Analyzing Zero-Shot Cross-Lingual Transfer in Supervised NLP Tasks

Hyunjin Choi, Judong Kim, Seongho Joe, Seungjai Min, Youngjune Gwon

Responsive image

Auto-TLDR; Cross-Lingual Language Model Pretraining for Zero-Shot Cross-lingual Transfer

Slides Poster

In zero-shot cross-lingual transfer, a supervised NLP task trained on a corpus in one language is directly applicable to another language without any additional training. A source of cross-lingual transfer can be as straightforward as lexical overlap between languages (e.g., use of the same scripts, shared subwords) that naturally forces text embeddings to occupy a similar representation space. Recently introduced cross-lingual language model (XLM) pretraining brings out neural parameter sharing in Transformer-style networks as the most important factor for the transfer. In this paper, we aim to validate the hypothetically strong cross-lingual transfer properties induced by XLM pretraining. Particularly, we take XLM-RoBERTa (XLM-R) in our experiments that extend semantic textual similarity (STS), SQuAD and KorQuAD for machine reading comprehension, sentiment analysis, and alignment of sentence embeddings under various cross-lingual settings. Our results indicate that the presence of cross-lingual transfer is most pronounced in STS, sentiment analysis the next, and MRC the last. That is, the complexity of a downstream task softens the degree of cross-lingual transfer. All of our results are empirically observed and measured, and we make our code and data publicly available.

Similar papers

Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP Tasks

Hyunjin Choi, Judong Kim, Seongho Joe, Youngjune Gwon

Responsive image

Auto-TLDR; Sentence Embedding Models for BERT and ALBERT: A Comparison and Evaluation

Slides Poster Similar

Contextualized representations from a pre-trained language model are central to achieve a high performance on downstream NLP task. The pre-trained BERT and A Lite BERT (ALBERT) models can be fine-tuned to give state-of-the-art results in sentence-pair regressions such as semantic textual similarity (STS) and natural language inference (NLI). Although BERT-based models yield the [CLS] token vector as a reasonable sentence embedding, the search for an optimal sentence embedding scheme remains an active research area in computational linguistics. This paper explores on sentence embedding models for BERT and ALBERT. In particular, we take a modified BERT network with siamese and triplet network structures called Sentence-BERT (SBERT) and replace BERT with ALBERT to create Sentence-ALBERT (SALBERT). We also experiment with an outer CNN sentence-embedding network for SBERT and SALBERT. We evaluate performances of all sentence-embedding models considered using the STS and NLI datasets. The empirical results indicate that our CNN architecture improves ALBERT models substantially more than BERT models for STS benchmark. Despite significantly fewer model parameters, ALBERT sentence embedding is highly competitive to BERT in downstream NLP evaluations.

KoreALBERT: Pretraining a Lite BERT Model for Korean Language Understanding

Hyunjae Lee, Jaewoong Yun, Bongkyu Hwang, Seongho Joe, Seungjai Min, Youngjune Gwon

Responsive image

Auto-TLDR; KoreALBERT: A monolingual ALBERT model for Korean language understanding

Slides Poster Similar

Abstract—A Lite BERT (ALBERT) has been introduced to scale-up deep bidirectional representation learning for natural languages. Due to the lack of pretrained ALBERT models for Korean language, the best available practice is the multilingual model or resorting back to the any other BERT-based model. In this paper, we develop and pretrain KoreALBERT, a monolingual ALBERT model specifically for Korean language understanding. We introduce a new training objective, namely Word Order Prediction (WOP), and use alongside the existing MLM and SOP criteria to the same architecture and model parameters. Despite having significantly fewer model parameters (thus, quicker to train), our pretrained KoreALBERT outperforms its BERT counterpart on KorQuAD 1.0 benchmark for machine reading comprehension. Consistent with the empirical results in English by Lan et al., KoreALBERT seems to improve downstream task performance involving multi-sentence encoding for Korean language. The pretrained KoreALBERT is publicly available to encourage research and application development for Korean NLP.

Adversarial Training for Aspect-Based Sentiment Analysis with BERT

Akbar Karimi, Andrea Prati, Leonardo Rossi

Responsive image

Auto-TLDR; Adversarial Training of BERT for Aspect-Based Sentiment Analysis

Slides Poster Similar

Aspect-Based Sentiment Analysis (ABSA) studies the extraction of sentiments and their targets. Collecting labeled data for this task in order to help neural networks generalize better can be laborious and time-consuming. As an alternative, similar data to the real-world examples can be produced artificially through an adversarial process which is carried out in the embedding space. Although these examples are not real sentences, they have been shown to act as a regularization method which can make neural networks more robust. In this work, we fine-tune the general purpose BERT and domain specific post-trained BERT (BERT-PT) using adversarial training. After improving the results of post-trained BERT with different hyperparameters, we propose a novel architecture called BERT Adversarial Training (BAT) to utilize adversarial training for the two major tasks of Aspect Extraction and Aspect Sentiment Classification in sentiment analysis. The proposed model outperforms the general BERT as well as the in-domain post-trained BERT in both tasks. To the best of our knowledge, this is the first study on the application of adversarial training in ABSA. The code is publicly available on a GitHub repository at https://github.com/IMPLabUniPr/Adversarial-Training-fo r-ABSA

Efficient Sentence Embedding Via Semantic Subspace Analysis

Bin Wang, Fenxiao Chen, Yun Cheng Wang, C.-C. Jay Kuo

Responsive image

Auto-TLDR; S3E: Semantic Subspace Sentence Embedding

Slides Poster Similar

A novel sentence embedding method built upon semantic subspace analysis, called semantic subspace sentence embedding (S3E), is proposed in this work. Given the fact that word embeddings can capture semantic relationship while semantically similar words tend to form semantic groups in a high-dimensional embedding space, we develop a sentence representation scheme by analyzing semantic subspaces of its constituent words. Specifically, we construct a sentence model from two aspects. First, we represent words that lie in the same semantic group using the intra-group descriptor. Second, we characterize the interaction between multiple semantic groups with the inter-group descriptor. The proposed S3E method is evaluated on both textual similarity tasks and supervised tasks. Experimental results show that it offers comparable or better performance than the state-of-the-art. The complexity of our S3E method is also much lower than other parameterized models.

Tackling Contradiction Detection in German Using Machine Translation and End-To-End Recurrent Neural Networks

Maren Pielka, Rafet Sifa, Lars Patrick Hillebrand, David Biesner, Rajkumar Ramamurthy, Anna Ladi, Christian Bauckhage

Responsive image

Auto-TLDR; Contradiction Detection in Natural Language Inference using Recurrent Neural Networks

Slides Poster Similar

Natural Language Inference, and specifically Contradiction Detection, is still an unexplored topic with respect to German text. In this paper, we apply Recurrent Neural Network (RNN) methods to learn contradiction-specific sentence embeddings. Our data set for evaluation is a machine-translated version of the Stanford Natural Language Inference (SNLI) corpus. The results are compared to a baseline using unsupervised vectorization techniques, namely tf-idf and Flair, as well as state-of-the art transformer-based (MBERT) methods. We find that the end-to-end models outperform the models trained on unsupervised embeddings, which makes them the better choice in an empirical use case. The RNN methods also perform superior to MBERT on the translated data set.

