A Framework for Local Outlier Detection from Spatio-Temporal Trajectory Datasets

Xumin Cai, Berkay Aydin, Anli Ji, Rafal Angryk

Responsive image

Auto-TLDR; Local Outlier Detection Using Spatial and Temporal Features of Trajectory Segment Using Time-Based partition strategy

Slides

As one of the primary tasks in data mining, outlierdetection serves a significant role in data quality enhancementfor the scientific model prediction and revealing the abnormalhidden patterns from large scale trajectory datasets. In this paper,we introduce a versatile framework for detecting local trajectoryoutliers using spatial and temporal features of moving objects.Our local outlier detection consists of three phases. In the firstphase, we divide the raw trajectory into trajectory segments byusing a time-based partition strategy and extracting trajectoryfeatures from spatial attributes for each trajectory segment. Inthe second phase, we create template trajectory segments basedon a clustering schema. In the final phase, we compute theabnormal score, which measures the dissimilarity among thequery and template trajectory segments, and thus determine theoutlying trajectory segments according to the overall distributionof abnormal score. To show the effectiveness of our approach, weconduct two case studies on the real-life solar active region andCoronal Mass Ejection (CME) trajectory datasets. Our resultsshow that our local outlier detection method can successfullydetect the reporting errors and anomalous phenomenon in bothof our case studies.

Similar papers

Seasonal Inhomogeneous Nonconsecutive Arrival Process Search and Evaluation

Kimberly Holmgren, Paul Gibby, Joseph Zipkin

Responsive image

Auto-TLDR; SINAPSE: Fitting a Sparse Time Series Model to Seasonal Data

Slides Poster Similar

Time series often exhibit seasonal patterns, and identification of these patterns is essential to understanding the data and predicting future behavior. Most methods train on large datasets and can fail to predict far past the training data. This limitation becomes more pronounced when data is sparse. This paper presents a method to fit a model to seasonal time series data that maintains predictive power when data is limited. This method, called \textit{SINAPSE}, combines statistical model fitting with an information criteria to search for disjoint, and possibly nonconsecutive, regimes underlying the data, allowing for a sparse representation resistant to overfitting.

Improved Time-Series Clustering with UMAP Dimension Reduction Method

Clément Pealat, Vincent Cheutet, Guillaume Bouleux

Responsive image

Auto-TLDR; Time Series Clustering with UMAP as a Pre-processing Step

Slides Poster Similar

Clustering is an unsupervised machine learning method giving insights on data without early knowledge. Classes of data are return by assembling similar elements together. Giving the increasing of the available data, this method is now applied in a lot of fields with various data types. Here, we propose to explore the case of time series clustering. Indeed, time series are one of the most classic data type, and are present in various fields such as medical or finance. This kind of data can be pre-processed by of dimension reduction methods, such as the recent UMAP algorithm. In this paper, a benchmark of time series clustering is created, comparing the results with and without UMAP as a pre-processing step. UMAP is used to enhance clustering results. For completeness, three different clustering algorithms and two different geometric representation for the time series (Classic Euclidean geometry, and Riemannian geometry on the Stiefel Manifold) are applied. The results are compared with and without UMAP as a pre-processing step on the databases available at UCR Time Series Classification Archive www.cs.ucr.edu/~eamonn/time_series_data/.

Detecting Anomalies from Video-Sequences: A Novel Descriptor

Giulia Orrù, Davide Ghiani, Maura Pintor, Gian Luca Marcialis, Fabio Roli

Responsive image

Auto-TLDR; Trit-based Measurement of Group Dynamics for Crowd Behavior Analysis and Anomaly Detection

Slides Poster Similar

We present a novel descriptor for crowd behavior analysis and anomaly detection. The goal is to measure by appropriate patterns the speed of formation and disintegration of groups in the crowd. This descriptor is inspired by the concept of one-dimensional local binary patterns: in our case, such patterns depend on the number of group observed in a time window. An appropriate measurement unit, named "trit" (trinary digit), represents three possible dynamic states of groups on a certain frame. Our hypothesis is that abrupt variations of the groups' number may be due to an anomalous event that can be accordingly detected, by translating these variations on temporal trit-based sequence of strings which are significantly different from the one describing the "no-anomaly" one. Due to the peculiarity of the rationale behind this work, relying on the number of groups, three different methods of people group's extraction are compared. Experiments are carried out on the Motion-Emotion benchmark data set. Reported results point out in which cases the trit-based measurement of group dynamics allows us to detect the anomaly. Besides the promising performance of our approach, we show how it is correlated with the anomaly typology and the camera's perspective to the crowd's flow (frontal, lateral).

