3D Dental Biometrics: Automatic Pose-Invariant Dental Arch Extraction and Matching

Zhong Xin, Zhiyuan Zhang

Responsive image

Auto-TLDR; Automatic Dental Arch Extraction and Matching for 3D Dental Identification using Laser-Scanned Plasters

Slides Poster

A novel automatic pose-invariant dental arch extraction and matching framework is developed for 3D dental identification using laser-scanned dental plasters. In our previous attempt [1-5], 3D point-based algorithms have been developed and they have shown a few advantages over existing 2D dental identifications. This study is a continuous effort in developing arch-based algorithms to extract and match dental arch feature in an automatic and pose-invariant way. As best as we know, this is the first attempt at automatic dental arch extraction and matching for 3D dental identification. A Radial Ray Algorithm (RRA) is proposed by projecting dental arch shape from 3D to 2D. This algorithm is fully automatic and fast. Preliminary identification result is obtained by matching 11 postmortem (PM) samples against 200 ante-mortem (AM) samples. 72.7% samples achieved top 5% accuracy. 90.9% samples achieved top 10% accuracy and all 11 samples (100%) achieved top 15.5% accuracy out of the 200-rank list. In addition, the time for identifying a single subject from 200 subjects has been significantly reduced from 45 minutes to 5 minutes by matching the extracted 2D dental arch. Although the extracted 2D arch feature is not as accurate and discriminative as the full 3D arch, it may serve as an important filter feature to improve the identification speed in future investigations.

Similar papers

3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties

Soha Sadat Mahdi, Nele Nauwelaers, Philip Joris, Giorgos Bouritsas, Imperial London, Sergiy Bokhnyak, Susan Walsh, Mark Shriver, Michael Bronstein, Peter Claes

Responsive image

Auto-TLDR; Multi-biometric Fusion for Biometric Verification using 3D Facial Mesures

Slides Similar

Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naïve Bayes-based score-fuser.

Better Prior Knowledge Improves Human-Pose-Based Extrinsic Camera Calibration

Olivier Moliner, Sangxia Huang, Kalle Åström

Responsive image

Auto-TLDR; Improving Human-pose-based Extrinsic Calibration for Multi-Camera Systems

Slides Poster Similar

Accurate extrinsic calibration of wide baseline multi-camera systems enables better understanding of 3D scenes for many applications and is of great practical importance. Classical Structure-from-Motion calibration methods require special calibration equipment so that accurate point correspondences can be detected between different views. In addition, an operator with some training is usually needed to ensure that data is collected in a way that leads to good calibration accuracy. This limits the ease of adoption of such technologies. Recently, methods have been proposed to use human pose estimation models to establish point correspondences, thus removing the need for any special equipment. The challenge with this approach is that human pose estimation algorithms typically produce much less accurate feature points compared to classical patch-based methods. Another problem is that ambient human motion might not be optimal for calibration. We build upon prior works and introduce several novel ideas to improve the accuracy of human-pose-based extrinsic calibration. Our first contribution is a robust reprojection loss based on a better understanding of the sources of pose estimation error. Our second contribution is a 3D human pose likelihood model learned from motion capture data. We demonstrate significant improvements in calibration accuracy by evaluating our method on four publicly available datasets.

3D Pots Configuration System by Optimizing Over Geometric Constraints

Jae Eun Kim, Muhammad Zeeshan Arshad, Seong Jong Yoo, Je Hyeong Hong, Jinwook Kim, Young Min Kim

Responsive image

Auto-TLDR; Optimizing 3D Configurations for Stable Pottery Restoration from irregular and noisy evidence

Slides Poster Similar

While potteries are common artifacts excavated in archaeological sites, the restoration process relies on the manual cleaning and reassembling shattered pieces. Since the number of possible 3D configurations is considerably large, the exhaustive manual trial may result in an abrasion on fractured surfaces and even failure to find the correct matches. As a result, many recent works suggest virtual reassembly from 3D scans of the fragments. The problem is challenging in the view of the conventional 3D geometric analysis, as it is hard to extract reliable shape features from the thin break lines. We propose to optimize the global configuration by combining geometric constraints with information from noisy shape features. Specifically, we enforce bijection and continuity of sequence of correspondences given estimates of corners and pair-wise matching scores between multiple break lines. We demonstrate that our pipeline greatly increases the accuracy of correspondences, resulting in the stable restoration of 3D configurations from irregular and noisy evidence.

Joint Learning Multiple Curvature Descriptor for 3D Palmprint Recognition

Lunke Fei, Bob Zhang, Jie Wen, Chunwei Tian, Peng Liu, Shuping Zhao

Responsive image

Auto-TLDR; Joint Feature Learning for 3D palmprint recognition using curvature data vectors

Slides Poster Similar

3D palmprint-based biometric recognition has drawn growing research attention due to its several merits over 2D counterpart such as robust structural measurement of a palm surface and high anti-counterfeiting capability. However, most existing 3D palmprint descriptors are hand-crafted that usually extract stationary features from 3D palmprint images. In this paper, we propose a feature learning method to jointly learn compact curvature feature descriptor for 3D palmprint recognition. We first form multiple curvature data vectors to completely sample the intrinsic curvature information of 3D palmprint images. Then, we jointly learn a feature projection function that project curvature data vectors into binary feature codes, which have the maximum inter-class variances and minimum intra-class distance so that they are discriminative. Moreover, we learn the collaborative binary representation of the multiple curvature feature codes by minimizing the information loss between the final representation and the multiple curvature features, so that the proposed method is more compact in feature representation and efficient in matching. Experimental results on the baseline 3D palmprint database demonstrate the superiority of the proposed method in terms of recognition performance in comparison with state-of-the-art 3D palmprint descriptors.

Lookalike Disambiguation: Improving Face Identification Performance at Top Ranks

Thomas Swearingen, Arun Ross

Responsive image

Auto-TLDR; Lookalike Face Identification Using a Disambiguator for Lookalike Images

Poster Similar

A face identification system compares an unknown input probe image to a gallery of face images labeled with identities in order to determine the identity of the probe image. The result of identification is a ranked match list with the most similar gallery face image at the top (rank 1) and the least similar gallery face image at the bottom. In many systems, the top ranked gallery images may look very similar to the probe image as well as to each other and can sometimes result in the misidentification of the probe image. Such similar looking faces pertaining to different identities are referred to as lookalike faces. We hypothesize that a matcher specifically trained to disambiguate lookalike face images and combined with a regular face matcher may improve overall identification performance. This work proposes reranking the initial ranked match list using a disambiguator especially for lookalike face pairs. This work also evaluates schemes to select gallery images in the initial ranked match list that should be re-ranked. Experiments on the challenging TinyFace dataset shows that the proposed approach improves the closed-set identification accuracy of a state-of-the-art face matcher.