Learning Neural Textual Representations for Citation Recommendation

Thanh Binh Kieu, Inigo Jauregi Unanue, Son Bao Pham, Xuan-Hieu Phan, M. Piccardi

Responsive image

Auto-TLDR; Sentence-BERT cascaded with Siamese and triplet networks for citation recommendation

Slides Poster Similar

With the rapid growth of the scientific literature, manually selecting appropriate citations for a paper is becoming increasingly challenging and time-consuming. While several approaches for automated citation recommendation have been proposed in the recent years, effective document representations for citation recommendation are still elusive to a large extent. For this reason, in this paper we propose a novel approach to citation recommendation which leverages a deep sequential representation of the documents (Sentence-BERT) cascaded with Siamese and triplet networks in a submodular scoring function. To the best of our knowledge, this is the first approach to combine deep representations and submodular selection for a task of citation recommendation. Experiments have been carried out using a popular benchmark dataset -- the ACL Anthology Network corpus -- and evaluated against baselines and a state-of-the-art approach using metrics such as the MRR and F1@k score. The results show that the proposed approach has been able to outperform all the compared approaches in every measured metric.

CKG: Dynamic Representation Based on Context and Knowledge Graph

Xunzhu Tang, Tiezhu Sun, Rujie Zhu

Responsive image

Auto-TLDR; CKG: Dynamic Representation Based on Knowledge Graph for Language Sentences

Slides Poster Similar

Recently, neural language representation models pre-trained on large corpus can capture rich co-occurrence information and be fine-tuned in downstream tasks to improve the performance. As a result, they have achieved state-of-the-art results in a large range of language tasks. However, there exists other valuable semantic information such as similar, opposite, or other possible meanings in external knowledge graphs (KGs). We argue that entities in KGs could be used to enhance the correct semantic meaning of language sentences. In this paper, we propose a new method CKG: Dynamic Representation Based on \textbf{C}ontext and \textbf{K}nowledge \textbf{G}raph. On the one side, CKG can extract rich semantic information of large corpus. On the other side, it can make full use of inside information such as co-occurrence in large corpus and outside information such as similar entities in KGs. We conduct extensive experiments on a wide range of tasks, including QQP, MRPC, SST-5, SQuAD, CoNLL 2003, and SNLI. The experiment results show that CKG achieves SOTA 89.2 on SQuAD compared with SAN (84.4), ELMo (85.8), and BERT$_{Base}$ (88.5).

GCNs-Based Context-Aware Short Text Similarity Model

Xiaoqi Sun

Responsive image

Auto-TLDR; Context-Aware Graph Convolutional Network for Text Similarity

Slides Poster Similar

Semantic textual similarity is a fundamental task in text mining and natural language processing (NLP), which has profound research value. The essential step for text similarity is text representation learning. Recently, researches have explored the graph convolutional network (GCN) techniques on text representation, since GCN does well in handling complex structures and preserving syntactic information. However, current GCN models are usually limited to very shallow layers due to the vanishing gradient problem, which cannot capture non-local dependency information of sentences. In this paper, we propose a GCNs-based context-aware (GCSTS) model that applies iterated GCN blocks to train deeper GCNs. Recurrently employing the same GCN block prevents over-fitting and provides broad effective input width. Combined with dense connections, GCSTS can be trained more deeply. Besides, we use dynamic graph structures in the block, which further extend the receptive field of each vertex in graphs, learning better sentence representations. Experiments show that our model outperforms existing models on several text similarity datasets, while also verify that GCNs-based text representation models can be trained in a deeper manner, rather than being trained in two or three layers.

Automatic Student Network Search for Knowledge Distillation

Zhexi Zhang, Wei Zhu, Junchi Yan, Peng Gao, Guotong Xie

Responsive image

Auto-TLDR; NAS-KD: Knowledge Distillation for BERT

Slides Poster Similar

Pre-trained language models (PLMs), such as BERT, have achieved outstanding performance on multiple natural language processing (NLP) tasks. However, such pre-trained models usually contain a huge number of parameters and are computationally expensive. The high resource demand hinders their application on resource-restricted devices like mobile phones. Knowledge distillation (KD) is an effective compression approach, aiming at encouraging a light-weight student network to imitate the teacher network, and accordingly latent knowledge is transferred from the teacher to student. However, the great majority of student networks in previous KD methods are manually designed, normally a subnetwork of the teacher network. Transformer is generally utilized as the student for compressing BERT but still contains masses of parameters. Motivated by this, we propose a novel approach named NAS-KD, which automatically generates an optimal student network using neural architecture search (NAS) to enhance the distillation for BERT. Experiment on 7 classification tasks in NLP domain demonstrates that NAS-KD can substantially reduce the size of BERT without much performance sacrifice.

Sequential Domain Adaptation through Elastic Weight Consolidation for Sentiment Analysis

Avinash Madasu, Anvesh Rao Vijjini

Responsive image

Auto-TLDR; Sequential Domain Adaptation using Elastic Weight Consolidation for Sentiment Analysis

Slides Poster Similar

Elastic Weight Consolidation (EWC) is a technique used in overcoming catastrophic forgetting between successive tasks trained on a neural network. We use this phenomenon of information sharing between tasks for domain adaptation. Training data for tasks such as sentiment analysis (SA) may not be fairly represented across multiple domains. Domain Adaptation (DA) aims to build algorithms that leverage information from source domains to facilitate performance on an unseen target domain. We propose a model-independent framework - Sequential Domain Adaptation (SDA). SDA draws on EWC for training on successive source domains to move towards a general domain solution, thereby solving the problem of domain adaptation. We test SDA on convolutional, recurrent and attention-based architectures. Our experiments show that the proposed framework enables simple architectures such as CNNs to outperform complex state-of-the-art models in domain adaptation of SA. We further observe the effectiveness of a harder first Anti-Curriculum ordering of source domains leads to maximum performance.

Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network

Tengfei Liu, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin

Responsive image

Auto-TLDR; Semantically Extended Graph Convolutional Network for Zero-shot Text Classification

Slides Poster Similar

As a challenging task of Natural Language Processing(NLP), zero-shot text classification has attracted more and more attention recently. It aims to detect classes that the model has never seen in the training set. For this purpose, a feasible way is to construct connection between the seen and unseen classes by semantic extension and classify the unseen classes by information propagation over the connection. Although many related zero-shot text classification methods have been exploited, how to realize semantic extension properly and propagate information effectively is far from solved. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Graph Convolutional Network (SEGCN). In the proposed method, the semantic category knowledge from ConceptNet is utilized to semantic extension for linking seen classes to unseen classes and constructing a graph of all classes. Then, we build upon Graph Convolutional Network (GCN) for predicting the textual classifier for each category, which transfers the category knowledge by the convolution operators on the constructed graph and is trained in a semi-supervised manner using the samples of the seen classes. The experimental results on Dbpedia and 20newsgroup datasets show that our method outperforms the state of the art zero-shot text classification methods.