The eXPose Approach to Crosslier Detection

Antonio Barata, Frank Takes, Hendrik Van Den Herik, Cor Veenman

Responsive image

Auto-TLDR; EXPose: Crosslier Detection Based on Supervised Category Modeling

Slides Poster Similar

Transit of wasteful materials within the European Union is highly regulated through a system of permits. Waste processing costs vary greatly depending on the waste category of a permit. Therefore, companies may have a financial incentive to allege transporting waste with erroneous categorisation. Our goal is to assist inspectors in selecting potentially manipulated permits for further investigation, making their task more effective and efficient. Due to data limitations, a supervised learning approach based on historical cases is not possible. Standard unsupervised approaches, such as outlier detection and data quality-assurance techniques, are not suited since we are interested in targeting non-random modifications in both category and category-correlated features. For this purpose we (1) introduce the concept of crosslier: an anomalous instance of a category which lies across other categories; (2) propose eXPose: a novel approach to crosslier detection based on supervised category modelling; and (3) present the crosslier diagram: a visualisation tool specifically designed for domain experts to easily assess crossliers. We compare eXPose against traditional outlier detection methods in various benchmark datasets with synthetic crossliers and show the superior performance of our method in targeting these instances.

An Invariance-Guided Stability Criterion for Time Series Clustering Validation

Florent Forest, Alex Mourer, Mustapha Lebbah, Hanane Azzag, Jérôme Lacaille

Responsive image

Auto-TLDR; An invariance-guided method for clustering model selection in time series data

Slides Poster Similar

Time series clustering is a challenging task due to the specificities of this type of data. Temporal correlation and invariance to transformations such as shifting, warping or noise prevent the use of standard data mining methods. Time series clustering has been mostly studied under the angle of finding efficient algorithms and distance metrics adapted to the specific nature of time series data. Much less attention has been devoted to the general problem of model selection. Clustering stability has emerged as a universal and model-agnostic principle for clustering model selection. This principle can be stated as follows: an algorithm should find a structure in the data that is resilient to perturbation by sampling or noise. We propose to apply stability analysis to time series by leveraging prior knowledge on the nature and invariances of the data. These invariances determine the perturbation process used to assess stability. Based on a recently introduced criterion combining between-cluster and within-cluster stability, we propose an invariance-guided method for model selection, applicable to a wide range of clustering algorithms. Experiments conducted on artificial and benchmark data sets demonstrate the ability of our criterion to discover structure and select the correct number of clusters, whenever data invariances are known beforehand.

PIF: Anomaly detection via preference embedding

Filippo Leveni, Luca Magri, Giacomo Boracchi, Cesare Alippi

Responsive image

Auto-TLDR; PIF: Anomaly Detection with Preference Embedding for Structured Patterns

Slides Poster Similar

We address the problem of detecting anomalies with respect to structured patterns. To this end, we conceive a novel anomaly detection method called PIF, that combines the advantages of adaptive isolation methods with the flexibility of preference embedding. Specifically, we propose to embed the data in a high dimensional space where an efficient tree-based method, PI-FOREST, is employed to compute an anomaly score. Experiments on synthetic and real datasets demonstrate that PIF favorably compares with state-of-the-art anomaly detection techniques, and confirm that PI-FOREST is better at measuring arbitrary distances and isolate points in the preference space.

Penalized K-Means Algorithms for Finding the Number of Clusters

Behzad Kamgar-Parsi, Behrooz Kamgar-Parsi

Responsive image

Auto-TLDR; Exploring the coefficient of additive penalty in k-means for ideal clusters

Slides Poster Similar

In many applications we want to find the number of clusters in a dataset. A common approach is to use a penalized k-means algorithm with an additive penalty term linear in the number of clusters. Obviously, the number of discovered clusters depends critically on the value of the coefficient of the penalty term, and an open problem is estimating the value of the coefficient in a principled manner. In this paper (a) We derive rigorous bounds for the coefficient of additive penalty in k-means for ideal clusters. Although in practice clusters typically deviate from the ideal assumption, the ideal case serves as a useful guideline. (b) We propose an alternative approach to additive penalty, namely multiplicative penalty, which appears to produce a more reliable signature for the correct number of clusters in most cases. We also empirically investigate certain types of deviations from ideal cluster assumption and show, in particular, that the best way to resolve ambiguous solutions is to combine additive and multiplicative penalties.

