Gender Classification Using Video Sequences of Body Sway Recorded by Overhead Camera

Takuya Kamitani, Yuta Yamaguchi, Shintaro Nakatani, Masashi Nishiyama, Yoshio Iwai

Responsive image

Auto-TLDR; Spatio-Temporal Feature for Gender Classification of a Standing Person Using Body Stance Using Time-Series Signals

Slides Poster

We investigate whether it is possible to classify the gender of a standing person based on a video sequence containing body sway recorded by an overhead camera.Existing methods that extract a feature from the movement of a walking person for gender classification cannot detect the slight movements of a standing person.In this paper,we propose a method for extracting a feature from the body sway of a standing person. We design a spatio-temporal feature for representing body sway using the frequency analysis of time-series signals derived from the local movements of the upper body.To evaluate the accuracy of our method, we acquired video sequences of body sway from 30 females and 30 males using an overhead camera.We found that our method obtained 90.3% accuracy for the gender classification of a standing person. We compared the accuracy of our method with that of parameters based on medical data.We found that the proposed spatio-temporal feature extracted from body sway significantly improved gender classification accuracy.

Similar papers

Weight Estimation from an RGB-D Camera in Top-View Configuration

Marco Mameli, Marina Paolanti, Nicola Conci, Filippo Tessaro, Emanuele Frontoni, Primo Zingaretti

Responsive image

Auto-TLDR; Top-View Weight Estimation using Deep Neural Networks

Slides Poster Similar

The development of so-called soft-biometrics aims at providing information related to the physical and behavioural characteristics of a person. This paper focuses on bodyweight estimation based on the observation from a top-view RGB-D camera. In fact, the capability to estimate the weight of a person can be of help in many different applications, from health-related scenarios to business intelligence and retail analytics. To deal with this issue, a TVWE (Top-View Weight Estimation) framework is proposed with the aim of predicting the weight. The approach relies on the adoption of Deep Neural Networks (DNNs) that have been trained on depth data. Each network has also been modified in its top section to replace classification with prediction inference. The performance of five state-of-art DNNs has been compared, namely VGG16, ResNet, Inception, DenseNet and Efficient-Net. In addition, a convolutional auto-encoder has also been included for completeness. Considering the limited literature in this domain, the TVWE framework has been evaluated on a new publicly available dataset: “VRAI Weight estimation Dataset”, which also collects, for each subject, labels related to weight, gender, and height. The experimental results have demonstrated that the proposed methods are suitable for this task, bringing different and significant insights for the application of the solution in different domains.

Extracting and Interpreting Unknown Factors with Classifier for Foot Strike Types in Running

Chanjin Seo, Masato Sabanai, Yuta Goto, Koji Tagami, Hiroyuki Ogata, Kazuyuki Kanosue, Jun Ohya

Responsive image

Auto-TLDR; Deep Learning for Foot Strike Classification using Accelerometer Data

Slides Poster Similar

This paper proposes a method that can classify foot strike types using a deep learning model and can extract unknown factors, which enables to evaluate running motions without being influenced by biases of sports experts, using the contribution degree of input values (CDIV). Accelerometers are attached to the runner’s body, and when the runner runs, a fixed camera observes the runner and acquires a video sequence synchronously with the accelerometers. To train a deep learning model for classifying foot strikes, we annotate foot strike acceleration data for RFS (Rearfoot strike) or non-RFS objectively by watching the video. To interpret the unknown factors extracted from the learned model, we calculate two CDIVs: the contributions of the resampling time and the accelerometer value to the output (foot strike type) . Experiments on classifying unknown runners’ foot strikes were conducted. As a common result to sport science, it is confirmed that the CDIVs contribute highly at the time of the right foot strike, and the sensor values corresponding to the right and left tibias contribute highly to classifying the foot strikes. Experimental results show the right tibia is important for classifying foot strikes. This is because many of the training data represent difference between the two foot strikes in the right tibia. As a conclusion, our proposed method could extract unknown factors from the classifier and could interpret the factors that contain similar knowledge to the prior knowledge of experts, as well as new findings that are not included in conventional knowledge.

Deep Gait Relative Attribute Using a Signed Quadratic Contrastive Loss

Yuta Hayashi, Shehata Allam, Yasushi Makihara, Daigo Muramatsu, Yasushi Yagi

Responsive image

Auto-TLDR; Signal-Contrastive Loss for Gait Attributes Estimation

Similar

This paper presents a deep learning-based method to estimate gait attributes (e.g., stately, cool, relax, etc.). Similarly to the existing studies on relative attribute, human perception-based annotations on the gait attributes are given to pairs of gait videos (i.e., the first one is better, tie, and the second one is better), and the relative annotations are utilized to train a ranking model of the gait attribute. More specifically, we design a Siamese (i.e., two-stream) network which takes a pair of gait inputs and output gait attribute score for each. We then introduce a suitable loss function called a signed contrastive loss to train the network parameters with the relative annotation. Unlike the existing loss functions for learning to rank does not inherent a nice property of a quadratic contrastive loss, the proposed signed quadratic contrastive loss function inherents the nice property. The quantitative evaluation results reveal that the proposed method shows better or comparable accuracies of relative attribute prediction against the baseline methods.

Part-Based Collaborative Spatio-Temporal Feature Learning for Cloth-Changing Gait Recognition

Lingxiang Yao, Worapan Kusakunniran, Qiang Wu, Jian Zhang, Jingsong Xu

Responsive image

Auto-TLDR; Part-based Spatio-Temporal Feature Learning for Gait Recognition

Slides Poster Similar

In decades many gait recognition methods have been proposed using different techniques. However, due to a real-world scenario of clothing variations, a reduction of the recognition rate occurs for most of these methods. Thus in this paper, a part-based spatio-temporal feature learning method is proposed to tackle the problem of clothing variations for gait recognition. First, based~on the anatomical properties, human bodies are segmented into two regions, which are affected and unaffected by clothing variations. A learning network is particularly proposed in this paper to grasp principal spatio-temporal features from those unaffected regions. Different from most part-based methods with spatial or temporal features solely being utilized, in our method these two features~are associated in a more collaborative manner. Snapshots are created for each gait sequence from the H-W and T-W views. Stable spatial information is embedded in the H-W view and~adequate temporal information is embedded in the T-W view. An inherent relationship exists between these two views. Thus, a collaborative spatio-temporal feature will be hybridized by concatenating these correlative spatial and temporal information. The robustness and efficiency of our proposed method are validated by experiments on CASIA Gait Dataset B and OU-ISIR Treadmill Gait Dataset~B. Our proposed method can both achieve the state-of-the-art results on these two databases.

Vision-Based Multi-Modal Framework for Action Recognition

Djamila Romaissa Beddiar, Mourad Oussalah, Brahim Nini

Responsive image

Auto-TLDR; Multi-modal Framework for Human Activity Recognition Using RGB, Depth and Skeleton Data

Slides Poster Similar

Human activity recognition plays a central role in the development of intelligent systems for video surveillance, public security, health care and home monitoring, where detection and recognition of activities can improve the quality of life and security of humans. Typically, automated, intuitive and real-time systems are required to recognize human activities and identify accurately unusual behaviors in order to prevent dangerous situations. In this work, we explore the combination of three modalities (RGB, depth and skeleton data) to design a robust multi-modal framework for vision-based human activity recognition. Especially, spatial information, body shape/posture and temporal evolution of actions are highlighted using illustrative representations obtained from a combination of dynamic RGB images, dynamic depth images and skeleton data representations. Therefore, each video is represented with three images that summarize the ongoing action. Our framework takes advantage of transfer learning from pre trained models to extract significant features from these newly created images. Next, we fuse extracted features using Canonical Correlation Analysis and train a Long Short-Term Memory network to classify actions from visual descriptive images. Experimental results demonstrated the reliability of our feature-fusion framework that allows us to capture highly significant features and enables us to achieve the state-of-the-art performance on the public UTD-MHAD and NTU RGB+D datasets.