Inner Eye Canthus Localization for Human Body Temperature Screening

Claudio Ferrari, Lorenzo Berlincioni, Marco Bertini, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Localization of the Inner Eye Canthus in Thermal Face Images using 3D Morphable Face Model

Slides Poster Similar

In this paper, we propose an automatic approach for localizing the inner eye canthus in thermal face images. We first coarsely detect 5 facial keypoints corresponding to the center of the eyes, the nosetip and the ears. Then we compute a sparse 2D-3D points correspondence using a 3D Morphable Face Model (3DMM). This correspondence is used to project the entire 3D face onto the image, and subsequently locate the inner eye canthus. Detecting this location allows to obtain the most precise body temperature measurement for a person using a thermal camera. We evaluated the approach on a thermal face dataset provided with manually annotated landmarks. However, such manual annotations are normally conceived to identify facial parts such as eyes, nose and mouth, and are not specifically tailored for localizing the eye canthus region. As additional contribution, we enrich the original dataset by using the annotated landmarks to deform and project the 3DMM onto the images. Then, by manually selecting a small region corresponding to the eye canthus, we enrich the dataset with additional annotations. By using the manual landmarks, we ensure the correctness of the 3DMM projection, which can be used as ground-truth for future evaluations. Moreover, we supply the dataset with the 3D head poses and per-point visibility masks for detecting self-occlusions. The data will be publicly released.

Rethinking ReID:Multi-Feature Fusion Person Re-Identification Based on Orientation Constraints

Mingjing Ai, Guozhi Shan, Bo Liu, Tianyang Liu

Responsive image

Auto-TLDR; Person Re-identification with Orientation Constrained Network

Slides Poster Similar

Person re-identification (ReID) aims to identify the specific pedestrian in a series of images or videos. Recently, ReID is receiving more and more attention in the fields of computer vision research and application like intelligent security. One major issue downgrading the ReID model performance lies in that various subjects in the same body orientations look too similar to distinguish by the model, while the same subject viewed in different orientations looks rather different. However, most of the current studies do not particularly differentiate pedestrians in orientation when designing the network, so we rethink this problem particularly from the perspective of person orientation and propose a new network structure by including two branches: one handling samples with the same body orientations and the other handling samples with different body orientations. Correspondingly, we also propose an orientation classifier that can accurately distinguish the orientation of each person. At the same time, the three-part loss functions are introduced for orientation constraint and combined to optimize the network simultaneously. Also, we use global and local features int the training stage in order to make use of multi-level information. Therefore, our network can derive its efficacy from orientation constraints and multiple features. Experiments show that our method not only has competitive performance on multiple datasets, but also can let retrieval results aligned with the orientation of the query sample rank higher, which may have great potential in the practical applications.

Rotation Detection in Finger Vein Biometrics Using CNNs

Bernhard Prommegger, Georg Wimmer, Andreas Uhl

Responsive image

Auto-TLDR; A CNN based rotation detector for finger vein recognition

Slides Poster Similar

Finger vein recognition deals with the identification of subjects based on their venous pattern within the fingers. The recognition accuracy of finger vein recognition systems suffers from different internal and external factors. One of the major problems are misplacements of the finger during acquisition. In particular longitudinal finger rotation poses a severe problem for such recognition systems. The detection and correction of such rotations is a difficult task as typically finger vein scanners acquire only a single image from the vein pattern. Therefore, important information such as the shape of the finger or the depth of the veins within the finger, which are needed for the rotation detection, are not available. This work presents a CNN based rotation detector that is capable of estimating the rotational difference between vein images of the same finger without providing any additional information. The experiments executed not only show that the method delivers highly accurate results, but it also generalizes so that the trained CNN can also be applied on data sets which have not been included during the training of the CNN. Correcting the rotation difference between images using the CNN's rotation prediction leads to EER improvements between 50-260% for a well-established vein-pattern based method (Maximum Curvature) on four public finger vein databases.

A New Geodesic-Based Feature for Characterization of 3D Shapes: Application to Soft Tissue Organ Temporal Deformations

Karim Makki, Amine Bohi, Augustin Ogier, Marc-Emmanuel Bellemare

Responsive image

Auto-TLDR; Spatio-Temporal Feature Descriptors for 3D Shape Characterization from Point Clouds

Slides Poster Similar

Spatio-temporal feature descriptors are of great importance for characterizing the local changes of 3D deformable shapes. In this study, we propose a method for characterizing 3D shapes from point clouds and we show a direct application on a study of organ temporal deformations. As an example, we characterize the behavior of the bladder during forced respiratory motion with a reduced number of 3D surface points: first, a set of equidistant points representing the vertices of quadrilateral mesh for the organ surface are tracked throughout a long dynamic MRI sequence using a large deformation diffeomorphic metric mapping (LDDMM) framework. Second, a novel 3D shape descriptor invariant to translation, scale and rotation is proposed for characterizing the temporal organ deformations by employing an Eulerian Partial Differential Equations (PDEs) methodology. We demonstrate the robustness of our feature on both synthetic 3D shapes and realistic dynamic Magnetic Resonance Imaging (MRI) data sequences portraying the bladder deformation during a forced breathing exercise. Promising results are obtained, showing that the proposed feature may be useful for several computer vision applications such as medical imaging, aerodynamics and robotics.

Calibration and Absolute Pose Estimation of Trinocular Linear Camera Array for Smart City Applications

Martin Ahrnbom, Mikael Nilsson, Håkan Ardö, Kalle Åström, Oksana Yastremska-Kravchenko, Aliaksei Laureshyn

Responsive image

Auto-TLDR; Trinocular Linear Camera Array Calibration for Traffic Surveillance Applications

Slides Poster Similar

A method for calibrating a Trinocular Linear Camera Array (TLCA) for traffic surveillance applications, such as towards smart cities, is presented. A TLCA-specific parametrization guarantees that the calibration finds a model where all the cameras are on a straight line. The method uses both a chequerboard close to the camera, as well as measured 3D points far from the camera: points measured in world coordinates, as well as their corresponding 2D points found manually in the images. Superior calibration accuracy can be obtained compared to standard methods using only a single data source, largely due to the use of chequerboards, while the line constraint in the parametrization allows for joint rectification. The improved triangulation accuracy, from 8-12 cm to around 6 cm when calibrating with 30-50 points in our experiment, allowing better road user analysis. The method is demonstrated by a proof-of-concept application where a point cloud is generated from multiple disparity maps, visualizing road user detections in 3D.

Level Three Synthetic Fingerprint Generation

Andre Wyzykowski, Mauricio Pamplona Segundo, Rubisley Lemes

Responsive image

Auto-TLDR; Synthesis of High-Resolution Fingerprints with Pore Detection Using CycleGAN

Slides Poster Similar

Today's legal restrictions that protect the privacy of biometric data are hampering fingerprint recognition researches. For instance, all high-resolution fingerprint databases ceased to be publicly available. To address this problem, we present a novel hybrid approach to synthesize realistic, high-resolution fingerprints. First, we improved Anguli, a handcrafted fingerprint generator, to obtain dynamic ridge maps with sweat pores and scratches. Then, we trained a CycleGAN to transform these maps into realistic fingerprints. Unlike other CNN-based works, we can generate several images for the same identity. We used our approach to create a synthetic database with 7400 images in an attempt to propel further studies in this field without raising legal issues. We included sweat pore annotations in 740 images to encourage research developments in pore detection. In our experiments, we employed two fingerprint matching approaches to confirm that real and synthetic databases have similar performance. We conducted a human perception analysis where sixty volunteers could hardly differ between real and synthesized fingerprints. Given that we also favorably compare our results with the most advanced works in the literature, our experimentation suggests that our approach is the new state-of-the-art.