A Novel Attention-Based Aggregation Function to Combine Vision and Language

Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara

Responsive image

Auto-TLDR; Fully-Attentive Reduction for Vision and Language

Slides Poster Similar

The joint understanding of vision and language has been recently gaining a lot of attention in both the Computer Vision and Natural Language Processing communities, with the emergence of tasks such as image captioning, image-text matching, and visual question answering. As both images and text can be encoded as sets or sequences of elements - like regions and words - proper reduction functions are needed to transform a set of encoded elements into a single response, like a classification or similarity score. In this paper, we propose a novel fully-attentive reduction method for vision and language. Specifically, our approach computes a set of scores for each element of each modality employing a novel variant of cross-attention, and performs a learnable and cross-modal reduction, which can be used for both classification and ranking. We test our approach on image-text matching and visual question answering, building fair comparisons with other reduction choices, on both COCO and VQA 2.0 datasets. Experimentally, we demonstrate that our approach leads to a performance increase on both tasks. Further, we conduct ablation studies to validate the role of each component of the approach.

Assessing the Severity of Health States Based on Social Media Posts

Shweta Yadav, Joy Prakash Sain, Amit Sheth, Asif Ekbal, Sriparna Saha, Pushpak Bhattacharyya

Responsive image

Auto-TLDR; A Multiview Learning Framework for Assessment of Health State in Online Health Communities

Slides Poster Similar

The unprecedented growth of Internet users has resulted in an abundance of unstructured information on social media including health forums, where patients request health-related information or opinions from other users. Previous studies have shown that online peer support has limited effectiveness without expert intervention. Therefore, a system capable of assessing the severity of health state from the patients' social media posts can help health professionals (HP) in prioritizing the user’s post. In this study, we inspect the efficacy of different aspects of Natural Language Understanding (NLU) to identify the severity of the user’s health state in relation to two perspectives(tasks) (a) Medical Condition (i.e., Recover, Exist, Deteriorate, Other) and (b) Medication (i.e., Effective, Ineffective, Serious Adverse Effect, Other) in online health communities. We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user’s health state. Specifically, our model utilizes the NLU views such as sentiment, emotions, personality, and use of figurative language to extract the contextual information. The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user’s health.

Segmenting Messy Text: Detecting Boundaries in Text Derived from Historical Newspaper Images

Carol Anderson, Phil Crone

Responsive image

Auto-TLDR; Text Segmentation of Marriage Announcements Using Deep Learning-based Models

Slides Poster Similar

Text segmentation, the task of dividing a document into sections, is often a prerequisite for performing additional natural language processing tasks. Existing text segmentation methods have typically been developed and tested using clean, narrative-style text with segments containing distinct topics. Here we consider a challenging text segmentation task: dividing newspaper marriage announcement lists into units of one couple each. In many cases the information is not structured into sentences, and adjacent segments are not topically distinct from each other. In addition, the text of the announcements, which is derived from images of historical newspapers via optical character recognition, contains many typographical errors. Because of these properties, these announcements are not amenable to segmentation with existing techniques. We present a novel deep learning-based model for segmenting such text and show that it significantly outperforms an existing state-of-the-art method on our task.

Explain2Attack: Text Adversarial Attacks via Cross-Domain Interpretability

Mahmoud Hossam, Le Trung, He Zhao, Dinh Phung

Responsive image

Auto-TLDR; Transfer2Attack: A Black-box Adversarial Attack on Text Classification

Slides Poster Similar

Training robust deep learning models is a critical challenge for downstream tasks. Research has shown that common down-stream models can be easily fooled with adversarial inputs that look like the training data, but slightly perturbed, in a way imperceptible to humans. Understanding the behavior of natural language models under these attacks is crucial to better defend these models against such attacks. In the black-box attack setting, where no access to model parameters is available, the attacker can only query the output information from the targeted model to craft a successful attack. Current black-box state-of-the-art models are costly in both computational complexity and number of queries needed to craft successful adversarial examples. For real world scenarios, the number of queries is critical, where less queries are desired to avoid suspicion towards an attacking agent. In this paper, we propose Transfer2Attack, a black-box adversarial attack on text classification task, that employs cross-domain interpretability to reduce target model queries during attack. We show that our framework either achieves or out-performs attack rates of the state-of-the-art models, yet with lower queries cost and higher efficiency.

Transformer Reasoning Network for Image-Text Matching and Retrieval

Nicola Messina, Fabrizio Falchi, Andrea Esuli, Giuseppe Amato

Responsive image

Auto-TLDR; A Transformer Encoder Reasoning Network for Image-Text Matching in Large-Scale Information Retrieval

Slides Poster Similar

Image-text matching is an interesting and fascinating task in modern AI research. Despite the evolution of deep-learning-based image and text processing systems, multi-modal matching remains a challenging problem. In this work, we consider the problem of accurate image-text matching for the task of multi-modal large-scale information retrieval. State-of-the-art results in image-text matching are achieved by inter-playing image and text features from the two different processing pipelines, usually using mutual attention mechanisms. However, this invalidates any chance to extract separate visual and textual features needed for later indexing steps in large-scale retrieval systems. In this regard, we introduce the Transformer Encoder Reasoning Network (TERN), an architecture built upon one of the modern relationship-aware self-attentive architectures, the Transformer Encoder (TE). This architecture is able to separately reason on the two different modalities and to enforce a final common abstract concept space by sharing the weights of the deeper transformer layers. Thanks to this design, the implemented network is able to produce compact and very rich visual and textual features available for the successive indexing step. Experiments are conducted on the MS-COCO dataset, and we evaluate the results using a discounted cumulative gain metric with relevance computed exploiting caption similarities, in order to assess possibly non-exact but relevant search results. We demonstrate that on this metric we are able to achieve state-of-the-art results in the image retrieval task. Our code is freely available at https://github.com/mesnico/TERN.

Label Incorporated Graph Neural Networks for Text Classification

Yuan Xin, Linli Xu, Junliang Guo, Jiquan Li, Xin Sheng, Yuanyuan Zhou

Responsive image

Auto-TLDR; Graph Neural Networks for Semi-supervised Text Classification

Slides Poster Similar

Graph Neural Networks (GNNs) have achieved great success on graph-structured data, and their applications on traditional data structures such as natural language processing and semi-supervised text classification have been extensively explored in recent years. While previous works only consider the text information while building the graph, heterogeneous information such as labels is ignored. In this paper, we consider to incorporate the label information while building the graph by adding text-label-text paths, through which the supervision information will propagate among the graph more directly. Specifically, we treat labels as nodes in the graph which also contains text and word nodes, and then connect labels with texts belonging to that label. Through graph convolutions, label embeddings are jointly learned with text embeddings in the same latent semantic space. The newly incorporated label nodes will facilitate learning more accurate text embeddings by introducing the label information, and thus benefit the downstream text classification tasks. Extensive results on several benchmark datasets show that the proposed framework outperforms baseline methods by a significant margin.

Dual Path Multi-Modal High-Order Features for Textual Content Based Visual Question Answering

Yanan Li, Yuetan Lin, Hongrui Zhao, Donghui Wang

Responsive image

Auto-TLDR; TextVQA: An End-to-End Visual Question Answering Model for Text-Based VQA

Slides Similar

As a typical cross-modal problem, visual question answering (VQA) has received increasing attention from the communities of computer vision and natural language processing. Reading and reasoning about texts and visual contents in the images is a burgeoning and important research topic in VQA, especially for the visually impaired assistance applications. Given an image, it aims to predict an answer to a provided natural language question closely related to its textual contents. In this paper, we propose a novel end-to-end textual content based VQA model, which grounds question answering both on the visual and textual information. After encoding the image, question and recognized text words, it uses multi-modal factorized high-order modules and the attention mechanism to fuse question-image and question-text features respectively. The complex correlations among different features can be captured efficiently. To ensure the model's extendibility, it embeds candidate answers and recognized texts in a semantic embedding space and adopts semantic embedding based classifier to perform answer prediction. Extensive experiments on the newly proposed benchmark TextVQA demonstrate that the proposed model can achieve promising results.