Attribute-Based Quality Assessment for Demographic Estimation in Face Videos

Fabiola Becerra-Riera, Annette Morales-González, Heydi Mendez-Vazquez, Jean-Luc Dugelay

Responsive image

Auto-TLDR; Facial Demographic Estimation in Video Scenarios Using Quality Assessment

Slides Similar

Most existing works regarding facial demographic estimation are focused on still image datasets, although nowadays the need to analyze video content in real applications is increasing. We propose to tackle gender, age and ethnicity estimation in the context of video scenarios. Our main contribution is to use an attribute-specific quality assessment procedure to select best quality frames from a video sequence for each of the three demographic modalities. Best quality frames are classified with fine-tuned MobileNet models and a final video prediction is obtained with a majority voting strategy among the best selected frames. Our validation on three different datasets and our comparison with state-of-the-art models, show the effectiveness of the proposed demographic classifiers and the quality pipeline, which allows to reduce both: the number of frames to be classified and the processing time in practical applications; and improves the soft biometrics prediction accuracy.

Video Analytics Gait Trend Measurement for Fall Prevention and Health Monitoring

Lawrence O'Gorman, Xinyi Liu, Md Imran Sarker, Mariofanna Milanova

Responsive image

Auto-TLDR; Towards Health Monitoring of Gait with Deep Learning

Slides Poster Similar

We design a video analytics system to measure gait over time and detect trend and outliers in the data. The purpose is for health monitoring, the thesis being that trend especially can lead to early detection of declining health and be used to prevent accidents such as falls in the elderly. We use the OpenPose deep learning tool for recognizing the back and neck angle features of walking people, and measure speed as well. Trend and outlier statistics are calculated upon time series of these features. A challenge in this work is lack of testing data of decaying gait. We first designed experiments to measure consistency of the system on a healthy population, then analytically altered this real data to simulate gait decay. Results on about 4000 gait samples of 50 people over 3 months showed good separation of healthy gait subjects from those with trend or outliers, and furthermore the trend measurement was able to detect subtle decay in gait not easily discerned by the human eye.

Gait Recognition Using Multi-Scale Partial Representation Transformation with Capsules

Alireza Sepas-Moghaddam, Saeed Ghorbani, Nikolaus F. Troje, Ali Etemad

Responsive image

Auto-TLDR; Learning to Transfer Multi-scale Partial Gait Representations using Capsule Networks for Gait Recognition

Slides Poster Similar

Gait recognition, referring to the identification of individuals based on the manner in which they walk, can be very challenging due to the variations in the viewpoint of the camera and the appearance of individuals. Current state-of-the-art methods for gait recognition have been dominated by deep learning models, notably those based on partial feature representations. In this context, we propose a novel deep network, learning to transfer multi-scale partial gait representations using capsules to obtain more discriminative gait features. Our network first obtains multi-scale partial representations using a state-of-the-art deep partial feature extractor. It then recurrently learns the correlations and co-occurrences of the patterns among the partial features in forward and backward directions using a Bi-directional Gated Recurrent Units (BGRU). Finally, a capsule network is adopted to learn deeper part-whole relationships and assigns more weights to the more relevant features while ignoring the spurious dimensions, thus obtaining final features that are more robust to both viewing and appearance changes. The performance of our method has been extensively tested on two gait recognition datasets, CASIA-B and OU-MVLP, using four challenging test protocols. The results of our method have been compared to the state-of-the-art gait recognition solutions, showing the superiority of our model, notably when facing challenging viewing and carrying conditions.

Depth Videos for the Classification of Micro-Expressions

Ankith Jain Rakesh Kumar, Bir Bhanu, Christopher Casey, Sierra Cheung, Aaron Seitz

Responsive image

Auto-TLDR; RGB-D Dataset for the Classification of Facial Micro-expressions

Slides Poster Similar

Facial micro-expressions are spontaneous, subtle, involuntary muscle movements occurring briefly on the face. The spotting and recognition of these expressions are difficult due to the subtle behavior, and the time duration of these expressions is about half a second, which makes it difficult for humans to identify them. These micro-expressions have many applications in our daily life, such as in the field of online learning, game playing, lie detection, and therapy sessions. Traditionally, researchers use RGB images/videos to spot and classify these micro-expressions, which pose challenging problems, such as illumination, privacy concerns and pose variation. The use of depth videos solves these issues to some extent, as the depth videos are not susceptible to the variation in illumination. This paper describes the collection of a first RGB-D dataset for the classification of facial micro-expressions into 6 universal expressions: Anger, Happy, Sad, Fear, Disgust, and Surprise. This paper shows the comparison between the RGB and Depth videos for the classification of facial micro-expressions. Further, a comparison of results shows that depth videos alone can be used to classify facial micro-expressions correctly in a decision tree structure by using the traditional and deep learning approaches with good classification accuracy. The dataset will be released to the public in the near future.

Electroencephalography Signal Processing Based on Textural Features for Monitoring the Driver’s State by a Brain-Computer Interface

Giulia Orrù, Marco Micheletto, Fabio Terranova, Gian Luca Marcialis

Responsive image

Auto-TLDR; One-dimensional Local Binary Pattern Algorithm for Estimating Driver Vigilance in a Brain-Computer Interface System

Slides Poster Similar

In this study we investigate a textural processing method of electroencephalography (EEG) signal as an indicator to estimate the driver's vigilance in a hypothetical Brain-Computer Interface (BCI) system. The novelty of the solution proposed relies on employing the one-dimensional Local Binary Pattern (1D-LBP) algorithm for feature extraction from pre-processed EEG data. From the resulting feature vector, the classification is done according to three vigilance classes: awake, tired and drowsy. The claim is that the class transitions can be detected by describing the variations of the micro-patterns' occurrences along the EEG signal. The 1D-LBP is able to describe them by detecting mutual variations of the signal temporarily "close" as a short bit-code. Our analysis allows to conclude that the 1D-LBP adoption has led to significant performance improvement. Moreover, capturing the class transitions from the EEG signal is effective, although the overall performance is not yet good enough to develop a BCI for assessing the driver's vigilance in real environments.