Generic Document Image Dewarping by Probabilistic Discretization of Vanishing Points

Gilles Simon, Salvatore Tabbone

Responsive image

Auto-TLDR; Robust Document Dewarping using vanishing points

Slides Poster Similar

Document images dewarping is still a challenge especially when documents are captured with one camera in an uncontrolled environment. In this paper we propose a generic approach based on vanishing points (VP) to reconstruct the 3D shape of document pages. Unlike previous methods we do not need to segment the text included in the documents. Therefore, our approach is less sensitive to pre-processing and segmentation errors. The computation of the VPs is robust and relies on the a-contrario framework, which has only one parameter whose setting is based on probabilistic reasoning instead of experimental tuning. Thus, our method can be applied to any kind of document including text and non-text blocks and extended to other kind of images. Experimental results show that the proposed method is robust to a variety of distortions.

Finger Vein Recognition and Intra-Subject Similarity Evaluation of Finger Veins Using the CNN Triplet Loss

Georg Wimmer, Bernhard Prommegger, Andreas Uhl

Responsive image

Auto-TLDR; Finger vein recognition using CNNs and hard triplet online selection

Slides Poster Similar

Finger vein recognition deals with the identification of subjects based on their venous pattern within the fingers. There is a lot of prior work using hand crafted features, but only little work using CNN based recognition systems. This article proposes a new approach using CNNs that utilizes the triplet loss function together with hard triplet online selection for finger vein recognition. The CNNs are used for three different use cases: (1) the classical recognition use case, where every finger of a subject is considered as a separate class, (2) an evaluation of the similarity of left and right hand fingers from the same subject and (3) an evaluation of the similarity of different fingers of the same subject. The results show that the proposed approach achieves superior results compared to prior work on finger vein recognition using the triplet loss function. Furtherly, we show that different fingers of the same subject, especially same fingers from the left and right hand, show enough similarities to perform recognition. The last statement contradicts the current understanding in the literature for finger vein biometry, in which it is assumed that different fingers of the same subject are unique identities.

Three-Dimensional Lip Motion Network for Text-Independent Speaker Recognition

Jianrong Wang, Tong Wu, Shanyu Wang, Mei Yu, Qiang Fang, Ju Zhang, Li Liu

Responsive image

Auto-TLDR; Lip Motion Network for Text-Independent and Text-Dependent Speaker Recognition

Slides Poster Similar

Lip motion reflects behavior characteristics of speakers, and thus can be used as a new kind of biometrics in speaker recognition. In the literature, lots of works used two dimensional (2D) lip images to recognize speaker in a text-dependent context. However, 2D lip easily suffers from face orientations. To this end, in this work, we present a novel end-to-end 3D lip motion Network (3LMNet) by utilizing the sentence-level 3D lip motion (S3DLM) to recognize speakers in both the text-independent and text-dependent contexts. A novel regional feedback module (RFM) is proposed to explore attentions in different lip regions. Besides, prior knowledge of lip motion is investigated to complement RFM, where landmark-level and frame-level features are merged to form a better feature representation. Moreover, we present two methods, i.e., coordinate transformation and face posture correction to pre-process the LSD-AV dataset, which contains 68 speakers and 146 sentences per speaker. The evaluation results on this dataset demonstrate that our proposed 3LMNet is superior to the baseline models, i.e., LSTM, VGG-16 and ResNet-34, and outperforms the state-of-the-art using 2D lip image as well as the 3D face. The code of this work is released at https://github.com/wutong18/Three-Dimensional-Lip-Motion-Ne twork-for-Text-Independent-Speaker-Recognition.

Gaussian Convolution Angles: Invariant Vein and Texture Descriptors for Butterfly Species Identification

Xin Chen, Bin Wang, Yongsheng Gao

Responsive image

Auto-TLDR; Gaussian convolution angle for butterfly species classification

Slides Poster Similar

Identifying butterfly species by image patterns is a challenging task in computer vision and pattern recognition community due to many butterfly species having similar shape patterns with complex interior structures and considerable pose variation. In additional, geometrical transformation and illumination variation also make this task more difficult. In this paper, a novel image descriptor, named Gaussian convolution angle (GCA) is proposed for butterfly species classification. The proposed GCA projects the butterfly vein image function and intensity image function along a group of vectors that start from a common contour points and ends at the remaining contour points which results a group of vectors that capture the complex vein patterns and texture patterns of butterfly images. The Gaussian convolution of different scales is conducted to the resulting vector functions to generate a multiscale GCA descriptors. The proposed GCA is not only invariant to geometrical transformation including rotation, scaling and translation, but also invariant to lighting change. The proposed method has been tested on a publicly available butterfly image dataset that has 832 samples of 10 species. It achieves a classification accuracy of 92.03% which is higher than the benchmark methods.

One Step Clustering Based on A-Contrario Framework for Detection of Alterations in Historical Violins

Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, Marco Malagodi

Responsive image

Auto-TLDR; A-Contrario Clustering for the Detection of Altered Violins using UVIFL Images

Slides Poster Similar

Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of interventions necessary. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the ``Violins UVIFL imagery'' dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with the state of the art clustering methods shows improved overall precision and recall.

How Unique Is a Face: An Investigative Study

Michal Balazia, S L Happy, Francois Bremond, Antitza Dantcheva

Responsive image

Auto-TLDR; Uniqueness of Face Recognition: Exploring the Impact of Factors such as image resolution, feature representation, database size, age and gender

Slides Poster Similar

Face recognition has been widely accepted as a means of identification in applications ranging from border control to security in the banking sector. Surprisingly, while widely accepted, we still lack the understanding of the uniqueness or distinctiveness of face as a biometric characteristic. In this work, we study the impact of factors such as image resolution, feature representation, database size, age and gender on uniqueness denoted by the Kullback-Leibler divergence between genuine and impostor distributions. Towards understanding the impact, we present experimental results on the datasets AT&T, LFW, IMDb-Face, as well as ND-TWINS, with the feature extraction algorithms VGGFace, VGG16, ResNet50, InceptionV3, MobileNet and DenseNet121, that reveal the quantitative impact of the named factors. While these are early results, our findings indicate the need for a better understanding of the concept of biometric uniqueness and its implication on face recognition.

Recovery of 2D and 3D Layout Information through an Advanced Image Stitching Algorithm Using Scanning Electron Microscope Images

Aayush Singla, Bernhard Lippmann, Helmut Graeb

Responsive image

Auto-TLDR; Image Stitching for True Geometrical Layout Recovery in Nanoscale Dimension

Slides Poster Similar

Image stitching describes the process of reconstruction of a high resolution image from combining multiple images. Using a scanning electron microscope as the image source, individual images will show patterns in a nm dimension whereas the combined image may cover an area of several mm2. The recovery of the physical layout of modern semiconductor products manufactured in advanced technologies nodes down to 22 nm requires a perfect stitching process with no deviation with respect to the original design data, as any stitching error will result in failures during the reconstruction of the electrical design. In addition, the recovery of the complete design requires the acquisition of all individual layers of a semiconductor device which represent a 3D structure with interconnections defining error limits on the stitching error for each individual scanned image mosaic. An advanced stitching and alignment process is presented enabling a true geometrical layout recovery in nanoscale dimensions which is also applied and evaluated on other use cases from biological applications.

