem as a pixel-wise classification task then our model outputs a pixel-labeling of the input images. We show that our method outperforms state-of-the-art methods on various datasets and also demonstrate that the pre-trained parts on natural scene images are not required to reach good results. In addition, we show that pre-training on multiple document datasets can improve the performances. We evaluate the models using various metrics to have a fair and complete comparison between the methods.

Chebyshev-Harmonic-Fourier-Moments and Deep CNNs for Detecting Forged Handwriting

Lokesh Nandanwar, Shivakumara Palaiahnakote, Kundu Sayani, Umapada Pal, Tong Lu, Daniel Lopresti

Responsive image

Auto-TLDR; Chebyshev-Harmonic-Fourier-Moments and Deep Convolutional Neural Networks for forged handwriting detection

Slides Poster Similar

Recently developed sophisticated image processing techniques and tools have made easier the creation of high-quality forgeries of handwritten documents including financial and property records. To detect such forgeries of handwritten documents, this paper presents a new method by exploring the combination of Chebyshev-Harmonic-Fourier-Moments (CHFM) and deep Convolutional Neural Networks (D-CNNs). Unlike existing methods work based on abrupt changes due to distortion created by forgery operation, the proposed method works based on inconsistencies and irregular changes created by forgery operations. Inspired by the special properties of CHFM, such as its reconstruction ability by removing redundant information, the proposed method explores CHFM to obtain reconstructed images for the color components of the Original, Forged Noisy and Blurred classes. Motivated by the strong discriminative power of deep CNNs, for the reconstructed images of respective color components, the proposed method used deep CNNs for forged handwriting detection. Experimental results on our dataset and benchmark datasets (namely, ACPR 2019, ICPR 2018 FCD and IMEI datasets) show that the proposed method outperforms existing methods in terms of classification rate.

Ancient Document Layout Analysis: Autoencoders Meet Sparse Coding

Homa Davoudi, Marco Fiorucci, Arianna Traviglia

Responsive image

Auto-TLDR; Unsupervised Unsupervised Representation Learning for Document Layout Analysis

Slides Poster Similar

Layout analysis of historical handwritten documents is a key pre-processing step in document image analysis that, by segmenting the image into its homogeneous regions, facilitates subsequent procedures such as optical character recognition and automatic transcription. Learning-based approaches have shown promising performances in layout analysis, however, the majority of them requires tedious pixel-wise labelled training data to achieve generalisation capabilities, this limitation preventing their application due to the lack of large labelled datasets. This paper proposes a novel unsupervised representation learning method for documents’ layout analysis that reduces the need for labelled data: a sparse autoencoder is first trained in an unsupervised manner on a historical text document’s image; representation of image patches, computed by the sparse encoder, is then used to classify pixels into various region categories of the document using a feed-forward neural network. A new training method, inspired by the ISTA algorithm, is also introduced here to train the sparse encoder. Experimental results on DIVA-HisDB dataset demonstrate that the proposed method outperforms previous approaches based on unsupervised representation learning while achieving performances comparable to the state-of-the-art fully supervised methods.

Text Baseline Recognition Using a Recurrent Convolutional Neural Network

Matthias Wödlinger, Robert Sablatnig

Responsive image

Auto-TLDR; Automatic Baseline Detection of Handwritten Text Using Recurrent Convolutional Neural Network

Slides Poster Similar

The detection of baselines of text is a necessary pre-processing step for many modern methods of automatic handwriting recognition. In this work a two-stage system for the automatic detection of text baselines of handwritten text is presented. In a first step pixel-wise segmentation on the document image is performed to classify pixels as baselines, start points and end points. This segmentation is then used to extract the start points of lines. Starting from these points the baseline is extracted using a recurrent convolutional neural network that directly outputs the baseline coordinates. This method allows the direct extraction of baseline coordinates as the output of a neural network without the use of any post processing steps. The model is evaluated on the cBAD dataset from the ICDAR 2019 competition on baseline detection.