A Detection-Based Approach to Multiview Action Classification in Infants

Carolina Pacheco, Effrosyni Mavroudi, Elena Kokkoni, Herbert Tanner, Rene Vidal

Responsive image

Auto-TLDR; Multiview Action Classification for Infants in a Pediatric Rehabilitation Environment

Slides Similar

Activity recognition in children and infants is important in applications such as safety monitoring, behavior assessment, and child-robot interaction, among others. However, it differs from activity recognition in adults not only because body poses and proportions are different, but also because of the way in which actions are performed. This paper addresses the problem of infant action classification (up to 2 years old) in challenging conditions. The actions are performed in a pediatric rehabilitation environment in which not only infants but also robots and adults are present, with the infant being one of the smallest actors in the scene. We propose a multiview action classification system based on Faster R-CNN and LSTM networks, which fuses information from different views by using learnable fusion coefficients derived from detection confidence scores. The proposed system is view-independent, learns features that are close to view-invariant, and can handle new or missing views at test time. Our approach outperforms the state-of-the-art baseline model for this dataset by 11.4% in terms of average classification accuracy in four classes (crawl, sit, stand and walk). Moreover, experiments in a extended dataset from 6 subjects (8 to 24 months old) show that the proposed fusion strategy outperforms the best post-processing fusion strategy by 2.5% and 6.8% average classification accuracy in Leave One Super-session Out and Leave One Subject Out cross-validation, respectively.

Exploring Spatial-Temporal Representations for fNIRS-based Intimacy Detection via an Attention-enhanced Cascade Convolutional Recurrent Neural Network

Chao Li, Qian Zhang, Ziping Zhao

Responsive image

Auto-TLDR; Intimate Relationship Prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network Using Functional Near-Infrared Spectroscopy

Slides Poster Similar

The detection of intimacy plays a crucial role in the improvement of intimate relationship, which contributes to promote the family and social harmony. Previous studies have shown that different degrees of intimacy have significant differences in brain imaging. Recently, a few of work has emerged to recognise intimacy automatically by using machine learning technique. Moreover, considering the temporal dynamic characteristics of intimacy relationship on neural mechanism, how to model spatio-temporal dynamics for intimacy prediction effectively is still a challenge. In this paper, we propose a novel method to explore deep spatial-temporal representations for intimacy prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network (ACCRNN). Given the advantages of time-frequency resolution in complex neuronal activities analysis, this paper utilizes functional near-infrared spectroscopy (fNIRS) to analyse and infer to intimate relationship. We collect a fNIRS-based dataset for the analysis of intimate relationship. Forty-two-channel fNIRS signals are recorded from the 44 subjects' prefrontal cortex when they watched a total of 18 photos of lovers, friends and strangers for 30 seconds per photo. The experimental results show that our proposed method outperforms the others in terms of accuracy with the precision of 96.5%. To the best of our knowledge, this is the first time that such a hybrid deep architecture has been employed for fNIRS-based intimacy prediction.

Audio-Video Detection of the Active Speaker in Meetings

Francisco Madrigal, Frederic Lerasle, Lionel Pibre, Isabelle Ferrané

Responsive image

Auto-TLDR; Active Speaker Detection with Visual and Contextual Information from Meeting Context

Slides Poster Similar

Meetings are a common activity that provides certain challenges when creating systems that assist them. Such is the case of the Active speaker detection, which can provide useful information for human interaction modeling, or human-robot interaction. Active speaker detection is mostly done using speech, however, certain visual and contextual information can provide additional insights. In this paper we propose an active speaker detection framework that integrates audiovisual features with social information, from the meeting context. Visual cue is processed using a Convolutional Neural Network (CNN) that captures the spatio-temporal relationships. We analyze several CNN architectures with both cues: raw pixels (RGB images) and motion (estimated with optical flow). Contextual reasoning is done with an original methodology, based on the gaze of all participants. We evaluate our proposal with a public \textcolor{black}{benchmark} in state-of-art: AMI corpus. We show how the addition of visual and context information improves the performance of the active speaker detection.

Fall Detection by Human Pose Estimation and Kinematic Theory

Vincenzo Dentamaro, Donato Impedovo, Giuseppe Pirlo

Responsive image

Auto-TLDR; A Decision Support System for Automatic Fall Detection on Le2i and URFD Datasets

Slides Poster Similar

In a society with increasing age, the understanding of human falls it is of paramount importance. This paper presents a Decision Support System whose pipeline is designed to extract and compute physical domain’s features achieving the state of the art accuracy on the Le2i and UR fall detection datasets. The paper uses the Kinematic Theory of Rapid Human Movement and its sigma-lognormal model together with classic physical features to achieve 98% and 99% of accuracy in automatic fall detection on respectively Le2i and URFD datasets. The effort made in the design of this work is toward recognition of falls by using physical models whose laws are clear and understandable.

Pose-Based Body Language Recognition for Emotion and Psychiatric Symptom Interpretation

Zhengyuan Yang, Amanda Kay, Yuncheng Li, Wendi Cross, Jiebo Luo

Responsive image

Auto-TLDR; Body Language Based Emotion Recognition for Psychiatric Symptoms Prediction

Slides Poster Similar

Inspired by the human ability to infer emotions from body language, we propose an automated framework for body language based emotion recognition starting from regular RGB videos. In collaboration with psychologists, we further extend the framework for psychiatric symptom prediction. Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set and possess a good transferability. The proposed system in the first stage generates sequences of body language predictions based on human poses estimated from input videos. In the second stage, the predicted sequences are fed into a temporal network for emotion interpretation and psychiatric symptom prediction. We first validate the accuracy and transferability of the proposed body language recognition method on several public action recognition datasets. We then evaluate the framework on a proposed URMC dataset, which consists of conversations between a standardized patient and a behavioral health professional, along with expert annotations of body language, emotions, and potential psychiatric symptoms. The proposed framework outperforms other methods on the URMC dataset.

A Grid-Based Representation for Human Action Recognition

Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Responsive image

Auto-TLDR; GRAR: Grid-based Representation for Action Recognition in Videos

Slides Poster Similar

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

JT-MGCN: Joint-Temporal Motion Graph Convolutional Network for Skeleton-Based Action Recognition

Suekyeong Nam, Seungkyu Lee

Responsive image

Auto-TLDR; Joint-temporal Motion Graph Convolutional Networks for Action Recognition

Slides Similar

Recently, action recognition methods using graph convolutional networks (GCN) have shown remarkable performance thanks to its concise but effective representation of human body motion. Prior methods construct human body motion graph building edges between neighbor or distant body joints. On the other hand, human action contains lots of temporal variations showing strong temporal correlations between joint motions. Thus the characterization of an action requires a comprehensive analysis of joint motion correlations on spatial and temporal domains. In this paper, we propose Joint-temporal Motion Graph Convolutional Networks (JT-MGCN) in which joint-temporal edges learn the correlations between different joints at different time. Experimental evaluation on large public data sets such as NTU rgb+d data set and kinetics-skeleton data set show outstanding action recognition performance.

A Duplex Spatiotemporal Filtering Network for Video-Based Person Re-Identification

Chong Zheng, Ping Wei, Nanning Zheng

Responsive image

Auto-TLDR; Duplex Spatiotemporal Filtering Network for Person Re-identification in Videos

Slides Poster Similar

Video-based person re-identification plays important roles in surveillance video analysis. This paper proposes a novel Duplex Spatiotemporal Filtering Network (DSFN) to re-identify persons in videos. A video sequence is represented as a duplex spatiotemporal matrix. DSFN model containing a group of filters performs filtering at feature level in both temporal and spatial dimensions, by which the model focuses on feature-level semantic information rather than image-level information as in the traditional filters. We propose sparse-orthogonal constraints to enforce the model to extract more discriminative features. DSFN characterizes not only the appearance features but also dynamic information such as gaits embedded in video sequences and obtains a better performance as a result. Experiments show that the proposed method outperforms state-of-the-art approaches.