Location Prediction in Real Homes of Older Adults based on K-Means in Low-Resolution Depth Videos

Simon Simonsson, Flávia Dias Casagrande, Evi Zouganeli

Responsive image

Auto-TLDR; Semi-supervised Learning for Location Recognition and Prediction in Smart Homes using Depth Video Cameras

Slides Poster Similar

In this paper we propose a novel method for location recognition and prediction in smart homes based on semi-supervised learning. We use data collected from low-resolution depth video cameras installed in four apartments with older adults over 70 years of age, and collected during a period of one to seven weeks. The location of the person in the depth images is detected by a person detection algorithm adapted from YOLO (You Only Look Once). The locations extracted from the videos are then clustered using K-means clustering. Sequence prediction algorithms are used to predict the next cluster (location) based on the previous clusters (locations). The accuracy of predicting the next location is up to 91%, a significant improvement compared to the case where binary sensors are placed in the apartment based on human intuition. The paper presents an analysis on the effect of the memory length (i.e. the number of previous clusters used to predict the next one), and on the amount of recorded data required to converge.

A Multi-Task Multi-View Based Multi-Objective Clustering Algorithm

Sayantan Mitra, Sriparna Saha

Responsive image

Auto-TLDR; MTMV-MO: Multi-task multi-view multi-objective optimization for multi-task clustering

Slides Poster Similar

In recent years, multi-view multi-task clustering has received much attention. There are several real-life problems that involve both multi-view clustering and multi-task clustering, i.e., the tasks are closely related, and each task can be analyzed using multiple views. Traditional multi-task multi-view clustering algorithms use single-objective optimization-based approaches and cannot apply too-many regularization terms. However, these problems are inherently some multi-objective optimization problems because conflict may be between different views within a given task and also between different tasks, necessitating a trade-off. Based on these observations, in this paper, we have proposed a novel multi-task multi-view multi-objective optimization (MTMV-MO) algorithm which simultaneously optimizes three objectives, i.e., within-view task relation, within-task view relation and the quality of the clusters obtained. The proposed methodology (MTMV-MO) is evaluated on four different datasets and the results are compared with five state-of-the-art algorithms in terms of Adjusted Rand Index (ARI) and Classification Accuracy (%CoA). MTMV-MO illustrates an improvement of 1.5-2% in terms of ARI and 4-5% in terms of %CoA compared to the state-of-the-art algorithms.

Video Analytics Gait Trend Measurement for Fall Prevention and Health Monitoring

Lawrence O'Gorman, Xinyi Liu, Md Imran Sarker, Mariofanna Milanova

Responsive image

Auto-TLDR; Towards Health Monitoring of Gait with Deep Learning

Slides Poster Similar

We design a video analytics system to measure gait over time and detect trend and outliers in the data. The purpose is for health monitoring, the thesis being that trend especially can lead to early detection of declining health and be used to prevent accidents such as falls in the elderly. We use the OpenPose deep learning tool for recognizing the back and neck angle features of walking people, and measure speed as well. Trend and outlier statistics are calculated upon time series of these features. A challenge in this work is lack of testing data of decaying gait. We first designed experiments to measure consistency of the system on a healthy population, then analytically altered this real data to simulate gait decay. Results on about 4000 gait samples of 50 people over 3 months showed good separation of healthy gait subjects from those with trend or outliers, and furthermore the trend measurement was able to detect subtle decay in gait not easily discerned by the human eye.

One Step Clustering Based on A-Contrario Framework for Detection of Alterations in Historical Violins

Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, Marco Malagodi

Responsive image

Auto-TLDR; A-Contrario Clustering for the Detection of Altered Violins using UVIFL Images

Slides Poster Similar

Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of interventions necessary. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the ``Violins UVIFL imagery'' dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with the state of the art clustering methods shows improved overall precision and recall.