Recognizing Multiple Text Sequences from an Image by Pure End-To-End Learning

Zhenlong Xu, Shuigeng Zhou, Fan Bai, Cheng Zhanzhan, Yi Niu, Shiliang Pu

Responsive image

Auto-TLDR; Pure End-to-End Learning for Multiple Text Sequences Recognition from Images

Slides Poster Similar

We address a challenging problem: recognizing multiple text sequences from an image by pure end-to-end learning. It is twofold: 1) Multiple text sequences recognition. Each image may contain multiple text sequences of different content, location and orientation, we try to recognize all these texts in the image. 2) Pure end-to-end (PEE) learning.We solve the problem in a pure end-to-end learning way where each training image is labeled by only text transcripts of the contained sequences, without any geometric annotations. Most existing works recognize multiple text sequences from an image in a non-end-to-end (NEE) or quasi-end-to-end (QEE) way, in which each image is trained with both text transcripts and text locations. Only recently, a PEE method was proposed to recognize text sequences from an image where the text sequence was split to several lines in the image. However, it cannot be directly applied to recognizing multiple text sequences from an image. So in this paper, we propose a pure end-to-end learning method to recognize multiple text sequences from an image. Our method directly learns the probability distribution of multiple sequences conditioned on each input image, and outputs multiple text transcripts with a well-designed decoding strategy. To evaluate the proposed method, we construct several datasets mainly based on an existing public dataset and two real application scenarios. Experimental results show that the proposed method can effectively recognize multiple text sequences from images, and outperforms CTC-based and attention-based baseline methods.

Context Matters: Self-Attention for Sign Language Recognition

Fares Ben Slimane, Mohamed Bouguessa

Responsive image

Auto-TLDR; Attentional Network for Continuous Sign Language Recognition

Slides Poster Similar

This paper proposes an attentional network for the task of Continuous Sign Language Recognition. The proposed approach exploits co-independent streams of data to model the sign language modalities. These different channels of information can share a complex temporal structure between each other. For that reason, we apply attention to synchronize and help capture entangled dependencies between the different sign language components. Even though Sign Language is multi-channel, handshapes represent the central entities in sign interpretation. Seeing handshapes in their correct context defines the meaning of a sign. Taking that into account, we utilize the attention mechanism to efficiently aggregate the hand features with their appropriate Spatio-temporal context for better sign recognition. We found that by doing so the model is able to identify the essential Sign Language components that revolve around the dominant hand and the face areas. We test our model on the benchmark dataset RWTH-PHOENIX-Weather 2014, yielding competitive results.

Human or Machine? It Is Not What You Write, but How You Write It

Luis Leiva, Moises Diaz, M.A. Ferrer, Réjean Plamondon

Responsive image

Auto-TLDR; Behavioral Biometrics via Handwritten Symbols for Identification and Verification

Slides Poster Similar

Online fraud often involves identity theft. Since most security measures are weak or can be spoofed, we investigate a more nuanced and less explored avenue: behavioral biometrics via handwriting movements. This kind of data can be used to verify if a legitimate user is operating a device or a computer application, so it is important to distinguish between human and machine-generated movements reliably. For this purpose, we study handwritten symbols (isolated characters, digits, gestures, and signatures) produced by humans and machines, and compare and contrast several deep learning models. We find that if symbols are presented as static images, they can fool state-of-the-art classifiers (near 75% accuracy in the best case) but can be distinguished with remarkable accuracy if they are presented as temporal sequences (95% accuracy in the average case). We conclude that an accurate detection of fake movements has more to do with how users write, rather than what they write. Our work has implications for computerized systems that need to authenticate or verify legitimate human users, and provides an additional layer of security to keep attackers at bay.

Robust Lexicon-Free Confidence Prediction for Text Recognition

Qi Song, Qianyi Jiang, Rui Zhang, Xiaolin Wei

Responsive image

Auto-TLDR; Confidence Measurement for Optical Character Recognition using Single-Input Multi-Output Network

Slides Poster Similar

Benefiting from the success of deep learning, Optical Character Recognition (OCR) is booming in recent years. As we all know, the text recognition results are vulnerable to slight perturbation in input images, thus a method for measuring how reliable the results are is crucial. In this paper, we present a novel method for confidence measurement given a text recognition result, which can be embedded in any text recognizer with little overheads. Our method consists of two stages with a coarse-to-fine style. The first stage generates multiple candidates for voting coarse scores by a Single-Input Multi-Output network (SIMO). The second stage calculates a refined confidence score referred by the voting result and the conditional probabilities of the Top-1 probable recognition sequence. Highly competitive performance is achieved on several standard benchmarks validates the efficiency and effectiveness of the proposed method. Moreover, it can be adopted in both Latin and non-Latin languages.