One-Shot Representational Learning for Joint Biometric and Device Authentication

Sudipta Banerjee, Arun Ross

Responsive image

Auto-TLDR; Joint Biometric and Device Recognition from a Single Biometric Image

Slides Poster Similar

In this work, we propose a method to simultaneously perform (i) biometric recognition (\textit{i.e.}, identify the individual), and (ii) device recognition, (\textit{i.e.}, identify the device) from a single biometric image, say, a face image, using a one-shot schema. Such a joint recognition scheme can be useful in devices such as smartphones for enhancing security as well as privacy. We propose to automatically learn a joint representation that encapsulates both biometric-specific and sensor-specific features. We evaluate the proposed approach using iris, face and periocular images acquired using near-infrared iris sensors and smartphone cameras. Experiments conducted using 14,451 images from 13 sensors resulted in a rank-1 identification accuracy of upto 99.81\% and a verification accuracy of upto 100\% at a false match rate of 1\%.

Fingerprints, Forever Young?

Roman Kessler, Olaf Henniger, Christoph Busch

Responsive image

Auto-TLDR; Mated Similarity Scores for Fingerprint Recognition: A Hierarchical Linear Model

Slides Poster Similar

In the present study we analyzed longitudinal fingerprint data of 20 data subjects, acquired over a time span of up to 12 years. Using hierarchical linear modeling, we aimed to delineate mated similarity scores as a function of fingerprint quality and of the time interval between reference and probe images. Our results did not reveal effects on mated similarity scores caused by an increasing time interval across subjects, but rather individual effects on mated similarity scores. The results are in line with the general assumption that the fingerprint as a biometric characteristic and the features extracted from it do not change over the adult life span. However, it contradicts several related studies that reported noticeable template ageing effects. We discuss why different findings regarding ageing of references in fingerprint recognition systems were made.

Walk the Lines: Object Contour Tracing CNN for Contour Completion of Ships

André Peter Kelm, Udo Zölzer

Responsive image

Auto-TLDR; Walk the Lines: A Convolutional Neural Network trained to follow object contours

Slides Poster Similar

We develop a new contour tracing algorithm to enhance the results of the latest object contour detectors. The goal is to achieve a perfectly closed, single-pixel wide and detailed object contour, since this type of contour could be analyzed using methods such as Fourier descriptors. Convolutional Neural Networks (CNNs) are rarely used for contour tracing, and we see great potential in using their capabilities for this task. Therefore we present the Walk the Lines (WtL) algorithm: A standard regression CNN trained to follow object contours. As initial step, we train the CNN only on ship contours, but the principle is applicable to other objects. Input data are the image and the associated object contour prediction of the recently published RefineContourNet (RCN). The WtL gets the center pixel coordinates, which defines an input section, plus an angle for rotating this section. Ideally, the center pixel moves on the contour, while the angle describes upcoming directional contour changes. The WtL predicts its steps pixelwise in a selfrouting way. To obtain a complete object contour the WtL runs in parallel at different image locations and the traces of its individual paths are summed. In contrast to the comparable Non-Maximum Suppression (NMS) method, our approach produces connected contours with finer details. Finally, the object contour is binarized under the condition of being closed. In case all procedures work as desired, excellent ship segmentations with high IoUs are produced, showing details such as antennas and ship superstructures that are easily omitted by other segmentation methods.

A Two-Step Approach to Lidar-Camera Calibration

Yingna Su, Yaqing Ding, Jian Yang, Hui Kong

Responsive image

Auto-TLDR; Closed-Form Calibration of Lidar-camera System for Ego-motion Estimation and Scene Understanding

Slides Poster Similar

Autonomous vehicles and robots are typically equipped with Lidar and camera. Hence, calibrating the Lidar-camera system is of extreme importance for ego-motion estimation and scene understanding. In this paper, we propose a two-step approach (coarse + fine) for the external calibration between a camera and a multiple-line Lidar. First, a new closed-form solution is proposed to obtain the initial calibration parameters. We compare our solution with the state-of-the-art SVD-based algorithm, and show the benefits of both the efficiency and stability. With the initial calibration parameters, the ICP-based calibration framework is used to register the point clouds which extracted from the camera and Lidar coordinate frames, respectively. Our method has been applied to two Lidar-camera systems: an HDL-64E Lidar-camera system, and a VLP-16 Lidar-camera system. Experimental results demonstrate that our method achieves promising performance and higher accuracy than two open-source methods.

User-Independent Gaze Estimation by Extracting Pupil Parameter and Its Mapping to the Gaze Angle

Sang Yoon Han, Nam Ik Cho

Responsive image

Auto-TLDR; Gaze Point Estimation using Pupil Shape for Generalization

Slides Poster Similar

Since gaze estimation plays a crucial role in recognizing human intentions, it has been researched for a long time, and its accuracy is ever increasing. However, due to the wide variation in eye shapes and focusing abilities between the individuals, accuracies of most algorithms vary depending on each person in the test group, especially when the initial calibration is not well performed. To alleviate the user-dependency, we attempt to derive features that are general for most people and use them as the input to a deep network instead of using the images as the input. Specifically, we use the pupil shape as the core feature because it is directly related to the 3D eyeball rotation, and thus the gaze direction. While existing deep learning methods learn the gaze point by extracting various features from the image, we focus on the mapping function from the eyeball rotation to the gaze point by using the pupil shape as the input. It is shown that the accuracy of gaze point estimation also becomes robust for the uncalibrated points by following the characteristics of the mapping function. Also, our gaze network learns the gaze difference to facilitate the re-calibration process to fix the calibration-drift problem that typically occurs with glass-type or head-mount devices.

BiLuNet: A Multi-Path Network for Semantic Segmentation on X-Ray Images

Van Luan Tran, Huei-Yung Lin, Rachel Liu, Chun-Han Tseng, Chun-Han Tseng

Responsive image

Auto-TLDR; BiLuNet: Multi-path Convolutional Neural Network for Semantic Segmentation of Lumbar vertebrae, sacrum,

Similar

Semantic segmentation and shape detection of lumbar vertebrae, sacrum, and femoral heads from clinical X-ray images are important and challenging tasks. In this paper, we propose a new multi-path convolutional neural network, BiLuNet, for semantic segmentation on X-ray images. The network is capable of medical image segmentation with very limited training data. With the shape fitting of the bones, we can identify the location of the target regions very accurately for lumbar vertebra inspection. We collected our dataset and annotated by doctors for model training and performance evaluation. Compared to the state-of-the-art methods, the proposed technique provides better mIoUs and higher success rates with the same training data. The experimental results have demonstrated the feasibility of our network to perform semantic segmentation for lumbar vertebrae, sacrum, and femoral heads.