Translation Resilient Opportunistic WiFi Sensing

Mohammud Junaid Bocus, Wenda Li, Jonas Paulavičius, Ryan Mcconville, Raul Santos-Rodriguez, Kevin Chetty, Robert Piechocki

Responsive image

Auto-TLDR; Activity Recognition using Fine-Grained WiFi Channel State Information using WiFi CSI

Slides Poster Similar

Passive wireless sensing using WiFi signals has become a very active area of research over the past few years. Such techniques provide a cost-effective and non-intrusive solution for human activity sensing especially in healthcare applications. One of the main approaches used in wireless sensing is based on fine-grained WiFi Channel State Information (CSI) which can be extracted from commercial Network Interface Cards (NICs). In this paper, we present a new signal processing pipelines required for effective wireless sensing. An experiment involving five participants performing six different activities was carried out in an office space to evaluate the performance of activity recognition using WiFi CSI in different physical layouts. Experimental results show that the CSI system has the best detection performance when activities are performed half-way in between the transmitter and receiver in a line-of-sight (LoS) setting. In this case, an accuracy as high as 91% is achieved while the accuracy for the case where the transmitter and receiver are co-located is around 62%. As for the case when data from all layouts is combined, which better reflects the real-world scenario, the accuracy is around 67%. The results showed that the activity detection performance is dependent not only on the locations of the transmitter and receiver but also on the positioning of the person performing the activity.

RWF-2000: An Open Large Scale Video Database for Violence Detection

Ming Cheng, Kunjing Cai, Ming Li

Responsive image

Auto-TLDR; Flow Gated Network for Violence Detection in Surveillance Cameras

Slides Poster Similar

In recent years, surveillance cameras are widely deployed in public places, and the general crime rate has been reduced significantly due to these ubiquitous devices. Usually, these cameras provide cues and evidence after crimes were conducted, while they are rarely used to prevent or stop criminal activities in time. It is both time and labor consuming to manually monitor a large amount of video data from surveillance cameras. Therefore, automatically recognizing violent behaviors from video signals becomes essential. In this paper, we summarize several existing video datasets for violence detection and propose a new video dataset with 2,000 videos all captured by surveillance cameras in real-world scenes. Also, we present a new method that utilizes both the merits of 3D-CNNs and optical flow, namely Flow Gated Network. The proposed approach obtains an accuracy of 87.25% on the test set of our proposed RWF-2000 database. The proposed database and source codes of this paper are currently open to access.

Estimation of Clinical Tremor Using Spatio-Temporal Adversarial AutoEncoder

Li Zhang, Vidya Koesmahargyo, Isaac Galatzer-Levy

Responsive image

Auto-TLDR; ST-AAE: Spatio-temporal Adversarial Autoencoder for Clinical Assessment of Hand Tremor Frequency and Severity

Slides Poster Similar

Collecting sufficient well-labeled training data is a challenging task in many clinical applications. Besides the tremendous efforts required for data collection, clinical assessments are also impacted by raters’ variabilities, which may be significant even among experienced clinicians. The high demands of reproducible and scalable data-driven approaches in these areas necessitates relevant research on learning with limited data. In this work, we propose a spatio-temporal adversarial autoencoder (ST-AAE) for clinical assessment of hand tremor frequency and severity. The ST-AAE integrates spatial and temporal information simultaneously into the original AAE, taking optical flows as inputs. Using only optical flows, irrelevant background or static objects from RGB frames are largely eliminated, so that the AAE is directed to effectively learn key feature representations of the latent space from tremor movements. The ST-AAE was evaluated with both volunteer and clinical data. The volunteer results showed that the ST-AAE improved model performance significantly by 15% increase on accuracy. Leave-one-out (on subjects) cross validation was used to evaluate the accuracy for all the 3068 video segments from 28 volunteers. The weighted average of the AUCs of ROCs is 0.97. The results demonstrated that the ST-AAE model, trained with a small number of subjects, can be generalized well to different subjects. In addition, the model trained only by volunteer data was also evaluated with 32 clinical videos from 9 essential tremor patients, the model predictions correlate well with the clinical ratings: correlation coefficient r = 0.91 and 0.98 for in-person ratings and video watching ratings, respectively.

Classifying Eye-Tracking Data Using Saliency Maps

Shafin Rahman, Sejuti Rahman, Omar Shahid, Md. Tahmeed Abdullah, Jubair Ahmed Sourov

Responsive image

Auto-TLDR; Saliency-based Feature Extraction for Automatic Classification of Eye-tracking Data

Slides Poster Similar

A plethora of research in the literature shows how human eye fixation pattern varies depending on different factors, including genetics, age, social functioning, cognitive functioning, and so on. Analysis of these variations in visual attention has already elicited two potential research avenues: 1) determining the physiological or psychological state of the subject and 2) predicting the tasks associated with the act of viewing from the recorded eye-fixation data. To this end, this paper proposes a visual saliency based novel feature extraction method for automatic and quantitative classification of eye-tracking data, which is applicable to both of the research directions. Instead of directly extracting features from the fixation data, this method employs several well-known computational models of visual attention to predict eye fixation locations as saliency maps. Comparing the saliency amplitudes, similarity and dissimilarity of saliency maps with the corresponding eye fixations maps gives an extra dimension of information which is effectively utilized to generate discriminative features to classify the eye-tracking data. Extensive experimentation using Saliency4ASD [1], Age Prediction [2], and Visual Perceptual Task [3] dataset show that our saliency-based feature can achieve superior performance, outperforming the previous state-of-the-art methods [2],[4], [5] by a considerable margin. Moreover, unlike the existing application-specific solutions, our method demonstrates performance improvement across three distinct problems from the real-life domain: Autism Spectrum Disorder screening, toddler age prediction, and human visual perceptual task classification, providing a general paradigm that utilizes the extra-information inherent in saliency maps for a more accurate classification.

Space-Time Domain Tensor Neural Networks: An Application on Human Pose Classification

Konstantinos Makantasis, Athanasios Voulodimos, Anastasios Doulamis, Nikolaos Doulamis, Nikolaos Bakalos

Responsive image

Auto-TLDR; Tensor-Based Neural Network for Spatiotemporal Pose Classifiaction using Three-Dimensional Skeleton Data

Slides Poster Similar

Recent advances in sensing technologies require the design and development of pattern recognition models capable of processing spatiotemporal data efficiently. In this study, we propose a spatially and temporally aware tensor-based neural network for human pose classifiaction using three-dimensional skeleton data. Our model employs three novel components. First, an input layer capable of constructing highly discriminative spatiotemporal features. Second, a tensor fusion operation that produces compact yet rich representations of the data, and third, a tensor-based neural network that processes data representations in their original tensor form. Our model is end-to-end trainable and characterized by a small number of trainable parameters making it suitable for problems where the annotated data is limited. Experimental evaluation of the proposed model indicates that it can achieve state-of-the-art performance.