PIN: A Novel Parallel Interactive Network for Spoken Language Understanding

Peilin Zhou, Zhiqi Huang, Fenglin Liu, Yuexian Zou

Responsive image

Auto-TLDR; Parallel Interactive Network for Spoken Language Understanding

Slides Poster Similar

Spoken Language Understanding (SLU) is an essential part of the spoken dialogue system, which typically consists of intent detection (ID) and slot filling (SF) tasks. Recently, recurrent neural networks (RNNs) based methods achieved the state-of-the-art for SLU. It is noted that, in the existing RNN-based approaches, ID and SF tasks are often jointly modeled to utilize the correlation information between them. However, we noted that, so far, the efforts to obtain better performance by supporting bidirectional and explicit information exchange between ID and SF are not well studied. In addition, few studies attempt to capture the local context information to enhance the performance of SF. Motivated by these findings, in this paper, Parallel Interactive Network (PIN) is proposed to model the mutual guidance between ID and SF. Specifically, given an utterance, a Gaussian self-attentive encoder is introduced to generate the context-aware feature embedding of the utterance which is able to capture local context information. Taking the feature embedding of the utterance, Slot2Intent module and Intent2Slot module are developed to capture the bidirectional information flow for ID and SF tasks. Finally, a cooperation mechanism is constructed to fuse the information obtained from Slot2Intent and Intent2Slot modules to further reduce the prediction bias. The experiments on two benchmark datasets, i.e., SNIPS and ATIS, demonstrate the effectiveness of our approach, which achieves a competitive result with state-of-the-art models. More encouragingly, by using the feature embedding of the utterance generated by the pre-trained language model BERT, our method achieves the state-of-the-art among all comparison approaches.

Enriching Video Captions with Contextual Text

Philipp Rimle, Pelin Dogan, Markus Gross

Responsive image

Auto-TLDR; Contextualized Video Captioning Using Contextual Text

Slides Poster Similar

Understanding video content and generating caption with context is an important and challenging task. Unlike prior methods that typically attempt to generate generic video captions without context, our architecture contextualizes captioning by infusing extracted information from relevant text data. We propose an end-to-end sequence-to-sequence model which generates video captions based on visual input, and mines relevant knowledge such as names and locations from contextual text. In contrast to previous approaches, we do not preprocess the text further, and let the model directly learn to attend over it. Guided by the visual input, the model is able to copy words from the contextual text via a pointer-generator network, allowing to produce more specific video captions. We show competitive performance on the News Video Dataset and, through ablation studies, validate the efficacy of contextual video captioning as well as individual design choices in our model architecture.

Mood Detection Analyzing Lyrics and Audio Signal Based on Deep Learning Architectures

Konstantinos Pyrovolakis, Paraskevi Tzouveli, Giorgos Stamou

Responsive image

Auto-TLDR; Automated Music Mood Detection using Music Information Retrieval

Slides Poster Similar

Digital era has changed the way music is produced and propagated creating new needs for automated and more effective management of music tracks in big volumes. Automated music mood detection constitutes an active task in the field of MIR (Music Information Retrieval) and connected with many research papers in the past few years. In order to approach the task of mood detection, we faced separately the analysis of musical lyrics and the analysis of musical audio signal. Then we applied a uniform multichannel analysis to classify our data in mood classes. The available data we will use to train and evaluate our models consists of a total of 2.000 song titles, classified in four mood classes {happy, angry, sad, relaxed}. The result of this process leads to a uniform prediction for emotional arousal that a music track can cause to a listener and show the way to develop many applications.

Multimodal Side-Tuning for Document Classification

Stefano Zingaro, Giuseppe Lisanti, Maurizio Gabbrielli

Responsive image

Auto-TLDR; Side-tuning for Multimodal Document Classification

Slides Poster Similar

In this paper, we propose to exploit the side-tuning framework for multimodal document classification. Side-tuning is a methodology for network adaptation recently introduced to solve some of the problems related to previous approaches. Thanks to this technique it is actually possible to overcome model rigidity and catastrophic forgetting of transfer learning by fine-tuning. The proposed solution uses off-the-shelf deep learning architectures leveraging the side-tuning framework to combine a base model with a tandem of two side networks. We show that side-tuning can be successfully employed also when different data sources are considered, e.g. text and images in document classification. The experimental results show that this approach pushes further the limit for document classification accuracy with respect to the state of the art.

Scientific Document Summarization using Citation Context and Multi-objective Optimization

Naveen Saini, Sushil Kumar, Sriparna Saha, Pushpak Bhattacharyya

Responsive image

Auto-TLDR; SciSumm Summarization using Multi-Objective Optimization

Slides Poster Similar

The rate of publishing scientific articles is ever increasing which has created difficulty for the researchers to learn about the recent advancements in a faster way. Also, relying on the abstract of these published articles is not a good idea as they cover only broad idea of the article. The summarization of scientific documents (SDS) addresses this challenge. In this paper, we propose a system for SDS having two components: identifying the relevant sentences in the article using citation context; generation of the summary by posing SDS as a binary optimization problem. For the purpose of optimization, a meta-heuristic evolutionary algorithm is utilized. In order to improve the quality of summary, various aspects measuring the relevance of sentences are simultaneously optimized using the concept of multi-objective optimization. Inspired by the popularity of graph-based algorithms like LexRank which is popularly used in solving summarization problems of different real-life applications, its impact is studied in fusion with our optimization framework. An ablation study is also performed to identify the most contributing aspects for the summary generation. We investigated the performance of our proposed framework on two datasets related to the computational linguistic domain, CL-SciSumm 2016 and CL-SciSumm 2017, in terms of ROUGE measures. The results obtained show that our framework effectively improves other existing methods. Further, results are validated using the statistical paired t-test.

Cross-Lingual Text Image Recognition Via Multi-Task Sequence to Sequence Learning

Zhuo Chen, Fei Yin, Xu-Yao Zhang, Qing Yang, Cheng-Lin Liu

Responsive image

Auto-TLDR; Cross-Lingual Text Image Recognition with Multi-task Learning

Slides Poster Similar

This paper considers recognizing texts shown in a source language and translating into a target language, without generating the intermediate source language text image recognition results. We call this problem Cross-Lingual Text Image Recognition (CLTIR). To solve this problem, we propose a multi-task system containing a main task of CLTIR and an auxiliary task of Mono-Lingual Text Image Recognition (MLTIR) simultaneously. Two different sequence to sequence learning methods, a convolution based attention model and a BLSTM model with CTC, are adopted for these tasks respectively. We evaluate the system on a newly collected Chinese-English bilingual movie subtitle image dataset. Experimental results demonstrate the multi-task learning framework performs superiorly in both languages.