Wireless Localisation in WiFi Using Novel Deep Architectures

Peizheng Li, Han Cui, Aftab Khan, Usman Raza, Robert Piechocki, Angela Doufexi, Tim Farnham

Responsive image

Auto-TLDR; Deep Neural Network for Indoor Localisation of WiFi Devices in Indoor Environments

Slides Poster Similar

This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding. First, we present a novel shallow neural network (SNN) in which features are extracted from the channel state information (CSI) corresponding to WiFi subcarriers received on different antennas and used to train the model. The single layer architecture of this localisation neural network makes it lightweight and easy-to-deploy on devices with stringent constraints on computational resources. We further investigate for localisation the use of deep learning models and design novel architectures for convolutional neural network (CNN) and long-short term memory (LSTM). We extensively evaluate these localisation algorithms for continuous tracking in indoor environments. Experimental results prove that even an SNN model, after a careful handcrafted feature extraction, can achieve accurate localisation. Meanwhile, using a well-organised architecture, the neural network models can be trained directly with raw data from the CSI and localisation features can be automatically extracted to achieve accurate position estimates. We also found that the performance of neural network-based methods are directly affected by the number of anchor access points (APs) regardless of their structure. With three APs, all neural network models proposed in this paper can obtain localisation accuracy of around 0.5 metres. In addition the proposed deep NN architecture reduces the data pre-processing time by 6.5 hours compared with a shallow NN using the data collected in our testbed. In the deployment phase, the inference time is also significantly reduced to 0.1 ms per sample. We also demonstrate the generalisation capability of the proposed method by evaluating models using different target movement characteristics to the ones in which they were trained.

Are Spoofs from Latent Fingerprints a Real Threat for the Best State-Of-Art Liveness Detectors?

Roberto Casula, Giulia Orrù, Daniele Angioni, Xiaoyi Feng, Gian Luca Marcialis, Fabio Roli

Responsive image

Auto-TLDR; ScreenSpoof: Attacks using latent fingerprints against state-of-art fingerprint liveness detectors and verification systems

Slides Similar

We investigated the threat level of realistic attacks using latent fingerprints against sensors equipped with state-of-art liveness detectors and fingerprint verification systems which integrate such liveness algorithms. To the best of our knowledge, only a previous investigation was done with spoofs from latent prints. In this paper, we focus on using snapshot pictures of latent fingerprints. These pictures provide molds, that allows, after some digital processing, to fabricate high-quality spoofs. Taking a snapshot picture is much simpler than developing fingerprints left on a surface by magnetic powders and lifting the trace by a tape. What we are interested here is to evaluate preliminary at which extent attacks of the kind can be considered a real threat for state-of-art fingerprint liveness detectors and verification systems. To this aim, we collected a novel data set of live and spoof images fabricated with snapshot pictures of latent fingerprints. This data set provide a set of attacks at the most favourable conditions. We refer to this method and the related data set as "ScreenSpoof". Then, we tested with it the performances of the best liveness detection algorithms, namely, the three winners of the LivDet competition. Reported results point out that the ScreenSpoof method is a threat of the same level, in terms of detection and verification errors, than that of attacks using spoofs fabricated with the full consensus of the victim. We think that this is a notable result, never reported in previous work.

A Local Descriptor with Physiological Characteristic for Finger Vein Recognition

Liping Zhang, Weijun Li, Ning Xin

Responsive image

Auto-TLDR; Finger vein-specific local feature descriptors based physiological characteristic of finger vein patterns

Slides Poster Similar

Local feature descriptors exhibit great superiority in finger vein recognition due to their stability and robustness against local changes in images. However, most of these are methods use general-purpose descriptors that do not consider finger vein-specific features. In this work, we propose a finger vein-specific local feature descriptors based physiological characteristic of finger vein patterns, i.e., histogram of oriented physiological Gabor responses (HOPGR), for finger vein recognition. First, a prior of directional characteristic of finger vein patterns is obtained in an unsupervised manner. Then the physiological Gabor filter banks are set up based on the prior information to extract the physiological responses and orientation. Finally, to make the feature robust against local changes in images, a histogram is generated as output by dividing the image into non-overlapping cells and overlapping blocks. Extensive experimental results on several databases clearly demonstrate that the proposed method outperforms most current state-of-the-art finger vein recognition methods.

Learning to Implicitly Represent 3D Human Body from Multi-Scale Features and Multi-View Images

Zhongguo Li, Magnus Oskarsson, Anders Heyden

Responsive image

Auto-TLDR; Reconstruction of 3D human bodies from multi-view images using multi-stage end-to-end neural networks

Slides Poster Similar

Reconstruction of 3D human bodies, from images, faces many challenges, due to it generally being an ill-posed problem. In this paper we present a method to reconstruct 3D human bodies from multi-view images, through learning an implicit function to represent 3D shape, based on multi-scale features extracted by multi-stage end-to-end neural networks. Our model consists of several end-to-end hourglass networks for extracting multi-scale features from multi-view images, and a fully connected network for implicit function classification from these features. Given a 3D point, it is projected to multi-view images and these images are fed into our model to extract multi-scale features. The scales of features extracted by the hourglass networks decrease with the depth of our model, which represents the information from local to global scale. Then, the multi-scale features as well as the depth of the 3D point are combined to a new feature vector and the fully connected network classifies the feature vector, in order to predict if the point lies inside or outside of the 3D mesh. The advantage of our method is that we use both local and global features in the fully connected network and represent the 3D mesh by an implicit function, which is more memory-efficient. Experiments on public datasets demonstrate that our method surpasses previous approaches in terms of the accuracy of 3D reconstruction of human bodies from images.

Multi-View Object Detection Using Epipolar Constraints within Cluttered X-Ray Security Imagery

Brian Kostadinov Shalon Isaac-Medina, Chris G. Willcocks, Toby Breckon

Responsive image

Auto-TLDR; Exploiting Epipolar Constraints for Multi-View Object Detection in X-ray Security Images

Slides Poster Similar

Automatic detection for threat object items is an increasing emerging area of future application in X-ray security imagery. Although modern X-ray security scanners can provide two or more views, the integration of such object detectors across the views has not been widely explored with rigour. Therefore, we investigate the application of geometric constraints using the epipolar nature of multi-view imagery to improve object detection performance. Furthermore, we assume that images come from uncalibrated views, such that a method to estimate the fundamental matrix using ground truth bounding box centroids from multiple view object detection labels is proposed. In addition, detections are given a score based on its similarity with respect to the distribution of the error of the epipolar estimation. This score is used as confidence weights for merging duplicated predictions using non-maximum suppression. Using a standard object detector (YOLOv3), our technique increases the average precision of detection by 2.8% on a dataset composed of firearms, laptops, knives and cameras. These results indicate that the integration of images at different views significantly improves the detection performance of threat items of cluttered X-ray security images.