Anticipating Activity from Multimodal Signals

Tiziana Rotondo, Giovanni Maria Farinella, Davide Giacalone, Sebastiano Mauro Strano, Valeria Tomaselli, Sebastiano Battiato

Responsive image

Auto-TLDR; Exploiting Multimodal Signal Embedding Space for Multi-Action Prediction

Slides Poster Similar

Images, videos, audio signals, sensor data, can be easily collected in huge quantity by different devices and processed in order to emulate the human capability of elaborating a variety of different stimuli. Are multimodal signals useful to understand and anticipate human actions if acquired from the user viewpoint? This paper proposes to build an embedding space where inputs of different nature, but semantically correlated, are projected in a new representation space and properly exploited to anticipate the future user activity. To this purpose, we built a new multimodal dataset comprising video, audio, tri-axial acceleration, angular velocity, tri-axial magnetic field, pressure and temperature. To benchmark the proposed multimodal anticipation challenge, we consider classic classifiers on top of deep learning methods used to build the embedding space representing multimodal signals. The achieved results show that the exploitation of different modalities is useful to improve the anticipation of the future activity.

User-Independent Gaze Estimation by Extracting Pupil Parameter and Its Mapping to the Gaze Angle

Sang Yoon Han, Nam Ik Cho

Responsive image

Auto-TLDR; Gaze Point Estimation using Pupil Shape for Generalization

Slides Poster Similar

Since gaze estimation plays a crucial role in recognizing human intentions, it has been researched for a long time, and its accuracy is ever increasing. However, due to the wide variation in eye shapes and focusing abilities between the individuals, accuracies of most algorithms vary depending on each person in the test group, especially when the initial calibration is not well performed. To alleviate the user-dependency, we attempt to derive features that are general for most people and use them as the input to a deep network instead of using the images as the input. Specifically, we use the pupil shape as the core feature because it is directly related to the 3D eyeball rotation, and thus the gaze direction. While existing deep learning methods learn the gaze point by extracting various features from the image, we focus on the mapping function from the eyeball rotation to the gaze point by using the pupil shape as the input. It is shown that the accuracy of gaze point estimation also becomes robust for the uncalibrated points by following the characteristics of the mapping function. Also, our gaze network learns the gaze difference to facilitate the re-calibration process to fix the calibration-drift problem that typically occurs with glass-type or head-mount devices.

Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Nina Weng, Jiahao Wang, Annan Li, Yunhong Wang

Responsive image

Auto-TLDR; 2S-TCN: A Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Slides Poster Similar

In the field of facial attractiveness prediction, while deep models using static pictures have shown promising results, little attention is paid to dynamic facial information, which is proven to be influential by psychological studies. Meanwhile, the increasing popularity of short video apps creates an enormous demand of facial attractiveness prediction from short video clips. In this paper, we target on the dynamic facial attractiveness prediction problem. To begin with, a large-scale video-based facial attractiveness prediction dataset (VFAP) with more than one thousand clips from TikTok is collected. A two-stream temporal convolutional network (2S-TCN) is then proposed to capture dynamic attractiveness feature from both facial appearance and landmarks. We employ attentive feature enhancement along with specially designed modality and temporal fusion strategies to better explore the temporal dynamics. Extensive experiments on the proposed VFAP dataset demonstrate that 2S-TCN has a distinct advantage over the state-of-the-art static prediction methods.

Activity Recognition Using First-Person-View Cameras Based on Sparse Optical Flows

Peng-Yuan Kao, Yan-Jing Lei, Chia-Hao Chang, Chu-Song Chen, Ming-Sui Lee, Yi-Ping Hung

Responsive image

Auto-TLDR; 3D Convolutional Neural Network for Activity Recognition with FPV Videos

Slides Poster Similar

First-person-view (FPV) cameras are finding wide use in daily life to record activities and sports. In this paper, we propose a succinct and robust 3D convolutional neural network (CNN) architecture accompanied with an ensemble-learning network for activity recognition with FPV videos. The proposed 3D CNN is trained on low-resolution (32x32) sparse optical flows using FPV video datasets consisting of daily activities. According to the experimental results, our network achieves an average accuracy of 90%.

Multi-Label Contrastive Focal Loss for Pedestrian Attribute Recognition

Xiaoqiang Zheng, Zhenxia Yu, Lin Chen, Fan Zhu, Shilong Wang

Responsive image

Auto-TLDR; Multi-label Contrastive Focal Loss for Pedestrian Attribute Recognition

Slides Poster Similar

Pedestrian Attribute Recognition (PAR) has received extensive attention during the past few years. With the advances of deep constitutional neural networks (CNNs), the performance of PAR has been significantly improved. Existing methods tend to acquire attribute-specific features by designing various complex network structures with additional modules. Such additional modules, however, dramatically increase the number of parameters. Meanwhile, the problems of class imbalance and hard attribute retrieving remain underestimated in PAR. In this paper, we explore the optimization mechanism of the training processing to account for these problems and propose a new loss function called Multi-label Contrastive Focal Loss (MCFL). This proposed MCFL emphasizes the hard and minority attributes by using a separated re-weighting mechanism for different positive and negative classes to alleviate the impact of the imbalance. MCFL is also able to enlarge the gaps between the intra-class of multi-label attributes, to force CNNs to extract more subtle discriminative features. We evaluate the proposed MCFL on three large public pedestrian datasets, including RAP, PA-100K, and PETA. The experimental results indicate that the proposed MCFL with the ResNet-50 backbone is able to outperform other state-of-the-art approaches in comparison.

Learning Non-Rigid Surface Reconstruction from Spatio-Temporal Image Patches

Matteo Pedone, Abdelrahman Mostafa, Janne Heikkilä

Responsive image

Auto-TLDR; Dense Spatio-Temporal Depth Maps of Deformable Objects from Video Sequences

Slides Poster Similar

We present a method to reconstruct a dense spatio-temporal depth map of a non-rigidly deformable object directly from a video sequence. The estimation of depth is performed locally on spatio-temporal patches of the video, and then the full depth video of the entire shape is recovered by combining them together. Since the geometric complexity of a local spatio-temporal patch of a deforming non-rigid object is often simple enough to be faithfully represented with a parametric model, we artificially generate a database of small deforming rectangular meshes rendered with different material properties and light conditions, along with their corresponding depth videos, and use such data to train a convolutional neural network. We tested our method on both synthetic and Kinect data and experimentally observed that the reconstruction error is significantly lower than the one obtained using other approaches like conventional non-rigid structure from motion.

Rotational Adjoint Methods for Learning-Free 3D Human Pose Estimation from IMU Data

Caterina Emilia Agelide Buizza, Yiannis Demiris

Responsive image

Auto-TLDR; Learning-free 3D Human Pose Estimation from Inertial Measurement Unit Data

Poster Similar

We present a new framework for learning-free 3D human pose estimation from Inertial Measurement Unit (IMU) data. The proposed method does not rely on a full motion sequence to calculate a pose for any particular time point and thus can operate in real-time. A cost function based only on joint rotations is used, removing the need for frequent transformations between rotations and 3D Cartesian coordinates. A Jacobian that preserves skeleton structure is derived using Adjoint methods from Variational Data Assimilation. To facilitate further research in IMU-based Motion Capture, we provide a dataset that combines RGB and depth images from an Intel RealSense camera, marker-based motion capture from an Optitrack system and Xsens IMU data. We have evaluated our method on both our dataset and the Total Capture dataset, showing an average error across 24 joints of 0.45 and 0.48 radians respectively.