Text Synopsis Generation for Egocentric Videos

Aidean Sharghi, Niels Lobo, Mubarak Shah

Responsive image

Auto-TLDR; Egocentric Video Summarization Using Multi-task Learning for End-to-End Learning

Slides Similar

Mass utilization of body-worn cameras has led to a huge corpus of available egocentric video. Existing video summarization algorithms can accelerate browsing such videos by selecting (visually) interesting shots from them. Nonetheless, since the system user still has to watch the summary videos, browsing large video databases remain a challenge. Hence, in this work, we propose to generate a textual synopsis, consisting of a few sentences describing the most important events in a long egocentric videos. Users can read the short text to gain insight about the video, and more importantly, efficiently search through the content of a large video database using text queries. Since egocentric videos are long and contain many activities and events, using video-to-text algorithms results in thousands of descriptions, many of which are incorrect. Therefore, we propose a multi-task learning scheme to simultaneously generate descriptions for video segments and summarize the resulting descriptions in an end-to-end fashion. We Input a set of video shots and the network generates a text description for each shot. Next, visual-language content matching unit that is trained with a weakly supervised objective, identifies the correct descriptions. Finally, the last component of our network, called purport network, evaluates the descriptions all together to select the ones containing crucial information. Out of thousands of descriptions generated for the video, a few informative sentences are returned to the user. We validate our framework on the challenging UT Egocentric video dataset, where each video is between 3 to 5 hours long, associated with over 3000 textual descriptions on average. The generated textual summaries, including only 5 percent (or less) of the generated descriptions, are compared to groundtruth summaries in text domain using well-established metrics in natural language processing.

PICK: Processing Key Information Extraction from Documents Using Improved Graph Learning-Convolutional Networks

Wenwen Yu, Ning Lu, Xianbiao Qi, Ping Gong, Rong Xiao

Responsive image

Auto-TLDR; PICK: A Graph Learning Framework for Key Information Extraction from Documents

Slides Poster Similar

Computer vision with state-of-the-art deep learning models have achieved huge success in the field of Optical Character Recognition (OCR) including text detection and recognition tasks recently. However, Key Information Extraction (KIE) from documents as the downstream task of OCR, having a large number of use scenarios in real-world, remains a challenge because documents not only have textual features extracting from OCR systems but also have semantic visual features that are not fully exploited and play a critical role in KIE. Too little work has been devoted to efficiently make full use of both textual and visual features of the documents. In this paper, we introduce PICK, a framework that is effective and robust in handling complex documents layout for KIE by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Extensive experiments on real-world datasets have been conducted to show that our method outperforms baselines methods by significant margins.

Extracting Action Hierarchies from Action Labels and their Use in Deep Action Recognition

Konstadinos Bacharidis, Antonis Argyros

Responsive image

Auto-TLDR; Exploiting the Information Content of Language Label Associations for Human Action Recognition

Slides Poster Similar

Human activity recognition is a fundamental and challenging task in computer vision. Its solution can support multiple and diverse applications in areas including but not limited to smart homes, surveillance, daily living assistance, Human-Robot Collaboration (HRC), etc. In realistic conditions, the complexity of human activities ranges from simple coarse actions, such as siting or standing up, to more complex activities that consist of multiple actions with subtle variations in appearance and motion patterns. A large variety of existing datasets target specific action classes, with some of them being coarse and others being fine-grained. In all of them, a description of the action and its complexity is manifested in the action label sentence. As the action/activity complexity increases, so is the label sentence size and the amount of action-related semantic information contained in this description. In this paper, we propose an approach to exploit the information content of these action labels to formulate a coarse-to-fine action hierarchy based on linguistic label associations, and investigate the potential benefits and drawbacks. Moreover, in a series of quantitative and qualitative experiments, we show that the exploitation of this hierarchical organization of action classes in different levels of granularity improves the learning speed and overall performance of a range of baseline and mid-range deep architectures for human action recognition (HAR).

Predicting Chemical Properties Using Self-Attention Multi-Task Learning Based on SMILES Representation

Sangrak Lim, Yong Oh Lee

Responsive image

Auto-TLDR; Self-attention based Transformer-Variant Model for Chemical Compound Properties Prediction

Slides Poster Similar

In the computational prediction of chemical compound properties, molecular descriptors and fingerprints encoded to low dimensional vectors are used. The selection of proper molecular descriptors and fingerprints is both important and challenging as the performance of such models is highly dependent on descriptors. To overcome this challenge, natural language processing models that utilize simplified molecular input line entry system as input were studied, and several transformer variant models achieved superior results when compared with conventional methods. In this study, we explored the structural differences of the transformer-variant model and proposed a new self-attention based model. The representation learning performance of the self-attention module was evaluated in a multi-task learning environment using imbalanced chemical datasets. The experiment results showed that our model achieved competitive outcomes on several benchmark datasets. The source code of our experiment is available at https://github.com/arwhirang/sa-mtl and the dataset is available from the same URL.

Context Visual Information-Based Deliberation Network for Video Captioning

Min Lu, Xueyong Li, Caihua Liu

Responsive image

Auto-TLDR; Context visual information-based deliberation network for video captioning

Slides Poster Similar

Video captioning is to automatically and accurately generate a textual description for a video. The typical methods following the encoder-decoder architecture directly utilized hidden states to predict words. Nevertheless, these methods did not amend the inaccurate hidden states before feeding those states into word prediction. This led to a cascade of errors on generating word by word. In this paper, the context visual information-based deliberation network is proposed, abbreviated as CVI-DelNet. Its key idea is to introduce the deliberator into the encoder-decoder framework. The encoder-decoder firstly generates a raw hidden state sequence. Unlike the existing methods, the raw hidden state is no more directly used for word prediction but is fed into the deliberator to generate the refined hidden state. The words are then predicted according to the refined hidden states and the contextual visual features. Results on two datasets shows that the proposed method significantly outperforms the baselines.

Multi-Stage Attention Based Visual Question Answering

Aakansha Mishra, Ashish Anand, Prithwijit Guha

Responsive image

Auto-TLDR; Alternative Bi-directional Attention for Visual Question Answering

Poster Similar

Recent developments in the field of Visual Question Answering (VQA) have witnessed promising improvements in performance through contributions in attention based networks. Most such approaches have focused on unidirectional attention that leverage over attention from textual domain (question) on visual space. These approaches mostly focused on learning high-quality attention in the visual space. In contrast, this work proposes an alternating bi-directional attention framework. First, a question to image attention helps to learn the robust visual space embedding, and second, an image to question attention helps to improve the question embedding. This attention mechanism is realized in an alternating fashion i.e. question-to-image followed by image-to-question and is repeated for maximizing performance. We believe that this process of alternating attention generation helps both the modalities and leads to better representations for the VQA task. This proposal is benchmark on TDIUC dataset and against state-of-art approaches. Our ablation analysis shows that alternate attention is the key to achieve high performance in VQA.

Semantics to Space(S2S): Embedding Semantics into Spatial Space for Zero-Shot Verb-Object Query Inferencing

Sungmin Eum, Heesung Kwon

Responsive image

Auto-TLDR; Semantics-to-Space: Deep Zero-Shot Learning for Verb-Object Interaction with Vectors

Slides Poster Similar

We present a novel deep zero-shot learning (ZSL) model for inferencing human-object-interaction with verb-object (VO) query. While the previous two-stream ZSL approaches only use the semantic/textual information to be fed into the query stream, we seek to incorporate and embed the semantics into the visual representation stream as well. Our approach is powered by Semantics-to-Space (S2S) architecture where semantics derived from the residing objects are embedded into a spatial space of the visual stream. This architecture allows the co-capturing of the semantic attributes of the human and the objects along with their location/size/silhouette information. To validate, we have constructed a new dataset, Verb-Transferability 60 (VT60). VT60 provides 60 different VO pairs with overlapping verbs tailored for testing two-stream ZSL approaches with VO query. Experimental evaluations show that our approach not only outperforms the state-of-the-art, but also shows the capability of consistently improving performance regardless of which ZSL baseline architecture is used.