Air-Writing with Sparse Network of Radars Using Spatio-Temporal Learning

Muhammad Arsalan, Avik Santra, Kay Bierzynski, Vadim Issakov

Responsive image

Auto-TLDR; An Air-writing System for Sparse Radars using Deep Convolutional Neural Networks

Slides Poster Similar

Hand gesture and motion sensing offer an intuitive and natural form of human-machine interface. Air-writing systems allow users to draw alpha-numerical or linguistic characters in the virtual board in air through hand gestures. Traditionally, radar-based air-writing systems have been based on a network of radars, at least three, to localize the hand target through trilateration algorithm followed by tracking to extract the drawn trajectory, which is then followed by recognition of the drawn character by either Long-Short Term Memory (LSTM) utilizing the sensed trajectory or Deep Convolutional Neural Network (DCNN) utilizing a reconstructed 2D image from the trajectory. However, the practical deployments of such systems are limited since the detection of the finger or hand target by all three radars cannot be guaranteed leading to failure of the trilateration algorithm. Further placement of three or more radars for the air-writing solution is neither always physically plausible nor cost-effective. Furthermore, these solutions do not exploit the full potentials of deep neural networks, which are generally capable of learning features implicitly. In this paper, we propose an air-writing system based on a network of sparse radars, i.e. strictly less than three, using 1D DCNN-LSTM-1D transposed DCNN architecture to reconstruct and classify the drawn character utilizing only the range information from each radar. The paper employs real data using one and two 60 GHz milli-meter wave radar sensors to demonstrate the success of the proposed air-writing solution.

PICK: Processing Key Information Extraction from Documents Using Improved Graph Learning-Convolutional Networks

Wenwen Yu, Ning Lu, Xianbiao Qi, Ping Gong, Rong Xiao

Responsive image

Auto-TLDR; PICK: A Graph Learning Framework for Key Information Extraction from Documents

Slides Poster Similar

Computer vision with state-of-the-art deep learning models have achieved huge success in the field of Optical Character Recognition (OCR) including text detection and recognition tasks recently. However, Key Information Extraction (KIE) from documents as the downstream task of OCR, having a large number of use scenarios in real-world, remains a challenge because documents not only have textual features extracting from OCR systems but also have semantic visual features that are not fully exploited and play a critical role in KIE. Too little work has been devoted to efficiently make full use of both textual and visual features of the documents. In this paper, we introduce PICK, a framework that is effective and robust in handling complex documents layout for KIE by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Extensive experiments on real-world datasets have been conducted to show that our method outperforms baselines methods by significant margins.

A Multi-Head Self-Relation Network for Scene Text Recognition

Zhou Junwei, Hongchao Gao, Jiao Dai, Dongqin Liu, Jizhong Han

Responsive image

Auto-TLDR; Multi-head Self-relation Network for Scene Text Recognition

Slides Poster Similar

The text embedded in scene images can be seen everywhere in our lives. However, recognizing text from natural scene images is still a challenge because of its diverse shapes and distorted patterns. Recently, advanced recognition networks generally treat scene text recognition as a sequence prediction task. Although achieving excellent performance, these recognition networks consider the feature map cells as independent individuals and update cells state without utilizing the information of their neighboring cells. And the local receptive field of traditional convolutional neural network (CNN) makes a single cell that cannot cover the whole text region in an image. Due to these issues, the existing recognition networks cannot extract the global context in a visual scene. To deal with the above problems, we propose a Multi-head Self-relation Network(MSRN) for scene text recognition in this paper. The MSRN consists of several multi-head self-relation layers, which is designed for extracting the global context of a visual scene, so that transforms a cell into a new cell that fuses the information of the related cells. Furthermore, experiments over several public datasets demonstrate that our proposed recognition network achieves superior performance on several benchmark datasets including IC03, IC13, IC15, SVT-Perspective.