Three-Dimensional Lip Motion Network for Text-Independent Speaker Recognition

Jianrong Wang, Tong Wu, Shanyu Wang, Mei Yu, Qiang Fang, Ju Zhang, Li Liu

Responsive image

Auto-TLDR; Lip Motion Network for Text-Independent and Text-Dependent Speaker Recognition

Slides Poster Similar

Lip motion reflects behavior characteristics of speakers, and thus can be used as a new kind of biometrics in speaker recognition. In the literature, lots of works used two dimensional (2D) lip images to recognize speaker in a text-dependent context. However, 2D lip easily suffers from face orientations. To this end, in this work, we present a novel end-to-end 3D lip motion Network (3LMNet) by utilizing the sentence-level 3D lip motion (S3DLM) to recognize speakers in both the text-independent and text-dependent contexts. A novel regional feedback module (RFM) is proposed to explore attentions in different lip regions. Besides, prior knowledge of lip motion is investigated to complement RFM, where landmark-level and frame-level features are merged to form a better feature representation. Moreover, we present two methods, i.e., coordinate transformation and face posture correction to pre-process the LSD-AV dataset, which contains 68 speakers and 146 sentences per speaker. The evaluation results on this dataset demonstrate that our proposed 3LMNet is superior to the baseline models, i.e., LSTM, VGG-16 and ResNet-34, and outperforms the state-of-the-art using 2D lip image as well as the 3D face. The code of this work is released at https://github.com/wutong18/Three-Dimensional-Lip-Motion-Ne twork-for-Text-Independent-Speaker-Recognition.

Not 3D Re-ID: Simple Single Stream 2D Convolution for Robust Video Re-Identification

Toby Breckon, Aishah Alsehaim

Responsive image

Auto-TLDR; ResNet50-IBN for Video-based Person Re-Identification using Single Stream 2D Convolution Network

Slides Poster Similar

Video-based person re-identification has received increasing attention recently, as it plays an important role within the surveillance video analysis. Video-based Re-ID is an expansion of earlier image-based re-identification methods by learning features from a video via multiple image frames for each person. Most contemporary video Re-ID methods utilise complex CNN-based network architectures using 3D convolution or multi-branch networks to extract spatial-temporal features from the video. By contrast, in this paper, we will illustrate superior performance from a simple single stream 2D convolution network leveraging the ResNet50-IBN architecture to extract frame-level features followed by temporal attention for clip level features. These clip level features can be generalised to extract video level features by averaging clip level features without any additional cost. Our model, uses best video Re-ID practice and transfer learning between datasets, outperforms existing state-of-the-art approaches on MARS, PRID2011 and iLIDSVID datasets with 89:62%, 97:75%, 97:33% rank-1 accuracy respectively and with 84:61% mAP for MARS, without reliance on complex and memory intensive 3D convolutions or multistream networks architectures as found in other contemporary work. Conversely, this work shows that global features extracted by the 2D convolution network are a sufficient representation for robust state of the art video Re-ID.

Feature Representation Learning for Calving Detection of Cows Using Video Frames

Ryosuke Hyodo, Nakano Teppei, Tetsuji Ogawa

Responsive image

Auto-TLDR; Data-driven Feature Extraction for Calving Sign Detection Using Surveillance Video

Slides Poster Similar

Data-driven feature extraction is examined to realize accurate and robust calving detection. Automatic calving sign detection systems can support farmers' decision making. In this paper, neural networks are designed to extract information relevant to calving signs, which can be observed from video, such as the frequency in pre-calving postures, statistics in movement, and statistics in rotation. Experimental comparisons using surveillance video demonstrate that the proposed feature extraction methods contribute to reducing false positives and explaining the basis of the prediction compared to the end-to-end calving detection system.

GazeMAE: General Representations of Eye Movements Using a Micro-Macro Autoencoder

Louise Gillian C. Bautista, Prospero Naval

Responsive image

Auto-TLDR; Fast and Slow Eye Movement Representations for Sentiment-agnostic Eye Tracking

Slides Poster Similar

Eye movements are intricate and dynamic events that contain a wealth of information about the subject and the stimuli. We propose an abstract representation of eye movements that preserve the important nuances in gaze behavior while being stimuli-agnostic. We consider eye movements as raw position and velocity signals and train a deep temporal convolutional autoencoder to learn micro-scale and macro-scale representations corresponding to the fast and slow features of eye movements. These joint representations are evaluated by fitting a linear classifier on various tasks and outperform other works in biometrics and stimuli classification. Further experiments highlight the validity and generalizability of this method, bringing eye tracking research closer to real-world applications.

EEG-Based Cognitive State Assessment Using Deep Ensemble Model and Filter Bank Common Spatial Pattern

Debashis Das Chakladar, Shubhashis Dey, Partha Pratim Roy, Masakazu Iwamura

Responsive image

Auto-TLDR; A Deep Ensemble Model for Cognitive State Assessment using EEG-based Cognitive State Analysis

Slides Poster Similar

Electroencephalography (EEG) is the most used physiological measure to evaluate the cognitive state of a user efficiently. As EEG inherently suffers from a poor spatial resolution, features extracted from each EEG channel may not efficiently used for cognitive state assessment. In this paper, the EEG-based cognitive state assessment has been performed during the mental arithmetic experiment, which includes two cognitive states (task and rest) of a user. To obtain the temporal as well as spatial resolution of the EEG signal, we combined the Filter Bank Common Spatial Pattern (FBCSP) method and Long Short-Term Memory (LSTM)-based deep ensemble model for classifying the cognitive state of a user. Subject-wise data distribution has been performed due to the execution of a large volume of data in a low computing environment. In the FBCSP method, the input EEG is decomposed into multiple equal-sized frequency bands, and spatial features of each frequency bands are extracted using the Common Spatial Pattern (CSP) algorithm. Next, a feature selection algorithm has been applied to identify the most informative features for classification. The proposed deep ensemble model consists of multiple similar structured LSTM networks that work in parallel. The output of the ensemble model (i.e., the cognitive state of a user) is computed using the average weighted combination of individual model prediction. This proposed model achieves 87\% classification accuracy, and it can also effectively estimate the cognitive state of a user in a low computing environment.

IPN Hand: A Video Dataset and Benchmark for Real-Time Continuous Hand Gesture Recognition

Gibran Benitez-Garcia, Jesus Olivares-Mercado, Gabriel Sanchez-Perez, Keiji Yanai

Responsive image

Auto-TLDR; IPN Hand: A Benchmark Dataset for Continuous Hand Gesture Recognition

Slides Poster Similar

Continuous hand gesture recognition (HGR) is an essential part of human-computer interaction with a wide range of applications in the automotive sector, consumer electronics, home automation, and others. In recent years, accurate and efficient deep learning models have been proposed for HGR. However, in the research community, the current publicly available datasets lack real-world elements needed to build responsive and efficient HGR systems. In this paper, we introduce a new benchmark dataset named IPN Hand with sufficient size, variation, and real-world elements able to train and evaluate deep neural networks. This dataset contains more than 4 000 gesture samples and 800 000 RGB frames from 50 distinct subjects. We design 13 different static and dynamic gestures focused on interaction with touchless screens. We especially consider the scenario when continuous gestures are performed without transition states, and when subjects perform natural movements with their hands as non-gesture actions. Gestures were collected from about 30 diverse scenes, with real-world variation in background and illumination. With our dataset, the performance of three 3D-CNN models is evaluated on the tasks of isolated and continuous real-time HGR. Furthermore, we analyze the possibility of increasing the recognition accuracy by adding multiple modalities derived from RGB frames, i.e., optical flow and semantic segmentation, while keeping the real-time performance of the 3D-CNN model. Our empirical study also provides a comparison with the publicly available nvGesture (NVIDIA) dataset. The experimental results show that the state-of-the-art ResNext-101 model decreases about 30% accuracy when using our real-world dataset, demonstrating that the IPN Hand dataset can be used as a benchmark, and may help the community to step forward in the continuous HGR.