Photometric Stereo with Twin-Fisheye Cameras

Jordan Caracotte, Fabio Morbidi, El Mustapha Mouaddib

Responsive image

Auto-TLDR; Photometric stereo problem for low-cost 360-degree cameras

Slides Poster Similar

In this paper, we introduce and solve, for the first time, the photometric stereo problem for low-cost 360-degree cameras. In particular, we present a spherical image irradiance equation which is adapted to twin-fisheye cameras, and an original algorithm for the estimation of light directions based on the specular highlights observed on mirror balls. Extensive experiments with synthetic and real-world images captured by a Ricoh Theta V camera, demonstrate the effectiveness and robustness of the proposed 3D reconstruction pipeline. To foster reproducible research, the image dataset and code developed for this paper are made publicly available at the address: https://home.mis.u-picardie.fr/~fabio/PhotoSphere.html

Automatic Tuberculosis Detection Using Chest X-Ray Analysis with Position Enhanced Structural Information

Hermann Jepdjio Nkouanga, Szilard Vajda

Responsive image

Auto-TLDR; Automatic Chest X-ray Screening for Tuberculosis in Rural Population using Localized Region on Interest

Slides Poster Similar

For Tuberculosis (TB) detection beside the more expensive diagnosis solutions such as culture or sputum smear analysis one could consider the automatic analysis of the chest X-ray (CXR). This could mimic the lung region reading by the radiologist and it could provide a cheap solution to analyze and diagnose pulmonary abnormalities such as TB which often co- occurs with HIV. This software based pulmonary screening can be a reliable and affordable solution for rural population in different parts of the world such as India, Africa, etc. Our fully automatic system is processing the incoming CXR image by applying image processing techniques to detect the region on interest (ROI) followed by a computationally cheap feature extraction involving edge detection using Laplacian of Gaussian which we enrich by counting the local distribution of the intensities. The choice to ”zoom in” the ROI and look for abnormalities locally is motivated by the fact that some pulmonary abnormalities are localized in specific regions of the lungs. Later on the classifiers can decide about the normal or abnormal nature of each lung X-ray. Our goal is to find a simple feature, instead of a combination of several ones, -proposed and promoted in recent years’ literature, which can properly describe the different pathological alterations in the lungs. Our experiments report results on two publicly available data collections1, namely the Shenzhen and the Montgomery collection. For performance evaluation, measures such as area under the curve (AUC), and accuracy (ACC) were considered, achieving AUC = 0.81 (ACC = 83.33%) and AUC = 0.96 (ACC = 96.35%) for the Montgomery and Schenzen collections, respectively. Several comparisons are also provided to other state- of-the-art systems reported recently in the field.

Exploring Seismocardiogram Biometrics with Wavelet Transform

Po-Ya Hsu, Po-Han Hsu, Hsin-Li Liu

Responsive image

Auto-TLDR; Seismocardiogram Biometric Matching Using Wavelet Transform and Deep Learning Models

Slides Poster Similar

Seismocardiogram (SCG) has become easily accessible in the past decade owing to the advance of sensor technology. However, SCG biometric has not been widely explored. In this paper, we propose combining wavelet transform together with deep learning models, machine learning classifiers, or structural similarity metric to perform SCG biometric matching tasks. We validate the proposed methods on the publicly available dataset from PhysioNet database. The dataset contains one hour long electrocardiogram, breathing, and SCG data of 20 subjects. We train the models on the first five minute SCG and conduct identification on the last five minute SCG. We evaluate the identification and authentication performance with recognition rate and equal error rate, respectively. Based on the results, we show that wavelet transformed SCG biometric can achieve state-of-the-art performance when combined with deep learning models, machine learning classifiers, or structural similarity.

Rotational Adjoint Methods for Learning-Free 3D Human Pose Estimation from IMU Data

Caterina Emilia Agelide Buizza, Yiannis Demiris

Responsive image

Auto-TLDR; Learning-free 3D Human Pose Estimation from Inertial Measurement Unit Data

Poster Similar

We present a new framework for learning-free 3D human pose estimation from Inertial Measurement Unit (IMU) data. The proposed method does not rely on a full motion sequence to calculate a pose for any particular time point and thus can operate in real-time. A cost function based only on joint rotations is used, removing the need for frequent transformations between rotations and 3D Cartesian coordinates. A Jacobian that preserves skeleton structure is derived using Adjoint methods from Variational Data Assimilation. To facilitate further research in IMU-based Motion Capture, we provide a dataset that combines RGB and depth images from an Intel RealSense camera, marker-based motion capture from an Optitrack system and Xsens IMU data. We have evaluated our method on both our dataset and the Total Capture dataset, showing an average error across 24 joints of 0.45 and 0.48 radians respectively.

Quality-Based Representation for Unconstrained Face Recognition

Nelson Méndez-Llanes, Katy Castillo-Rosado, Heydi Mendez-Vazquez, Massimo Tistarelli

Responsive image

Auto-TLDR; activation map for face recognition in unconstrained environments

Slides Similar

Significant advances have been achieved in face recognition in the last decade thanks to the development of deep learning methods. However, recognizing faces captured in uncontrolled environments is still a challenging problem for the scientific community. In these scenarios, the performance of most of existing deep learning based methods abruptly falls, due to the bad quality of the face images. In this work, we propose to use an activation map to represent the quality information in a face image. Different face regions are analyzed to determine their quality and then only those regions with good quality are used to perform the recognition using a given deep face model. For experimental evaluation, in order to simulate unconstrained environments, three challenging databases, with different variations in appearance, were selected: the Labeled Faces in the Wild Database, the Celebrities in Frontal-Profile in the Wild Database, and the AR Database. Three deep face models were used to evaluate the proposal on these databases and in all cases, the use of the proposed activation map allows the improvement of the recognition rates obtained by the original models in a range from 0.3 up to 31%. The obtained results experimentally demonstrated that the proposal is able to select those face areas with higher discriminative power and enough identifying information, while ignores the ones with spurious information.

To Honor Our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII

Marc Cheong, Mark Alfano

Responsive image

Auto-TLDR; Obituaries of World War I and World War II: A Map of Values and Virtues attributed to Australian Military Personnel

Slides Poster Similar

Obituaries represent a prominent way of expressing the human universal of grief. According to philosophers, obituaries are a ritualized way of evaluating both individuals who have passed away and the communities that helped to shape them. The basic idea is that you can tell what it takes to count as a good person of a particular type in a particular community by seeing how persons of that type are described and celebrated in their obituaries. Obituaries of those killed in conflict, in particular, are rich repositories of communal values, as they reflect the values and virtues that are admired and respected in individuals who are considered to be heroes in their communities. In this paper, we use natural language processing techniques to map the patterns of values and virtues attributed to Australian military personnel who were killed in action during World War I and World War II. Doing so reveals several clusters of values and virtues that tend to be attributed together. In addition, we use named entity recognition and geotagging the track the movements of these soldiers to various theatres of the wars, including North Africa, Europe, and the Pacific.

3D Semantic Labeling of Photogrammetry Meshes Based on Active Learning

Mengqi Rong, Shuhan Shen, Zhanyi Hu

Responsive image

Auto-TLDR; 3D Semantic Expression of Urban Scenes Based on Active Learning

Slides Poster Similar

As different urban scenes are similar but still not completely consistent, coupled with the complexity of labeling directly in 3D, high-level understanding of 3D scenes has always been a tricky problem. In this paper, we propose a procedural approach for 3D semantic expression of urban scenes based on active learning. We first start with a small labeled image set to fine-tune a semantic segmentation network and then project its probability map onto a 3D mesh model for fusion, finally outputs a 3D semantic mesh model in which each facet has a semantic label and a heat model showing each facet’s confidence. Our key observation is that our algorithm is iterative, in each iteration, we use the output semantic model as a supervision to select several valuable images for annotation to co-participate in the fine-tuning for overall improvement. In this way, we reduce the workload of labeling but not the quality of 3D semantic model. Using urban areas from two different cities, we show the potential of our method and demonstrate its effectiveness.