Temporally Coherent Embeddings for Self-Supervised Video Representation Learning

Joshua Knights, Ben Harwood, Daniel Ward, Anthony Vanderkop, Olivia Mackenzie-Ross, Peyman Moghadam

Responsive image

Auto-TLDR; Temporally Coherent Embeddings for Self-supervised Video Representation Learning

Slides Poster Similar

This paper presents TCE: Temporally Coherent Embeddings for self-supervised video representation learning. The proposed method exploits inherent structure of unlabeled video data to explicitly enforce temporal coherency in the embedding space, rather than indirectly learning it through ranking or predictive proxy tasks. In the same way that high-level visual information in the world changes smoothly, we believe that nearby frames in learned representations will benefit from demonstrating similar properties. Using this assumption, we train our TCE model to encode videos such that adjacent frames exist close to each other and videos are separated from one another. Using TCE we learn robust representations from large quantities of unlabeled video data. We thoroughly analyse and evaluate our self-supervised learned TCE models on a downstream task of video action recognition using multiple challenging benchmarks (Kinetics400, UCF101, HMDB51). With a simple but effective 2D-CNN backbone and only RGB stream inputs, TCE pre-trained representations outperform all previous self-supervised 2D-CNN and 3D-CNN trained on UCF101. The code and pre-trained models for this paper can be downloaded at: https://github.com/csiro-robotics/TCE

Answer-Checking in Context: A Multi-Modal Fully Attention Network for Visual Question Answering

Hantao Huang, Tao Han, Wei Han, Deep Yap Deep Yap, Cheng-Ming Chiang

Responsive image

Auto-TLDR; Fully Attention Based Visual Question Answering

Slides Poster Similar

Visual Question Answering (VQA) is challenging due to the complex cross-modality relations. It has received extensive attention from the research community. From the human perspective, to answer a visual question, one needs to read the question and then refer to the image to generate an answer. Such answer will then be checked against the question and image again for the final confirmation. In this paper, we mimic this process and propose a fully attention based VQA architecture. Moreover, an answer-checking module is proposed to perform a unified attention on the jointly answer, question and image representation to update the answer. This mimics the human answer checking process to consider the answer in the context. With answer-checking modules and transferred BERT layers, our model achieves a state-of-the-art accuracy 71.57\% using less parameters on VQA-v2.0 test-standard split.

Large-Scale Historical Watermark Recognition: Dataset and a New Consistency-Based Approach

Xi Shen, Ilaria Pastrolin, Oumayma Bounou, Spyros Gidaris, Marc Smith, Olivier Poncet, Mathieu Aubry

Responsive image

Auto-TLDR; Historical Watermark Recognition with Fine-Grained Cross-Domain One-Shot Instance Recognition

Slides Poster Similar

Historical watermark recognition is a highly practical, yet unsolved challenge for archivists and historians. With a large number of well-defined classes, cluttered and noisy samples, different types of representations, both subtle differences between classes and high intra-class variation, historical watermarks are also challenging for pattern recognition. In this paper, overcoming the difficulty of data collection, we present a large public dataset with more than 6k new photographs, allowing for the first time to tackle at scale the scenarios of practical interest for scholars: one-shot instance recognition and cross-domain one-shot instance recognition amongst more than 16k fine-grained classes. We demonstrate that this new dataset is large enough to train modern deep learning approaches, and show that standard methods can be improved considerably by using mid-level deep features. More precisely, we design both a matching score and a feature fine-tuning strategy based on filtering local matches using spatial consistency. This consistency-based approach provides important performance boost compared to strong baselines. Our model achieves 55\% as top-1 accuracy on our very challenging 16,753-class one-shot cross-domain recognition task, each class described by a single drawing from the classic Briquet catalog. In addition to watermark classification, we show our approach provides promising results on fine-grained sketch-based image retrieval.

A Novel Actor Dual-Critic Model for Remote Sensing Image Captioning

Ruchika Chavhan, Biplab Banerjee, Xiao Xiang Zhu, Subhasis Chaudhuri

Responsive image

Auto-TLDR; Actor Dual-Critic Training for Remote Sensing Image Captioning Using Deep Reinforcement Learning

Slides Poster Similar

We deal with the problem of generating textual captions from optical remote sensing (RS) images using the notion of deep reinforcement learning. Due to the high inter-class similarity in reference sentences describing remote sensing data, jointly encoding the sentences and images encourages prediction of captions that are semantically more precise than the ground truth in many cases. To this end, we introduce an Actor Dual-Critic training strategy where a second critic model is deployed in the form of an encoder-decoder RNN to encode the latent information corresponding to the original and generated captions. While all actor-critic methods use an actor to predict sentences for an image and a critic to provide rewards, our proposed encoder-decoder RNN guarantees high-level comprehension of images by sentence-to-image translation. We observe that the proposed model generates sentences on the test data highly similar to the ground truth and is successful in generating even better captions in many critical cases. Extensive experiments on the benchmark Remote Sensing Image Captioning Dataset (RSICD) and the UCM-captions dataset confirm the superiority of the proposed approach in comparison to the previous state-of-the-art where we obtain a gain of sharp increments in both the ROUGE-L and CIDEr measures.

Reinforcement Learning with Dual Attention Guided Graph Convolution for Relation Extraction

Zhixin Li, Yaru Sun, Suqin Tang, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Dual Attention Graph Convolutional Network for Relation Extraction

Slides Poster Similar

To better learn the dependency relationship between nodes, we address the relationship extraction task by capturing rich contextual dependencies based on the attention mechanism, and using distributional reinforcement learning to generate optimal relation information representation. This method is called Dual Attention Graph Convolutional Network (DAGCN), to adaptively integrate local features with their global dependencies. Specifically, we append two types of attention modules on top of GCN, which model the semantic interdependencies in spatial and relational dimensions respectively. The position attention module selectively aggregates the feature at each position by a weighted sum of the features at all positions of nodes internal features. Meanwhile, the relation attention module selectively emphasizes interdependent node relations by integrating associated features among all nodes. We sum the outputs of the two attention modules and use reinforcement learning to predict the classification of nodes relationship to further improve feature representation which contributes to more precise extraction results. The results on the TACRED and SemEval datasets show that the model can obtain more useful information for relational extraction tasks, and achieve better performances on various evaluation indexes.