Deep Convolutional Embedding for Digitized Painting Clustering

Giovanna Castellano, Gennaro Vessio

Responsive image

Auto-TLDR; A Deep Convolutional Embedding Model for Clustering Artworks

Slides Poster Similar

Clustering artworks is difficult because of several reasons. On one hand, recognizing meaningful patterns in accordance with domain knowledge and visual perception is extremely hard. On the other hand, the application of traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, we propose to use a deep convolutional embedding model for digitized painting clustering, in which the task of mapping the input raw data to an abstract, latent space is jointly optimized with the task of finding a set of cluster centroids in this latent feature space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. The model is also able to outperform other state-of-the-art deep clustering approaches to the same problem. The proposed method may be beneficial to several art-related tasks, particularly visual link retrieval and historical knowledge discovery in painting datasets.

Multiple Future Prediction Leveraging Synthetic Trajectories

Lorenzo Berlincioni, Federico Becattini, Lorenzo Seidenari, Alberto Del Bimbo

Responsive image

Auto-TLDR; Synthetic Trajectory Prediction using Markov Chains

Slides Poster Similar

Trajectory prediction is an important task, especially in autonomous driving. The ability to forecast the position of other moving agents can yield to an effective planning, ensuring safety for the autonomous vehicle as well for the observed entities. In this work we propose a data driven approach based on Markov Chains to generate synthetic trajectories, which are useful for training a multiple future trajectory predictor. The advantages are twofold: on the one hand synthetic samples can be used to augment existing datasets and train more effective predictors; on the other hand, it allows to generate samples with multiple ground truths, corresponding to diverse equally likely outcomes of the observed trajectory. We define a trajectory prediction model and a loss that explicitly address the multimodality of the problem and we show that combining synthetic and real data leads to prediction improvements, obtaining state of the art results.

Position-Aware Safe Boundary Interpolation Oversampling

Yongxu Liu, Yan Liu

Responsive image

Auto-TLDR; PABIO: Position-Aware Safe Boundary Interpolation-Based Oversampling for Imbalanced Data

Slides Poster Similar

The class imbalance problem is characterized by the unequal distribution of different class samples, usually resulting in a learning bias toward the majority class. In the past decades, kinds of techniques have been proposed to alleviate this problem. Among those approaches, one promising method, interpolation- based oversampling, proposes to generate synthetic minority samples based on selected reference data, which can effectively solve the skewed distribution of data samples. However, there are several unsolved issues in interpolation-based oversampling. Existing methods often suffer from noisy synthetic samples due to improper data clusterings and unsatisfactory reference selection. In this paper, we propose the position-aware safe boundary interpolation oversampling algorithm (PABIO) to address such issues. We firstly introduce a combined clustering algorithm for minority samples to overcome the shortage of clustering using only distance-based or density-based. Then a position- aware interpolation-based oversampling algorithm is proposed for different minority clusters. Especially, we develop a novel method to leverage the majority class information to learn a safe boundary for generating synthetic points. The proposed PABIO is evaluated on multiple imbalanced data sets classified by two base classifiers: support vector machine (SVM) and C4.5 decision tree classifier. Experimental results show that our proposed PABIO outperforms other baselines among benchmark data sets.

A Riemannian Framework for Detecting Stimulus-Relevant Fiber Pathways

Jingyong Su, Linlin Tang, Zhipeng Yang, Mengmeng Guo

Responsive image

Auto-TLDR; Clustering Task-Specific Fiber Pathways in Functional MRI using BOLD Signals

Poster Similar

Functional MRI based on blood oxygenation level-dependent (BOLD) contrast is well established as a neuro-imaging technique for detecting neural activity in the cortex of the human brain. Recent studies have shown that variations of BOLD signals in white matter are also related to neural activities both in resting state and under functional loading. We develop a comprehensive framework of detecting task-specific fiber pathways. We not only study fiber tracts as open curves with different physical features (shape, scale, orientation and position), but also incorporate the BOLD signals transmitted along them to find stimulus-relevant pathways. Specifically, we propose a novel Riemannian metric, which is a weighted sum of distances in product space of shapes and functions. This metric provides both a cost function for registration and a proper distance for comparison. Experimental results on real data have shown that we can cluster fiber pathways correctly by evaluating correlations between BOLD signals and stimuli, temporal variations and power spectra of them. The proposed framework can also be easily generalized to various applications where multi-modality data exist.