Spatial Bias in Vision-Based Voice Activity Detection

Kalin Stefanov, Mohammad Adiban, Giampiero Salvi

Responsive image

Auto-TLDR; Spatial Bias in Vision-based Voice Activity Detection in Multiparty Human-Human Interactions

Poster Similar

We present models for automatic vision-based voice activity detection (VAD) in multiparty human-human interactions that are aimed at complementing the acoustic VAD methods. We provide evidence that this type of vision-based VAD models are susceptible to spatial bias in the datasets. The physical settings of the interaction, usually constant throughout data acquisition, determines the distribution of head poses of the participants. Our results show that when the head pose distributions are significantly different in the training and test sets, the performance of the models drops significantly. This suggests that previously reported results on datasets with a fixed physical configuration may overestimate the generalization capabilities of this type of models. We also propose a number of possible remedies to the spatial bias, including data augmentation, input masking and dynamic features, and provide an in-depth analysis of the visual cues used by our models.

Accurate Background Subtraction Using Dynamic Object Presence Probability in Sports Scenes

Ryosuke Watanabe, Jun Chen, Tomoaki Konno, Sei Naito

Responsive image

Auto-TLDR; DOPP: Dynamic Object Presence Probabilistic Background Subtraction for Foreground Segmentation

Slides Poster Similar

Foreground segmentation technologies play an important role in applications such as free-viewpoint video (FVV) and sports video analysis. In this situation, we propose a new method that achieves accurate foreground silhouette extraction using dynamic object presence probability (DOPP). Our main contributions are as follows. 1) Object presence probability for each pixel is calculated from the object recognition results based on deep learning. After that, background subtraction is implemented by changing the threshold and the update rate of the background model in response to the object presence probability. Parameter tuning of background subtraction is executed by using the object recognition results to improve the silhouette extraction quality. 2) To calculate more accurate silhouette images, parameters of background subtraction are adjusted by monitoring optical flows between consecutive frames. The object presence probability of the current frame is dynamically updated by using the object presence probability of the previous frame with optical flows. In the experiments, we confirmed that the proposed method achieved more accurate silhouette extraction than conventional methods in three sports sequences.

Learning Visual Voice Activity Detection with an Automatically Annotated Dataset

Stéphane Lathuiliere, Pablo Mesejo, Radu Horaud

Responsive image

Auto-TLDR; Deep Visual Voice Activity Detection with Optical Flow

Slides Similar

Visual voice activity detection (V-VAD) uses visual features to predict whether a person is speaking or not. V-VAD is useful whenever audio VAD (A-VAD) is inefficient either because the acoustic signal is difficult to analyze or is simply missing. We propose two deep architectures for V-VAD, one based on facial landmarks and one based on optical flow. Moreover, available datasets, used for learning and for testing V-VAD, lack content variability. We introduce a novel methodology to automatically create and annotate very large datasets in-the-wild, based on combining A-VAD and face detection. A thorough empirical evaluation shows the advantage of training the proposed deep V-VAD models with such a dataset.

Silhouette Body Measurement Benchmarks

Song Yan, Johan Wirta, Joni-Kristian Kamarainen

Responsive image

Auto-TLDR; BODY-fit: A Realistic 3D Body Measurement Dataset for Anthropometric Measurement

Slides Poster Similar

Anthropometric body measurements are important for industrial design, garment fitting, medical diagnosis and ergonomics. A number of methods have been proposed to estimate the body measurements from images, but progress has been slow due to the lack of realistic and publicly available datasets. The existing works train and test on silhouettes of 3D body meshes obtained by fitting a human body model to the commercial CAESAR scans. In this work, we introduce the BODY-fit dataset that contains fitted meshes of 2,675 female and 1,474 male 3D body scans. We unify evaluation on the CAESAR-fit and BODY-fit datasets by computing body measurements from geodesic surface paths as the ground truth and by generating two-view silhouette images. We also introduce BODY-rgb - a realistic dataset of 86 male and 108 female subjects captured with an RGB camera and manually tape measured ground truth. We propose a simple yet effective deep CNN architecture as a baseline method which obtains competitive accuracy on the three datasets.

Late Fusion of Bayesian and Convolutional Models for Action Recognition

Camille Maurice, Francisco Madrigal, Frederic Lerasle

Responsive image

Auto-TLDR; Fusion of Deep Neural Network and Bayesian-based Approach for Temporal Action Recognition

Slides Poster Similar

The activities we do in our daily-life are generally carried out as a succession of atomic actions, following a logical order. During a video sequence, actions usually follow a logical order. In this paper, we propose a hybrid approach resulting from the fusion of a deep learning neural network with a Bayesian-based approach. The latter models human-object interactions and transition between actions. The key idea is to combine both approaches in the final prediction. We validate our strategy in two public datasets: CAD-120 and Watch-n-Patch. We show that our fusion approach yields performance gains in accuracy of respectively +4\% and +6\% over a baseline approach. Temporal action recognition performances are clearly improved by the fusion, especially when classes are imbalanced.

Learning Dictionaries of Kinematic Primitives for Action Classification

Alessia Vignolo, Nicoletta Noceti, Alessandra Sciutti, Francesca Odone, Giulio Sandini

Responsive image

Auto-TLDR; Action Understanding using Visual Motion Primitives

Slides Poster Similar

This paper proposes a method based on visual motion primitives to address the problem of action understanding. The approach builds in an unsupervised way a dictionary of kinematic primitives from a set of sub-movements obtained by segmenting the velocity profile of an action on the basis of local minima derived directly from the optical flow. The dictionary is then used to describe each sub-movement as a linear combination of atoms using sparse coding. The descriptive capability of the proposed motion representation is experimentally validated on the MoCA dataset, a collection of synchronized multi-view videos and motion capture data of cooking activities. The results show that the approach, despite its simplicity, has a good performance in action classification, especially when the motion primitives are combined over time. Also, the method is proved to be tolerant to view point changes, and can thus support cross-view action recognition. Overall, the method may be seen as a backbone of a general approach to action understanding, with potential applications in robotics.