Text Recognition in Real Scenarios with a Few Labeled Samples

Jinghuang Lin, Cheng Zhanzhan, Fan Bai, Yi Niu, Shiliang Pu, Shuigeng Zhou

Responsive image

Auto-TLDR; Few-shot Adversarial Sequence Domain Adaptation for Scene Text Recognition

Slides Poster Similar

Scene text recognition (STR) is still a hot research topic in computer vision field due to its various applications. Existing works mainly focus on learning a general model with a huge number of synthetic text images to recognize unconstrained scene texts, and have achieved substantial progress. However, these methods are not quite applicable in many real-world scenarios where 1) high recognition accuracy is required, while 2) labeled samples are lacked. To tackle this challenging problem, this paper proposes a few-shot adversarial sequence domain adaptation (FASDA) approach to build sequence adaptation between the synthetic source domain (with many synthetic labeled samples) and a specific target domain (with only some or a few real labeled samples). This is done by simultaneously learning each character’s feature representation with an attention mech- anism and establishing the corresponding character-level latent subspace with adversarial learning. Our approach can maximize the character-level confusion between the source domain and the target domain, thus achieves the sequence-level adaptation with even a small number of labeled samples in the target domain. Extensive experiments on various datasets show that our method significantly outperforms the finetuning scheme, and obtains comparable performance to the state-of-the-art STR methods.

Gaussian Constrained Attention Network for Scene Text Recognition

Zhi Qiao, Xugong Qin, Yu Zhou, Fei Yang, Weiping Wang

Responsive image

Auto-TLDR; Gaussian Constrained Attention Network for Scene Text Recognition

Slides Poster Similar

Scene text recognition has been a hot topic in computer vision. Recent methods adopt the attention mechanism for sequence prediction which achieve convincing results. However, we argue that the existing attention mechanism faces the problem of attention diffusion, in which the model may not focus on a certain character area. In this paper, we propose Gaussian Constrained Attention Network to deal with this problem. It is a 2D attention-based method integrated with a novel Gaussian Constrained Refinement Module, which predicts an additional Gaussian mask to refine the attention weights. Different from adopting an additional supervision on the attention weights simply, our proposed method introduce an explicit refinement. In this way, the attention weights will be more concentrated and the attention-based recognition network achieves better performance. The proposed Gaussian Constrained Refinement Module is flexible and can be applied to existing attention-based methods directly. The experiments on several benchmark datasets demonstrate the effectiveness of our proposed method. Our code has been available at https://github.com/Pay20Y/GCAN.

Learning to Sort Handwritten Text Lines in Reading Order through Estimated Binary Order Relations

Lorenzo Quirós, Enrique Vidal

Responsive image

Auto-TLDR; Automatic Reading Order of Text Lines in Handwritten Text Documents

Slides Similar

Recent advances in Handwritten Text Recognition and Document Layout Analysis make it possible to extract information from digitized documents and make them accessible beyond the archive shelves. But the reading order of the elements in those documents still is an open problem that has to be solved in order to provide that information with the correct structure. Most of the studies on the reading order task are rule-base approaches that focus on printed documents, while less attention has been paid to handwritten text documents. In this work we propose a new approach to automatically determine the reading order of text lines in handwritten text documents. The task is approached as a sorting problem where the order-relation operator is learned directly from examples. We demonstrate the effectiveness of our method on three different datasets.