A Novel Adaptive Minority Oversampling Technique for Improved Classification in Data Imbalanced Scenarios

Ayush Tripathi, Rupayan Chakraborty, Sunil Kumar Kopparapu

Responsive image

Auto-TLDR; Synthetic Minority OverSampling Technique for Imbalanced Data

Slides Poster Similar

Imbalance in the proportion of training samples belonging to different classes often poses performance degradation of conventional classifiers. This is primarily due to the tendency of the classifier to be biased towards the majority classes in the imbalanced dataset. In this paper, we propose a novel three step technique to address imbalanced data. As a first step we significantly oversample the minority class distribution by employing the traditional Synthetic Minority OverSampling Technique (SMOTE) algorithm using the neighborhood of the minority class samples and in the next step we partition the generated samples using a Gaussian-Mixture Model based clustering algorithm. In the final step synthetic data samples are chosen based on the weight associated with the cluster, the weight itself being determined by the distribution of the majority class samples. Extensive experiments on several standard datasets from diverse domains show the usefulness of the proposed technique in comparison with the original SMOTE and its state-of-the-art variants algorithms.

Motion Segmentation with Pairwise Matches and Unknown Number of Motions

Federica Arrigoni, Tomas Pajdla, Luca Magri

Responsive image

Auto-TLDR; Motion Segmentation using Multi-Modelfitting andpermutation synchronization

Slides Poster Similar

In this paper we address motion segmentation, that is the problem of clustering points in multiple images according to a number of moving objects. Two-frame correspondences are assumed as input without prior knowledge about trajectories. Our method is based on principles from ''multi-model fitting'' and ''permutation synchronization'', and - differently from previous techniques working under the same assumptions - it can handle an unknown number of motions. The proposed approach is validated on standard datasets, showing that it can correctly estimate the number of motions while maintaining comparable or better accuracy than the state of the art.

Fall Detection by Human Pose Estimation and Kinematic Theory

Vincenzo Dentamaro, Donato Impedovo, Giuseppe Pirlo

Responsive image

Auto-TLDR; A Decision Support System for Automatic Fall Detection on Le2i and URFD Datasets

Slides Poster Similar

In a society with increasing age, the understanding of human falls it is of paramount importance. This paper presents a Decision Support System whose pipeline is designed to extract and compute physical domain’s features achieving the state of the art accuracy on the Le2i and UR fall detection datasets. The paper uses the Kinematic Theory of Rapid Human Movement and its sigma-lognormal model together with classic physical features to achieve 98% and 99% of accuracy in automatic fall detection on respectively Le2i and URFD datasets. The effort made in the design of this work is toward recognition of falls by using physical models whose laws are clear and understandable.

Atmospheric Blocking Pattern Recognition in Global Climate Model Simulation Data

Grzegorz Muszynski, Prabhat Mr, Jan Balewski, Karthik Kashinath, Michael Wehner, Vitaliy Kurlin

Responsive image

Auto-TLDR; A Hierarchical Pattern Recognition of Atmospheric Blocking Events in Global Climate Model Simulation Data

Slides Poster Similar

In this paper, we address a problem of atmospheric blocking pattern recognition in global climate model simulation data. Understanding blocking events is a crucial problem to society and natural infrastructure, as they often lead to weather extremes, such as heat waves, heavy precipitation, and the unusually poor air condition. Moreover, it is very challenging to detect these events as there is no physics-based model of blocking dynamic development that could account for their spatiotemporal characteristics. Here, we propose a new two- stage hierarchical pattern recognition method for detection and localization of atmospheric blocking events in different regions over the globe. For both the detection stage and localisation stage, we train five different architectures of a CNN-based classifier and regressor. The results show the general pattern of the atmospheric blocking detection performance increasing significantly for the deep CNN architectures. In contrast, we see the estimation error of event location decreasing significantly in the localisation problem for the shallow CNN architectures. We demonstrate that CNN architectures tend to achieve the highest accuracy for blocking event detection and the lowest estimation error of event localization in regions of the Northern Hemisphere than in regions of the Southern Hemisphere.