Feasibility Study of Using MyoBand for Learning Electronic Keyboard

Sharmila Mani, Madhav Rao

Responsive image

Auto-TLDR; Autonomous Finger-Based Music Instrument Learning using Electromyography Using MyoBand and Machine Learning

Slides Poster Similar

Learning musical instrument like piano or electronic keyboard on average takes a decade time. Currently, musical instrument learning requires continuous supervision from the tutor, and self learning to reach expert level is considered impossible. On the other side, it often becomes unrealistic to stay connected with the music tutor for a long time and many learners stop halfway. To address this specific issue, online distance learning platform is implemented for music learning system, yet it does not support self learning, remains tutor dependent, and is not a scalable approach. In addition, there is no way for these platforms to verify whether user pressed a key note with the intended finger, which is significant for learning finger based musical instruments. To overcome this, an autonomous system to evaluate and guide in the learning process by continuously tracking finger movements via a non-camera based solution is proposed. Finger press triggers the muscle movements which are detected at the surface of the forearm in the form of surface Electromyography (sEMG) signals. The paper proposes tracking of finger press on an electronic keyboard using MyoBand [1] wearable device that provided 8 channels of sEMG signals. A machine learning (ML) approach was considered with eleven time and frequency domain features of sEMG signals, to classify musical note played by the instrument on corresponding finger press. The feature set was further standardized using standard scaler approach, and vector dimensions were reduced by Linear Discriminant Analysis (LDA) method. The resulting reduced dimension data was applied on Random Forest (RF) classifier to report best classification accuracy for our application. For training the RF model, several trails of 10 seconds sEMG signals were collected using wearable MyoBand device. Experiments involved single finger press to render a note in the musical instrument, and multiple finger press to define chord sequence on an electronic musical keyboard. Further analysis was performed to maximize the classification accuracy over the number of trials and optimize the position of electrodes for successful identification of musical note played. The proposed method achieves a classification accuracy of 74.25% for 5 musical note played on an electronic keyboard instrument with 4 MyoBand electrodes, and an accuracy of 95.83% with one electrode for identifying between four musical events including two major chords and two musical notes

Top-DB-Net: Top DropBlock for Activation Enhancement in Person Re-Identification

Rodolfo Quispe, Helio Pedrini

Responsive image

Auto-TLDR; Top-DB-Net for Person Re-Identification using Top DropBlock

Slides Poster Similar

Person Re-Identification is a challenging task that aims to retrieve all instances of a query image across a system of non-overlapping cameras. Due to the various extreme changes of view, it is common that local regions that could be used to match people are suppressed, which leads to a scenario where approaches have to evaluate the similarity of images based on less informative regions. In this work, we introduce the Top-DB-Net, a method based on Top DropBlock that pushes the network to learn to focus on the scene foreground, with special emphasis on the most task-relevant regions and, at the same time, encodes low informative regions to provide high discriminability. The Top-DB-Net is composed of three streams: (i) a global stream encodes rich image information from a backbone, (ii) the Top DropBlock stream encourages the backbone to encode low informative regions with high discriminative features, and (iii) a regularization stream helps to deal with the noise created by the dropping process of the second stream, when testing the first two streams are used. Vast experiments on three challenging datasets show the capabilities of our approach against state-of-the-art methods. Qualitative results demonstrate that our method exhibits better activation maps focusing on reliable parts of the input images.

A Multi-Task Neural Network for Action Recognition with 3D Key-Points

Rongxiao Tang, Wang Luyang, Zhenhua Guo

Responsive image

Auto-TLDR; Multi-task Neural Network for Action Recognition and 3D Human Pose Estimation

Slides Poster Similar

Action recognition and 3D human pose estimation are the fundamental problems in computer vision and closely related. In this work, we propose a multi-task neural network for action recognition and 3D human pose estimation. The results of the previous methods are still error-prone especially when tested against the images taken in-the-wild, leading error results in action recognition. To solve this problem, we propose a principled approach to generate high quality 3D pose ground truth given any in-the-wild image with a person inside. We achieve this by first devising a novel stereo inspired neural network to directly map any 2D pose to high quality 3D counterpart. Based on the high-quality 3D labels, we carefully design the multi-task framework for action recognition and 3D human pose estimation. The proposed architecture can utilize the shallow, deep features of the images, and the in-the-wild 3D human key-points to guide a more precise result. High quality 3D key-points can fully reflect the morphological features of motions, thus boosting the performance on action recognition. Experiments demonstrate that 3D pose estimation leads to significantly higher performance on action recognition than separated learning. We also evaluate the generalization ability of our method both quantitatively and qualitatively. The proposed architecture performs favorably against the baseline 3D pose estimation methods. In addition, the reported results on Penn Action and NTU datasets demonstrate the effectiveness of our method on the action recognition task.

Magnifying Spontaneous Facial Micro Expressions for Improved Recognition

Pratikshya Sharma, Sonya Coleman, Pratheepan Yogarajah, Laurence Taggart, Pradeepa Samarasinghe

Responsive image

Auto-TLDR; Eulerian Video Magnification for Micro Expression Recognition

Slides Poster Similar

Building an effective automatic micro expression recognition (MER) system is becoming increasingly desirable in computer vision applications. However, it is also very challenging given the fine-grained nature of the expressions to be recognized. Hence, we investigate if amplifying micro facial muscle movements as a pre-processing phase, by employing Eulerian Video Magnification (EVM), can boost performance of Local Phase Quantization with Three Orthogonal Planes (LPQ-TOP) to achieve improved facial MER across various datasets. In addition, we examine the rate of increase for recognition to determine if it is uniform across datasets using EVM. Ultimately, we classify the extracted features using Support Vector Machines (SVM). We evaluate and compare the performance with various methods on seven different datasets namely CASME, CAS(ME)2, CASME2, SMIC-HS, SMIC-VIS, SMIC-NIR and SAMM. The results obtained demonstrate that EVM can enhance LPQ-TOP to achieve improved recognition accuracy on the majority of the datasets.

Responsive Social Smile: A Machine-Learning Based Multimodal Behavior Assessment Framework towards Early Stage Autism Screening

Yueran Pan, Kunjing Cai, Ming Cheng, Xiaobing Zou, Ming Li

Responsive image

Auto-TLDR; Responsive Social Smile: A Machine Learningbased Assessment Framework for Early ASD Screening

Poster Similar

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which causes social deficits in social lives. Early ASD screening for children is an important method to reduce the impact of ASD on people’s whole lives. Traditional screening methods rely on protocol experiments and subjective evaluations from clinicians and domain experts and thereby cost a lot. To standardize the process of ASD screening, we 1 collaborate with a group of ASD experts, and design a ”Responsive Social Smile” protocol and an experiment environment. Also, we propose a machine learningbased assessment framework for early ASD screening. By integrating technologies of speech recognition and computer vision, the framework can quantitatively analyze the behaviors of children under well-designed protocols. By collecting 196 test samples from 41 children in the clinical treatments, our proposed method obtains 85.20% accuracy for the score prediction of individual protocol, and 80.49% unweighted accuracy for the final ASD prediction. This result indicates that our model reaches the average level of domain experts in ASD diagnosis.

How Unique Is a Face: An Investigative Study

Michal Balazia, S L Happy, Francois Bremond, Antitza Dantcheva

Responsive image

Auto-TLDR; Uniqueness of Face Recognition: Exploring the Impact of Factors such as image resolution, feature representation, database size, age and gender

Slides Poster Similar

Face recognition has been widely accepted as a means of identification in applications ranging from border control to security in the banking sector. Surprisingly, while widely accepted, we still lack the understanding of the uniqueness or distinctiveness of face as a biometric characteristic. In this work, we study the impact of factors such as image resolution, feature representation, database size, age and gender on uniqueness denoted by the Kullback-Leibler divergence between genuine and impostor distributions. Towards understanding the impact, we present experimental results on the datasets AT&T, LFW, IMDb-Face, as well as ND-TWINS, with the feature extraction algorithms VGGFace, VGG16, ResNet50, InceptionV3, MobileNet and DenseNet121, that reveal the quantitative impact of the named factors. While these are early results, our findings indicate the need for a better understanding of the concept of biometric uniqueness and its implication on face recognition.