P ≈ NP, at Least in Visual Question Answering

Shailza Jolly, Sebastian Palacio, Joachim Folz, Federico Raue, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Polar vs Non-Polar VQA: A Cross-over Analysis of Feature Spaces for Joint Training

Similar

In recent years, progress in the Visual Question Answering (VQA) field has largely been driven by public challenges and large datasets. One of the most widely-used of these is the VQA 2.0 dataset, consisting of polar ("yes/no") and non-polar questions. Looking at the question distribution over all answers, we find that the answers "yes" and "no" account for 38% of the questions, while the remaining 62% are spread over the more than 3000 remaining answers. While several sources of biases have already been investigated in the field, the effects of such an over-representation of polar vs. non-polar questions remain unclear. In this paper, we measure the potential confounding factors when polar and non-polar samples are used jointly to train a baseline VQA classifier, and compare it to an upper bound where the over-representation of polar questions is excluded from the training. Further, we perform cross-over experiments to analyze how well the feature spaces align. Contrary to expectations, we find no evidence of counterproductive effects in the joint training of unbalanced classes. In fact, by exploring the intermediate feature space of visual-text embeddings, we find that the feature space of polar questions already encodes sufficient structure to answer many non-polar questions. Our results indicate that the polar (P) and the non-polar (NP) feature spaces are strongly aligned, hence the expression P ≈ NP.

Named Entity Recognition and Relation Extraction with Graph Neural Networks in Semi Structured Documents

Manuel Carbonell, Pau Riba, Mauricio Villegas, Alicia Fornés, Josep Llados

Responsive image

Auto-TLDR; Graph Neural Network for Entity Recognition and Relation Extraction in Semi-Structured Documents

Slides Similar

The use of administrative documents to communicate and leave record of business information requires of methods able to automatically extract and understand the content from such documents in a robust and efficient way. In addition, the semi-structured nature of these reports is specially suited for the use of graph-based representations which are flexible enough to adapt to the deformations from the different document templates. Moreover, Graph Neural Networks provide the proper methodology to learn relations among the data elements in these documents. In this work we study the use of Graph Neural Network architectures to tackle the problem of entity recognition and relation extraction in semi-structured documents. Our approach achieves state of the art results on the three tasks involved in the process. Moreover, the experimentation with two datasets of different nature demonstrates the good generalization ability of our approach.

Attentive Visual Semantic Specialized Network for Video Captioning

Jesus Perez-Martin, Benjamin Bustos, Jorge Pérez

Responsive image

Auto-TLDR; Adaptive Visual Semantic Specialized Network for Video Captioning

Slides Poster Similar

As an essential high-level task of video understanding topic, automatically describing a video with natural language has recently gained attention as a fundamental challenge in computer vision. Previous models for video captioning have several limitations, such as the existence of gaps in current semantic representations and the inexpressibility of the generated captions. To deal with these limitations, in this paper, we present a new architecture that we callAttentive Visual Semantic Specialized Network(AVSSN), which is an encoder-decoder model based on our Adaptive Attention Gate and Specialized LSTM layers. This architecture can selectively decide when to use visual or semantic information into the text generation process. The adaptive gate makes the decoder to automatically select the relevant information for providing a better temporal state representation than the existing decoders. Besides, the model is capable of learning to improve the expressiveness of generated captions attending to their length, using a sentence-length-related loss function. We evaluate the effectiveness of the proposed approach on the Microsoft Video Description(MSVD) and the Microsoft Research Video-to-Text (MSR-VTT) datasets, achieving state-of-the-art performance with several popular evaluation metrics: BLEU-4, METEOR, CIDEr, and ROUGE_L.

VSB^2-Net: Visual-Semantic Bi-Branch Network for Zero-Shot Hashing

Xin Li, Xiangfeng Wang, Bo Jin, Wenjie Zhang, Jun Wang, Hongyuan Zha

Responsive image

Auto-TLDR; VSB^2-Net: inductive zero-shot hashing for image retrieval

Slides Poster Similar

Zero-shot hashing aims at learning hashing model from seen classes and the obtained model is capable of generalizing to unseen classes for image retrieval. Inspired by zero-shot learning, existing zero-shot hashing methods usually transfer the supervised knowledge from seen to unseen classes, by embedding the hamming space to a shared semantic space. However, this makes instances difficult to distinguish due to limited hashing bit numbers, especially for semantically similar unseen classes. We propose a novel inductive zero-shot hashing framework, i.e., VSB^2-Net, where both semantic space and visual feature space are embedded to the same hamming space instead. The reconstructive semantic relationships are established in the hamming space, preserving local similarity relationships and explicitly enlarging the discrepancy between semantic hamming vectors. A two-task architecture, comprising of classification module and visual feature reconstruction module, is employed to enhance the generalization and transfer abilities. Extensive evaluation results on several benchmark datasets demonstratethe superiority of our proposed method compared to several state-of-the-art baselines.

End-To-End Triplet Loss Based Emotion Embedding System for Speech Emotion Recognition

Puneet Kumar, Sidharth Jain, Balasubramanian Raman, Partha Pratim Roy, Masakazu Iwamura

Responsive image

Auto-TLDR; End-to-End Neural Embedding System for Speech Emotion Recognition

Slides Poster Similar

In this paper, an end-to-end neural embedding system based on triplet loss and residual learning has been proposed for speech emotion recognition. The proposed system learns the embeddings from the emotional information of the speech utterances. The learned embeddings are used to recognize the emotions portrayed by given speech samples of various lengths. The proposed system implements Residual Neural Network architecture. It is trained using softmax pre-training and triplet loss function. The weights between the fully connected and embedding layers of the trained network are used to calculate the embedding values. The embedding representations of various emotions are mapped onto a hyperplane, and the angles among them are computed using the cosine similarity. These angles are utilized to classify a new speech sample into its appropriate emotion class. The proposed system has demonstrated 91.67\% and 64.44\% accuracy while recognizing emotions for RAVDESS and IEMOCAP dataset, respectively.

Multi-Modal Contextual Graph Neural Network for Text Visual Question Answering

Yaoyuan Liang, Xin Wang, Xuguang Duan, Wenwu Zhu

Responsive image

Auto-TLDR; Multi-modal Contextual Graph Neural Network for Text Visual Question Answering

Slides Poster Similar

Text visual question answering (TextVQA) targets at answering the question related to texts appearing in the given images, posing more challenges than VQA by requiring a deeper recognition and understanding of various shapes of human-readable scene texts as well as their meanings in different contexts. Existing works on TextVQA suffer from two weaknesses: i) scene texts and non-textual objects are processed separately and independently without considering their mutual interactions during the question understanding and answering process, ii) scene texts are encoded only through word embeddings without taking the corresponding visual appearance features as well as their potential relationships with other non-textual objects in the images into account. To overcome the weakness of exiting works, we propose a novel multi-modal contextual graph neural network (MCG) model for TextVQA. The proposed MCG model can capture the relationships between visual features of scene texts and non-textual objects in the given images as well as utilize richer sources of multi-modal features to improve the model performance. In particular, we encode the scene texts into richer features containing textual, visual and positional features, then model the visual relations between scene texts and non-textual objects through a contextual graph neural network. Our extensive experiments on real-world dataset demonstrate the advantages of the proposed MCG model over baseline approaches.