A Fast and Accurate Object Detector for Handwritten Digit String Recognition

Jun Guo, Wenjing Wei, Yifeng Ma, Cong Peng

Responsive image

Auto-TLDR; ChipNet: An anchor-free object detector for handwritten digit string recognition

Slides Poster Similar

Focusing on handwritten digit string recognition (HDSR), we propose an anchor-free object detector called ChipNet, where a novel encoding method is designed. The input image is divided into columns, and then these columns are encoded by the ground truth. The adjacent columns are responsible for detecting the same target so that it can well address the class-imbalanced problem meanwhile reducing the network computation. ChipNet is composed of convolutional and bidirectional long short term memory networks. Different from the typical detectors, it doesn't use region proposals, anchors or regions of interest pooling. Hence, it can overcome the shortages of anchor-based and dense detectors in HDSR. The experiments are implemented on the synthetic digit strings, the CVL HDS database, and the ORAND-CAR-A & B databases. The high accuracies, which surpass the reported results by a large margin (up to 6.62%), are achieved. Furthermore, it gets 219 FPS speed on 160*32 px resolution images when using a Tesla P100 GPU. The results also show that ChipNet can handle touching, connecting and arbitrary length digit strings, and the obtained accuracies in HDSR are as high as the ones in single handwritten digit recognition.

Combining Deep and Ad-Hoc Solutions to Localize Text Lines in Ancient Arabic Document Images

Olfa Mechi, Maroua Mehri, Rolf Ingold, Najoua Essoukri Ben Amara

Responsive image

Auto-TLDR; Text Line Localization in Ancient Handwritten Arabic Document Images using U-Net and Topological Structural Analysis

Slides Poster Similar

Text line localization in document images is still considered an open research task. The state-of-the-art methods in this regard that are only based on the classical image analysis techniques mostly have unsatisfactory performances especially when the document images i) contain significant degradations and different noise types and scanning defects, and ii) have touching and/or multi-skewed text lines or overlapping words/characters and non-uniform inter-line space. Moreover, localizing text in ancient handwritten Arabic document images is even more complex due to the morphological particularities related to the Arabic script. Thus, in this paper, we propose a hybrid method combining a deep network with classical document image analysis techniques for text line localization in ancient handwritten Arabic document images. The proposed method is firstly based on using the U-Net architecture to extract the main area covering the text core. Then, a modified RLSA combined with topological structural analysis are applied to localize whole text lines (including the ascender and descender components). To analyze the performance of the proposed method, a set of experiments has been conducted on many recent public and private datasets, and a thorough experimental evaluation has been carried out.

Exploring Spatial-Temporal Representations for fNIRS-based Intimacy Detection via an Attention-enhanced Cascade Convolutional Recurrent Neural Network

Chao Li, Qian Zhang, Ziping Zhao

Responsive image

Auto-TLDR; Intimate Relationship Prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network Using Functional Near-Infrared Spectroscopy

Slides Poster Similar

The detection of intimacy plays a crucial role in the improvement of intimate relationship, which contributes to promote the family and social harmony. Previous studies have shown that different degrees of intimacy have significant differences in brain imaging. Recently, a few of work has emerged to recognise intimacy automatically by using machine learning technique. Moreover, considering the temporal dynamic characteristics of intimacy relationship on neural mechanism, how to model spatio-temporal dynamics for intimacy prediction effectively is still a challenge. In this paper, we propose a novel method to explore deep spatial-temporal representations for intimacy prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network (ACCRNN). Given the advantages of time-frequency resolution in complex neuronal activities analysis, this paper utilizes functional near-infrared spectroscopy (fNIRS) to analyse and infer to intimate relationship. We collect a fNIRS-based dataset for the analysis of intimate relationship. Forty-two-channel fNIRS signals are recorded from the 44 subjects' prefrontal cortex when they watched a total of 18 photos of lovers, friends and strangers for 30 seconds per photo. The experimental results show that our proposed method outperforms the others in terms of accuracy with the precision of 96.5%. To the best of our knowledge, this is the first time that such a hybrid deep architecture has been employed for fNIRS-based intimacy prediction.