Automatic Estimation of Self-Reported Pain by Interpretable Representations of Motion Dynamics

Benjamin Szczapa, Mohammed Daoudi, Stefano Berretti, Pietro Pala, Zakia Hammal, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Pain Intensity Measurement from Facial Points Using Gram Matrices

Slides Poster Similar

We propose an automatic method for pain intensity measurement from video. For each video, pain intensity was measured using the dynamics of facial movement using 66 facial points. Gram matrices formulation was used for facial points trajectory representations on the Riemannian manifold of symmetric positive semi-definite matrices of fixed rank. Curve fitting and temporal alignment were then used to smooth the extracted trajectories. A SVR regression model was then trained to encode the extracted trajectories into ten pain intensity scores consistent with the Visual Analogue Scale for pain intensity measurement. The proposed approach was evaluated using the UNBC McMaster Shoulder Pain Expression database and compared to the state of the art on the same data. Using both 5-folds cross-validation and leave-one-subject-out cross-validation, our results are competitive with respect to state of the art methods.

Image Sequence Based Cyclist Action Recognition Using Multi-Stream 3D Convolution

Stefan Zernetsch, Steven Schreck, Viktor Kress, Konrad Doll, Bernhard Sick

Responsive image

Auto-TLDR; 3D-ConvNet: A Multi-stream 3D Convolutional Neural Network for Detecting Cyclists in Real World Traffic Situations

Slides Poster Similar

In this article, we present an approach to detect basic movements of cyclists in real world traffic situations based on image sequences, optical flow (OF) sequences, and past positions using a multi-stream 3D convolutional neural network (3D-ConvNet) architecture. To resolve occlusions of cyclists by other traffic participants or road structures, we use a wide angle stereo camera system mounted at a heavily frequented public intersection. We created a large dataset consisting of 1,639 video sequences containing cyclists, recorded in real world traffic, resulting in over 1.1 million samples. Through modeling the cyclists' behavior by a state machine of basic cyclist movements, our approach takes every situation into account and is not limited to certain scenarios. We compare our method to an approach solely based on position sequences. Both methods are evaluated taking into account frame wise and scene wise classification results of basic movements, and detection times of basic movement transitions, where our approach outperforms the position based approach by producing more reliable detections with shorter detection times. Our code and parts of our dataset are made publicly available.

Expectation-Maximization for Scheduling Problems in Satellite Communication

Werner Bailer, Martin Winter, Johannes Ebert, Joel Flavio, Karin Plimon

Responsive image

Auto-TLDR; Unsupervised Machine Learning for Satellite Communication Using Expectation-Maximization

Slides Poster Similar

In this paper we address unsupervised machine learning for two use cases in satellite communication, which are scheduling problems: (i) Ka-band frequency plan optimization and (ii) dynamic configuration of an active antenna array satellite. We apply approaches based on the Expectation-Maximization (EM) framework to both of them. We compare against baselines of currently deployed solutions, and show that they can be significantly outperformed by the EM-based approach. In addition, the approaches can be applied incrementally, thus supporting fast adaptation to small changes in the input configuration.

Classification of Spatially Enriched Pixel Time Series with Convolutional Neural Networks

Mohamed Chelali, Camille Kurtz, Anne Puissant, Nicole Vincent

Responsive image

Auto-TLDR; Spatio-Temporal Features Extraction from Satellite Image Time Series Using Random Walk

Slides Poster Similar

Satellite Image Time Series (SITS), MRI sequences, and more generally image time series, constitute 2D+t data providing spatial and temporal information about an observed scene. Given a pattern recognition task such as image classification, considering jointly such rich information is crucial during the decision process. Nevertheless, due to the complex representation of the data-cube, spatio-temporal features extraction from 2D+t data remains difficult to handle. We present in this article an approach to learn such features from this data, and then to proceed to their classification. Our strategy consists in enriching pixel time series with spatial information. It is based on Random Walk to build a novel segment-based representation of the data, passing from a 2D+t dimension to a 2D one, without loosing too much spatial information. Such new representation is then involved in an end-to-end learning process with a classical 2D Convolutional Neural Network (CNN) in order to learn spatio-temporal features for the classification of image time series. Our approach is evaluated on a remote sensing application for the mapping of agricultural crops. Thanks to a visual attention mechanism, the proposed $2D$ spatio-temporal representation makes also easier the interpretation of a SITS to understand spatio-temporal phenomenons related to soil management practices.