Generic Merging of Structure from Motion Maps with a Low Memory Footprint

Gabrielle Flood, David Gillsjö, Patrik Persson, Anders Heyden, Kalle Åström

Responsive image

Auto-TLDR; A Low-Memory Footprint Representation for Robust Map Merge

Slides Poster Similar

With the development of cheap image sensors, the amount of available image data have increased enormously, and the possibility of using crowdsourced collection methods has emerged. This calls for development of ways to handle all these data. In this paper, we present new tools that will enable efficient, flexible and robust map merging. Assuming that separate optimisations have been performed for the individual maps, we show how only relevant data can be stored in a low memory footprint representation. We use these representations to perform map merging so that the algorithm is invariant to the merging order and independent of the choice of coordinate system. The result is a robust algorithm that can be applied to several maps simultaneously. The result of a merge can also be represented with the same type of low-memory footprint format, which enables further merging and updating of the map in a hierarchical way. Furthermore, the method can perform loop closing and also detect changes in the scene between the capture of the different image sequences. Using both simulated and real data — from both a hand held mobile phone and from a drone — we verify the performance of the proposed method.

How Important Are Faces for Person Re-Identification?

Julia Dietlmeier, Joseph Antony, Kevin Mcguinness, Noel E O'Connor

Responsive image

Auto-TLDR; Anonymization of Person Re-identification Datasets with Face Detection and Blurring

Slides Poster Similar

This paper investigates the dependence of existing state-of-the-art person re-identification models on the presence and visibility of human faces. We apply a face detection and blurring algorithm to create anonymized versions of several popular person re-identification datasets including Market1501, DukeMTMC-reID, CUHK03, Viper, and Airport. Using a cross-section of existing state-of-the-art models that range in accuracy and computational efficiency, we evaluate the effect of this anonymization on re-identification performance using standard metrics. Perhaps surprisingly, the effect on mAP is very small, and accuracy is recovered by simply training on the anonymized versions of the data rather than the original data. These findings are consistent across multiple models and datasets. These results indicate that datasets can be safely anonymized by blurring faces without significantly impacting the performance of person re-identification systems, and may allow for the release of new richer re-identification datasets where previously there were privacy or data protection concerns.

Robust Skeletonization for Plant Root Structure Reconstruction from MRI

Jannis Horn

Responsive image

Auto-TLDR; Structural reconstruction of plant roots from MRI using semantic root vs shoot segmentation and 3D skeletonization

Slides Poster Similar

Structural reconstruction of plant roots from MRI is challenging, because of low resolution and low signal-to-noise ratio of the 3D measurements which may lead to disconnectivities and wrongly connected roots. We propose a two-stage approach for this task. The first stage is based on semantic root vs. soil segmentation and finds lowest-cost paths from any root voxel to the shoot. The second stage takes the largest fully connected component generated in the first stage and uses 3D skeletonization to extract a graph structure. We evaluate our method on 22 MRI scans and compare to human expert reconstructions.

Detection of Makeup Presentation Attacks Based on Deep Face Representations

Christian Rathgeb, Pawel Drozdowski, Christoph Busch

Responsive image

Auto-TLDR; An Attack Detection Scheme for Face Recognition Using Makeup Presentation Attacks

Slides Poster Similar

Facial cosmetics have the ability to substantially alter the facial appearance, which can negatively affect the decisions of a face recognition. In addition, it was recently shown that the application of makeup can be abused to launch so-called makeup presentation attacks. In such attacks, the attacker might apply heavy makeup in order to achieve the facial appearance of a target subject for the purpose of impersonation. In this work, we assess the vulnerability of a COTS face recognition system to makeup presentation attacks employing the publicly available Makeup Induced Face Spoofing (MIFS) database. It is shown that makeup presentation attacks might seriously impact the security of the face recognition system. Further, we propose an attack detection scheme which distinguishes makeup presentation attacks from genuine authentication attempts by analysing differences in deep face representations obtained from potential makeup presentation attacks and corresponding target face images. The proposed detection system employs a machine learning-based classifier, which is trained with synthetically generated makeup presentation attacks utilizing a generative adversarial network for facial makeup transfer in conjunction with image warping. Experimental evaluations conducted using the MIFS database reveal a detection equal error rate of 0.7% for the task of separating genuine authentication attempts from makeup presentation attacks.

RISEdb: A Novel Indoor Localization Dataset

Carlos Sanchez Belenguer, Erik Wolfart, Álvaro Casado Coscollá, Vitor Sequeira

Responsive image

Auto-TLDR; Indoor Localization Using LiDAR SLAM and Smartphones: A Benchmarking Dataset

Slides Poster Similar

In this paper we introduce a novel public dataset for developing and benchmarking indoor localization systems. We have selected and 3D mapped a set of representative indoor environments including a large office building, a conference room, a workshop, an exhibition area and a restaurant. Our acquisition pipeline is based on a portable LiDAR SLAM backpack to map the buildings and to accurately track the pose of the user as it moves freely inside them. We introduce the calibration procedures that enable us to acquire and geo-reference live data coming from different independent sensors rigidly attached to the backpack. This has allowed us to collect long sequences of spherical and stereo images, together with all the sensor readings coming from a consumer smartphone and locate them inside the map with centimetre accuracy. The dataset addresses many of the limitations of existing indoor localization datasets regarding the scale and diversity of the mapped buildings; the number of acquired sequences under varying conditions; the accuracy of the ground-truth trajectory; the availability of a detailed 3D model and the availability of different sensor types. It enables the benchmarking of existing and the development of new indoor localization approaches, in particular for deep learning based systems that require large amounts of labeled training data.

NetCalib: A Novel Approach for LiDAR-Camera Auto-Calibration Based on Deep Learning

Shan Wu, Amnir Hadachi, Damien Vivet, Yadu Prabhakar

Responsive image

Auto-TLDR; Automatic Calibration of LiDAR and Cameras using Deep Neural Network

Slides Poster Similar

A fusion of LiDAR and cameras have been widely used in many robotics applications such as classification, segmentation, object detection, and autonomous driving. It is essential that the LiDAR sensor can measure distances accurately, which is a good complement to the cameras. Hence, calibrating sensors before deployment is a mandatory step. The conventional methods include checkerboards, specific patterns, or human labeling, which is trivial and human-labor extensive if we do the same calibration process every time. The main propose of this research work is to build a deep neural network that is capable of automatically finding the geometric transformation between LiDAR and cameras. The results show that our model manages to find the transformations from randomly sampled artificial errors. Besides, our work is open-sourced for the community to fully utilize the advances of the methodology for developing more the approach, initiating collaboration, and innovation in the topic.