Sample-Aware Data Augmentor for Scene Text Recognition

Guanghao Meng, Tao Dai, Shudeng Wu, Bin Chen, Jian Lu, Yong Jiang, Shutao Xia

Responsive image

Auto-TLDR; Sample-Aware Data Augmentation for Scene Text Recognition

Slides Poster Similar

Deep neural networks (DNNs) have been widely used in scene text recognition, and achieved remarkable performance. Such DNN-based scene text recognizers usually require plenty of training data for training, but data collection and annotation is usually cost-expensive in practice. To alleviate this issue, data augmentation is often applied to train the scene text recognizers. However, existing data augmentation methods including affine transformation and elastic transformation methods suffer from the problems of under- and over-diversity, due to the complexity of text contents and shapes. In this paper, we propose a sample-aware data augmentor to transform samples adaptively based on the contents of samples. Specifically, our data augmentor consists of three parts: gated module, affine transformation module, and elastic transformation module. In our data augmentor, affine transformation module focuses on keeping the affinity of samples, while elastic transformation module aims to improve the diversity of samples. With the gated module, our data augmentor determines transformation type adaptively based on the properties of training samples and the recognizer capability during the training process. Besides, our framework introduces an adversarial learning strategy to optimize the augmentor and the recognizer jointly. Extensive experiments on scene text recognition benchmarks show that our sample-aware data augmentor significantly improves the performance of state-of-the-art scene text recognizer.

Unsupervised deep learning for text line segmentation

Berat Kurar Barakat, Ahmad Droby, Reem Alaasam, Borak Madi, Irina Rabaev, Raed Shammes, Jihad El-Sana

Responsive image

Auto-TLDR; Unsupervised Deep Learning for Handwritten Text Line Segmentation without Annotation

Poster Similar

We present an unsupervised deep learning method for text line segmentation that is inspired by the relative variance between text lines and spaces among text lines. Handwritten text line segmentation is important for the efficiency of further processing. A common method is to train a deep learning network for embedding the document image into an image of blob lines that are tracing the text lines. Previous methods learned such embedding in a supervised manner, requiring the annotation of many document images. This paper presents an unsupervised embedding of document image patches without a need for annotations. The number of foreground pixels over the text lines is relatively different from the number of foreground pixels over the spaces among text lines. Generating similar and different pairs relying on this principle definitely leads to outliers. However, as the results show, the outliers do not harm the convergence and the network learns to discriminate the text lines from the spaces between text lines. Remarkably, with a challenging Arabic handwritten text line segmentation dataset, VML-AHTE, we achieved superior performance over the supervised methods. Additionally, the proposed method was evaluated on the ICDAR 2017 and ICFHR 2010 handwritten text line segmentation datasets.

Textual-Content Based Classification of Bundles of Untranscribed of Manuscript Images

José Ramón Prieto Fontcuberta, Enrique Vidal, Vicente Bosch, Carlos Alonso, Carmen Orcero, Lourdes Márquez

Responsive image

Auto-TLDR; Probabilistic Indexing for Text-based Classification of Manuscripts

Slides Poster Similar

Content-based classification of manuscripts is an important task that is generally performed in archives and libraries by experts with a wealth of knowledge on the manuscripts contents. Unfortunately, many manuscript collections are so vast that it is not feasible to rely solely on experts to perform this task. Current approaches for textual-content-based manuscript classification generally require the handwritten images to be first transcribed into text -- but achieving sufficiently accurate transcripts is generally unfeasible for large sets of historical manuscripts. We propose a new approach to automatically perform this classification task which does not rely on any explicit image transcripts. It is based on ``probabilistic indexing'', a relatively novel technology which allows to effectively represent the intrinsic word-level uncertainty generally exhibited by handwritten text images. We assess the performance of this approach on a large collection of complex manuscripts from the Spanish Archivo General de Indias, with promising results.

An Evaluation of DNN Architectures for Page Segmentation of Historical Newspapers

Manuel Burghardt, Bernhard Liebl

Responsive image

Auto-TLDR; Evaluation of Backbone Architectures for Optical Character Segmentation of Historical Documents

Slides Poster Similar

One important and particularly challenging step in the optical character recognition of historical documents with complex layouts, such as newspapers, is the separation of text from non-text content (e.g. page borders or illustrations). This step is commonly referred to as page segmentation. While various rule-based algorithms have been proposed, the applicability of Deep Neural Networks for this task recently has gained a lot of attention. In this paper, we perform a systematic evaluation of 11 different published backbone architectures and 9 different tiling and scaling configurations for separating text, tables or table column lines. We also show the influence of the number of labels and the number of training pages on the segmentation quality, which we measure using the Matthews Correlation Coefficient. Our results show that (depending on the task) Inception-ResNet-v2 and EfficientNet backbones work best, vertical tiling is generally preferable to other tiling approaches, and training data that comprises 30 to 40 pages will be sufficient most of the time.