Dual-Mode Iterative Denoiser: Tackling the Weak Label for Anomaly Detection

Shuheng Lin, Hua Yang

Responsive image

Auto-TLDR; A Dual-Mode Iterative Denoiser for Crowd Anomaly Detection

Slides Poster Similar

Crowd anomaly detection suffers from limited training data under weak supervision. In this paper, we propose a dual-mode iterative denoiser to tackle the weak label challenge for anomaly detection. First, we use a convolution autoencoder (CAE) in image space to act as a cluster for grouping similar video clips, where the spatial-temporal similarity helps the cluster metric to represent the reconstruction error. Then we use the graph convolution neural network (GCN) to explore the temporal correlation and the feature similarity between video clips within different rough labels, where the classifier can be constantly updated in the label denoising process. Without specific image-level labels, our model can predict the clip-level anomaly probabilities for videos. Extensive experiment results on two public datasets show that our approach performs favorably against the state-of-the-art methods.

Evaluation of Anomaly Detection Algorithms for the Real-World Applications

Marija Ivanovska, Domen Tabernik, Danijel Skocaj, Janez Pers

Responsive image

Auto-TLDR; Evaluating Anomaly Detection Algorithms for Practical Applications

Slides Poster Similar

Anomaly detection in complex data structures is oneof the most challenging problems in computer vision. In manyreal-world problems, for example in the quality control in modernmanufacturing, the anomalous samples are usually rare, resultingin (highly) imbalanced datasets. However, in current researchpractice, these scenarios are rarely modeled, and as a conse-quence, evaluation of anomaly detection algorithms often do notreproduce results that are useful for practical applications. First,even in case of highly unbalanced input data, anomaly detectionalgorithms are expected to significantly reduce the proportionof anomalous samples, detecting ”almost all” anomalous samples(with exact specifications depending on the target customer). Thisplaces high importance on only the small part of the ROC curve,possibly rendering the standard metrics such as AUC (AreaUnder Curve) and AP (Average Precision) useless. Second, thetarget of automatic anomaly detection in practical applicationsis significant reduction in manual work required, and standardmetrics are poor predictor of this feature. Finally, the evaluationmay produce erratic results for different randomly initializedtraining runs of the neural network, producing evaluation resultsthat may not reproduce well in practice. In this paper, we presentan evaluation methodology that avoids these pitfalls.

Video Anomaly Detection by Estimating Likelihood of Representations

Yuqi Ouyang, Victor Sanchez

Responsive image

Auto-TLDR; Video Anomaly Detection in the latent feature space using a deep probabilistic model

Slides Poster Similar

Video anomaly detection is a challenging task not only because it involves solving many sub-tasks such as motion representation, object localization and action recognition, but also because it is commonly considered as an unsupervised learning problem that involves detecting outliers. Traditionally, solutions to this task have focused on the mapping between video frames and their low-dimensional features, while ignoring the spatial connections of those features. Recent solutions focus on analyzing these spatial connections by using hard clustering techniques, such as K-Means, or applying neural networks to map latent features to a general understanding, such as action attributes. In order to solve video anomaly in the latent feature space, we propose a deep probabilistic model to transfer this task into a density estimation problem where latent manifolds are generated by a deep denoising autoencoder and clustered by expectation maximization. Evaluations on several benchmarks datasets show the strengths of our model, achieving outstanding performance on challenging datasets.