Deep Gait Relative Attribute Using a Signed Quadratic Contrastive Loss

Yuta Hayashi, Shehata Allam, Yasushi Makihara, Daigo Muramatsu, Yasushi Yagi

Responsive image

Auto-TLDR; Signal-Contrastive Loss for Gait Attributes Estimation

Similar

This paper presents a deep learning-based method to estimate gait attributes (e.g., stately, cool, relax, etc.). Similarly to the existing studies on relative attribute, human perception-based annotations on the gait attributes are given to pairs of gait videos (i.e., the first one is better, tie, and the second one is better), and the relative annotations are utilized to train a ranking model of the gait attribute. More specifically, we design a Siamese (i.e., two-stream) network which takes a pair of gait inputs and output gait attribute score for each. We then introduce a suitable loss function called a signed contrastive loss to train the network parameters with the relative annotation. Unlike the existing loss functions for learning to rank does not inherent a nice property of a quadratic contrastive loss, the proposed signed quadratic contrastive loss function inherents the nice property. The quantitative evaluation results reveal that the proposed method shows better or comparable accuracies of relative attribute prediction against the baseline methods.

A Globally Optimal Method for the PnP Problem with MRP Rotation Parameterization

Manolis Lourakis, George Terzakis

Responsive image

Auto-TLDR; A Direct least squares, algebraic PnP solver with modified Rodrigues parameters

Poster Similar

The perspective-n-point (PnP) problem is of fundamental importance in computer vision. A global optimality condition for PnP that is independent of a particular rotation parameterization was recently developed by Nakano. This paper puts forward a direct least squares, algebraic PnP solution that extends Nakano's work by combining his optimality condition with the modified Rodrigues parameters (MRPs) for parameterizing rotation. The result is a system of polynomials that is solved using the Groebner basis approach. An MRP vector has twice the rotational range of the classical Rodrigues (i.e., Cayley) vector used by Nakano to represent rotation. The proposed solver provides strong guarantees that the full rotation singularity associated with MRPs is avoided. Furthermore, detailed experiments provide evidence that our solver attains accuracy that is indistinguishable from Nakano's Cayley-based solution with a moderate increase in computational cost.

Dependently Coupled Principal Component Analysis for Bivariate Inversion Problems

Navdeep Dahiya, Yifei Fan, Samuel Bignardi, Tony Yezzi, Romeil Sandhu

Responsive image

Auto-TLDR; Asymmetric Principal Component Analysis between Paired Data in an Asymmetric manner

Slides Poster Similar

Principal Component Analysis (PCA) is a widely used technique for dimensionality reduction in various problem domains including data compression, image processing, visualization, exploratory data analysis, pattern recognition, time series prediction and machine learning. Often, data is presented in a correlated paired manner such there exists observable and correlated unobservable measurements. Unfortunately, traditional PCA techniques generally fail to optimally capture the leverageable correlations between such paired data as it does not yield a maximally correlated basis between the observable and unobservable counterparts. This instead is the objective of Canonical Correlation Analysis (and the more general Partial Least Squares methods); however, such techniques are still symmetric in maximizing correlation (covariance for PLSR) over all choices of basis for both datasets without differentiating between observable and unobservable variables (except for the regression phase of PLSR). Further, these methods deviate from PCA's formulation objective to minimize approximation error, seeking instead to maximize correlation or covariance. While these are sensible optimization objectives, they are not equivalent to error minimization. We therefore introduce a new method of leveraging PCA between paired datasets in an asymmetric manner which is optimal with respect to approximation error during training. We generate an asymmetrically paired basis for which we relax orthogonality constraints on the orthogonality in decomposing unreliable unobservable measurements. In doing so, this allows us to optimally capture the variations of the observable data while conditionally minimizing the expected prediction error for the unobservable component. We show preliminary results that demonstrate improved learning of our proposed method compared to that of traditional techniques.

Attack-Agnostic Adversarial Detection on Medical Data Using Explainable Machine Learning

Matthew Watson, Noura Al Moubayed

Responsive image

Auto-TLDR; Explainability-based Detection of Adversarial Samples on EHR and Chest X-Ray Data

Slides Poster Similar

Explainable machine learning has become increasingly prevalent, especially in healthcare where explainable models are vital for ethical and trusted automated decision making. Work on the susceptibility of deep learning models to adversarial attacks has shown the ease of designing samples to mislead a model into making incorrect predictions. In this work, we propose an explainability-based method for the accurate detection of adversarial samples on two datasets with different complexity and properties: Electronic Health Record (EHR) and chest X-ray (CXR) data. On the MIMIC-III and Henan-Renmin EHR datasets, we report a detection accuracy of 77% against the Longitudinal Adversarial Attack. On the MIMIC-CXR dataset, we achieve an accuracy of 88%; significantly improving on the state of the art of adversarial detection in both datasets by over 10% in all settings. We propose an anomaly detection based method using explainability techniques to detect adversarial samples which is able to generalise to different attack methods without a need for retraining.

Total Estimation from RGB Video: On-Line Camera Self-Calibration, Non-Rigid Shape and Motion

Antonio Agudo

Responsive image

Auto-TLDR; Joint Auto-Calibration, Pose and 3D Reconstruction of a Non-rigid Object from an uncalibrated RGB Image Sequence

Slides Poster Similar

In this paper we present a sequential approach to jointly retrieve camera auto-calibration, camera pose and the 3D reconstruction of a non-rigid object from an uncalibrated RGB image sequence, without assuming any prior information about the shape structure, nor the need for a calibration pattern, nor the use of training data at all. To this end, we propose a Bayesian filtering approach based on a sum-of-Gaussians filter composed of a bank of extended Kalman filters (EKF). For every EKF, we make use of dynamic models to estimate its state vector, which later will be Gaussianly combined to achieve a global solution. To deal with deformable objects, we incorporate a mechanical model solved by using the finite element method. Thanks to these ingredients, the resulting method is both efficient and robust to several artifacts such as missing and noisy observations as well as sudden camera motions, while being available for a wide variety of objects and materials, including isometric and elastic shape deformations. Experimental validation is proposed in real experiments, showing its strengths with respect to competing approaches.

Quantization in Relative Gradient Angle Domain for Building Polygon Estimation

Yuhao Chen, Yifan Wu, Linlin Xu, Alexander Wong

Responsive image

Auto-TLDR; Relative Gradient Angle Transform for Building Footprint Extraction from Remote Sensing Data

Slides Poster Similar

Building footprint extraction in remote sensing data benefits many important applications, such as urban planning and population estimation. Recently, rapid development of Convolutional Neural Networks (CNNs) and open-sourced high resolution satellite building image datasets have pushed the performance boundary further for automated building extractions. However, CNN approaches often generate imprecise building morphologies including noisy edges and round corners. In this paper, we leverage the performance of CNNs, and propose a module that uses prior knowledge of building corners to create angular and concise building polygons from CNN segmentation outputs. We describe a new transform, Relative Gradient Angle Transform (RGA Transform) that converts object contours from time vs. space to time vs. angle. We propose a new shape descriptor, Boundary Orientation Relation Set (BORS), to describe angle relationship between edges in RGA domain, such as orthogonality and parallelism. Finally, we develop an energy minimization framework that makes use of the angle relationship in BORS to straighten edges and reconstruct sharp corners, and the resulting corners create a polygon. Experimental results demonstrate that our method refines CNN output from a rounded approximation to a more clear-cut angular shape of the building footprint.