Collaborative Human Machine Attention Module for Character Recognition

Chetan Ralekar, Tapan Gandhi, Santanu Chaudhury

Responsive image

Auto-TLDR; A Collaborative Human-Machine Attention Module for Deep Neural Networks

Slides Poster Similar

The deep learning models which include attention mechanisms are shown to enhance the performance and efficiency of the various computer vision tasks such as pattern recognition, object detection, face recognition, etc. Although the visual attention mechanism is the source of inspiration for these models, recent attention models consider `attention' as a pure machine vision optimization problem and visual attention remains the most neglected aspect. Therefore, this paper presents a collaborative human and machine attention module which considers both visual and network's attention. The proposed module is inspired by the dorsal (`where') pathways of visual processing and it can be integrated with any convolutional neural network (CNN) model. First, the module computes the spatial attention map from the input feature maps which is then combined with the visual attention maps. The visual attention maps are created using eye-fixations obtained by performing an eye-tracking experiment with human participants. The visual attention map covers the highly salient and discriminative image regions as humans tend to focus on such regions, whereas the other relevant image regions are processed by spatial attention map. The combination of these two maps results in the finer refinement in feature maps which results in improved performance. The comparative analysis reveals that our model not only shows significant improvement over the baseline model but also outperforms the other models. We hope that our findings using a collaborative human-machine attention module will be helpful in other vision tasks as well.

Enriching Video Captions with Contextual Text

Philipp Rimle, Pelin Dogan, Markus Gross

Responsive image

Auto-TLDR; Contextualized Video Captioning Using Contextual Text

Slides Poster Similar

Understanding video content and generating caption with context is an important and challenging task. Unlike prior methods that typically attempt to generate generic video captions without context, our architecture contextualizes captioning by infusing extracted information from relevant text data. We propose an end-to-end sequence-to-sequence model which generates video captions based on visual input, and mines relevant knowledge such as names and locations from contextual text. In contrast to previous approaches, we do not preprocess the text further, and let the model directly learn to attend over it. Guided by the visual input, the model is able to copy words from the contextual text via a pointer-generator network, allowing to produce more specific video captions. We show competitive performance on the News Video Dataset and, through ablation studies, validate the efficacy of contextual video captioning as well as individual design choices in our model architecture.

Trajectory-User Link with Attention Recurrent Networks

Tao Sun, Yongjun Xu, Fei Wang, Lin Wu, 塘文 钱, Zezhi Shao

Responsive image

Auto-TLDR; TULAR: Trajectory-User Link with Attention Recurrent Neural Networks

Slides Poster Similar

The prevalent adoptions of GPS-enabled devices have witnessed an explosion of various location-based services which produces a huge amount of trajectories monitoring the individuals' movements. In this paper, we tackle Trajectory-User Link (TUL) problem, which identifies humans' movement patterns and links trajectories to the users who generated them. Existing solutions on TUL problem employ recurrent neural networks and variational autoencoder methods, which face the bottlenecks in the case of excessively long trajectories and fragmentary users' movements. However, these are common characteristics of trajectory data in reality, leading to performance degradation of the existing models. In this paper, we propose an end-to-end attention recurrent neural learning framework, called TULAR (Trajectory-User Link with Attention Recurrent Networks), which focus on selected parts of the source trajectories when linking. TULAR introduce the Trajectory Semantic Vector (TSV) via unsupervised location representation learning and recurrent neural networks, by which to reckon the weight of parts of source trajectory. Further, we employ three attention scores for the weight measurements. Experiments are conducted on two real world datasets and compared with several existing methods, and the results show that TULAR yields a new state-of-the-art performance. Source code is public available at GitHub: https://github.com/taos123/TULAR.