Multi-Task Learning for Calorie Prediction on a Novel Large-Scale Recipe Dataset Enriched with Nutritional Information

Robin Ruede, Verena Heusser, Lukas Frank, Monica Haurilet, Alina Roitberg, Rainer Stiefelhagen

Responsive image

Auto-TLDR; Pic2kcal: Learning Food Recipes from Images for Calorie Estimation

Slides Poster Similar

A rapidly growing amount of content posted online, such as food recipes, opens doors to new exciting applications at the intersection of vision and language. In this work, we aim to estimate the calorie amount of a meal directly from an image by learning from recipes people have published on the Internet, thus skipping time-consuming manual data annotation. Since there are few large-scale publicly available datasets captured in unconstrained environments, we propose the pic2kcal benchmark comprising 308,000 images from over 70,000 recipes including photographs, ingredients and instructions. To obtain nutritional information of the ingredients and automatically determine the ground-truth calorie value, we match the items in the recipes with structured information from a food item database. We evaluate various neural networks for regression of the calorie quantity and extend them with the multi-task paradigm. Our learning procedure combines the calorie estimation with prediction of proteins, carbohydrates, and fat amounts as well as a multi-label ingredient classification. Our experiments demonstrate clear benefits of multi-task learning for calorie estimation, surpassing the single-task calorie regression by 9.9%. To encourage further research on this task, we make the code for generating the dataset and the models publicly available.

Beyond the Deep Metric Learning: Enhance the Cross-Modal Matching with Adversarial Discriminative Domain Regularization

Li Ren, Kai Li, Liqiang Wang, Kien Hua

Responsive image

Auto-TLDR; Adversarial Discriminative Domain Regularization for Efficient Cross-Modal Matching

Slides Poster Similar

Matching information across image and text modalities is a fundamental challenge for many applications that involve both vision and natural language processing. The objective is to find efficient similarity metrics to compare the similarity between visual and textual information. Existing approaches mainly match the local visual objects and the sentence words in a shared space with attention mechanisms. The matching performance is still limited because the similarity computation is based on simple comparisons of the matching features, ignoring the characteristics of their distribution in the data. In this paper, we address this limitation with an efficient learning objective that considers the discriminative feature distributions between the visual objects and sentence words. Specifically, we propose a novel Adversarial Discriminative Domain Regularization (ADDR) learning framework, beyond the paradigm metric learning objective, to construct a set of discriminative data domains within each image-text pairs. Our approach can generally improve the learning efficiency and the performance of existing metrics learning frameworks by regulating the distribution of the hidden space between the matching pairs. The experimental results show that this new approach significantly improves the overall performance of several popular cross-modal matching techniques (SCAN, VSRN, BFAN) on the MS-COCO and Flickr30K benchmarks.

MAGNet: Multi-Region Attention-Assisted Grounding of Natural Language Queries at Phrase Level

Amar Shrestha, Krittaphat Pugdeethosapol, Haowen Fang, Qinru Qiu

Responsive image

Auto-TLDR; MAGNet: A Multi-Region Attention-Aware Grounding Network for Free-form Textual Queries

Slides Poster Similar

Grounding free-form textual queries necessitates an understanding of these textual phrases and its relation to the visual cues to reliably reason about the described locations. Spatial attention networks are known to learn this relationship and focus its gaze on salient objects in the image. Thus, we propose to utilize spatial attention networks for image-level visual-textual fusion preserving local (word) and global (phrase) information to refine region proposals with an in-network Region Proposal Network (RPN) and detect single or multiple regions for a phrase query. We focus only on the phrase query - ground truth pair (referring expression) for a model independent of the constraints of the datasets i.e. additional attributes, context etc. For such referring expression dataset ReferIt game, our Multi- region Attention-assisted Grounding network (MAGNet) achieves over 12% improvement over the state-of-the-art. Without the con- text from image captions and attribute information in Flickr30k Entities, we still achieve competitive results compared to the state- of-the-art.

Cross-Supervised Joint-Event-Extraction with Heterogeneous Information Networks

Yue Wang, Zhuo Xu, Yao Wan, Lu Bai, Lixin Cui, Qian Zhao, Edwin Hancock, Philip Yu

Responsive image

Auto-TLDR; Joint-Event-extraction from Unstructured corpora using Structural Information Network

Slides Poster Similar

Joint-event-extraction, which extracts structural information (i.e., entities or triggers of events) from unstructured real-world corpora, has attracted more and more research attention in natural language processing. \revised{Most existing works do not fully address the sparse co-occurred relationships between entities and triggers. This exacerbates the error-propagation problem} which may degrade the extraction performance. To mitigate this issue, we first define the joint-event-extraction as a sequence-to-sequence labeling task with a tag set which is composed of tags of triggers and entities. Then, to incorporate the missing information in the aforementioned co-occurred relationships, we propose a \underline{C}ross-\underline{S}upervised \underline{M}echanism (CSM) to alternately supervise the extraction of either triggers or entities based on the type distribution of each other. Moreover, since the connected entities and triggers naturally form a heterogeneous information network (HIN), we leverage the latent pattern along meta-paths for a given corpus to further improve the performance of our proposed method. To verify the effectiveness of our proposed method, we conduct extensive experiments on real-world datasets as well as compare our method with state-of-the-art methods. Empirical results and analysis show that our approach outperforms the state-of-the-art methods in both entity and trigger extraction.

Emerging Relation Network and Task Embedding for Multi-Task Regression Problems

Schreiber Jens, Bernhard Sick

Responsive image

Auto-TLDR; A Comparative Study of Multi-Task Learning for Non-linear Time Series Problems

Slides Poster Similar

Multi-Task learning (MTL) provides state-of-the-art results in many applications of computer vision and natural language processing. In contrast to single-task learning (STL), MTL allows for leveraging knowledge between related tasks improving prediction results on all tasks. However, there is a limited number of comparative studies applied to MTL architectures for regression and time series problems taking recent advances of MTL into account. An intriguing, non-linear time-series problem are day ahead forecasts of the expected power generation for renewable power plants. Therefore, the main contribution of this article is a comparative study of the following recent and relevant MTL architectures: Hard-parameter sharing, cross-stitch network, and sluice network (SN). They are compared to a multi-layer peceptron (MLP) model of similar size in an STL setting. As a additional contribution, we provide a simple, yet practical approach to model task specific information through an embedding layer in an MLP, referred to as task embedding. Further, we contribute a new MTL architecture named emerging relation network (ERN), which can be considered as an extension of the SN. For a solar power dataset, the task embedding achieves the best mean improvement with 8.2%. For two wind and one additional solar dataset, the ERN is the best MTL architecture with improvements up to 11.3%.

Automatic Annotation of Corpora for Emotion Recognition through Facial Expressions Analysis

Alex Mircoli, Claudia Diamantini, Domenico Potena, Emanuele Storti

Responsive image

Auto-TLDR; Automatic annotation of video subtitles on the basis of facial expressions using machine learning algorithms

Slides Poster Similar

The recent diffusion of social networks has made available an unprecedented amount of user-generated content, which may be analyzed in order to determine people's opinions and emotions about a large variety of topics. Research has made many efforts in defining accurate algorithms for analyzing emotions expressed by users in texts; however, their performance often rely on the existence of large annotated datasets, whose current scarcity represents a major issue. The manual creation of such datasets represents a costly and time-consuming activity and hence there is an increasing demand for techniques for the automatic annotation of corpora. In this work we present a methodology for the automatic annotation of video subtitles on the basis of the analysis of facial expressions of people in videos, with the goal of creating annotated corpora that may be used to train emotion recognition algorithms. Facial expressions are analyzed through machine learning algorithms, on the basis of a set of manually-engineered facial features that are extracted from video frames. The soundness of the proposed methodology has been evaluated through an extensive experimentation aimed at determining the performance on real datasets of each methodological step.