Trajectory-User Link with Attention Recurrent Networks

Tao Sun, Yongjun Xu, Fei Wang, Lin Wu, 塘文 钱, Zezhi Shao

Responsive image

Auto-TLDR; TULAR: Trajectory-User Link with Attention Recurrent Neural Networks

Slides Poster Similar

The prevalent adoptions of GPS-enabled devices have witnessed an explosion of various location-based services which produces a huge amount of trajectories monitoring the individuals' movements. In this paper, we tackle Trajectory-User Link (TUL) problem, which identifies humans' movement patterns and links trajectories to the users who generated them. Existing solutions on TUL problem employ recurrent neural networks and variational autoencoder methods, which face the bottlenecks in the case of excessively long trajectories and fragmentary users' movements. However, these are common characteristics of trajectory data in reality, leading to performance degradation of the existing models. In this paper, we propose an end-to-end attention recurrent neural learning framework, called TULAR (Trajectory-User Link with Attention Recurrent Networks), which focus on selected parts of the source trajectories when linking. TULAR introduce the Trajectory Semantic Vector (TSV) via unsupervised location representation learning and recurrent neural networks, by which to reckon the weight of parts of source trajectory. Further, we employ three attention scores for the weight measurements. Experiments are conducted on two real world datasets and compared with several existing methods, and the results show that TULAR yields a new state-of-the-art performance. Source code is public available at GitHub: https://github.com/taos123/TULAR.

Transformer Networks for Trajectory Forecasting

Francesco Giuliari, Hasan Irtiza, Marco Cristani, Fabio Galasso

Responsive image

Auto-TLDR; TransformerNetworks for Trajectory Prediction of People Interactions

Slides Poster Similar

Most recent successes on forecasting the people mo-tion are based on LSTM models andallmost recent progress hasbeen achieved by modelling the social interaction among peopleand the people interaction with the scene. We question the useof the LSTM models and propose the novel use of TransformerNetworks for trajectory forecasting. This is a fundamental switchfrom the sequential step-by-step processing of LSTMs to theonly-attention-based memory mechanisms of Transformers. Inparticular, we consider both the original Transformer Network(TF) and the larger Bidirectional Transformer (BERT), state-of-the-art on all natural language processing tasks. Our proposedTransformers predict the trajectories of the individual peoplein the scene. These are “simple” models because each personis modelled separately without any complex human-human norscene interaction terms. In particular, the TF modelwithoutbells and whistlesyields the best score on the largest and mostchallenging trajectory forecasting benchmark of TrajNet [1]. Ad-ditionally, its extension which predicts multiple plausible futuretrajectories performs on par with more engineered techniqueson the 5 datasets of ETH [2]+UCY [3]. Finally, we showthat Transformers may deal with missing observations, as itmay be the case with real sensor data. Code is available atgithub.com/FGiuliari/Trajectory-Transformer

Automated Whiteboard Lecture Video Summarization by Content Region Detection and Representation

Bhargava Urala Kota, Alexander Stone, Kenny Davila, Srirangaraj Setlur, Venu Govindaraju

Responsive image

Auto-TLDR; A Framework for Summarizing Whiteboard Lecture Videos Using Feature Representations of Handwritten Content Regions

Poster Similar

Lecture videos are rapidly becoming an invaluable source of information for students across the globe. Given the large number of online courses currently available, it is important to condense the information within these videos into a compact yet representative summary that can be used for search-based applications. We propose a framework to summarize whiteboard lecture videos by finding feature representations of detected handwritten content regions to determine unique content. We investigate multi-scale histogram of gradients and embeddings from deep metric learning for feature representation. We explicitly handle occluded, growing and disappearing handwritten content. Our method is capable of producing two kinds of lecture video summaries - the unique regions themselves or so-called key content and keyframes (which contain all unique content in a video segment). We use weighted spatio-temporal conflict minimization to segment the lecture and produce keyframes from detected regions and features. We evaluate both types of summaries and find that we obtain state-of-the-art peformance in terms of number of summary keyframes while our unique content recall and precision are comparable to state-of-the-art.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

3CS Algorithm for Efficient Gaussian Process Model Retrieval

Fabian Berns, Kjeld Schmidt, Ingolf Bracht, Christian Beecks

Responsive image

Auto-TLDR; Efficient retrieval of Gaussian Process Models for large-scale data using divide-&-conquer-based approach

Slides Poster Similar

Gaussian Process Models (GPMs) have been applied for various pattern recognition tasks due to their analytical tractability, ability to quantify uncertainty for their own results as well as to subsume prominent other regression techniques. Despite these promising prospects their super-quadratic computation time complexity for model selection and evaluation impedes its broader application for more than a few thousand data points. Although there have been many proposals towards Gaussian Processes for large-scale data, those only offer a linearly scaling improvement to a cubical scaling problem. In particular, solutions like the Nystrom approximation or sparse matrices are only taking fractions of the given data into account and subsequently lead to inaccurate models. In this paper, we thus propose a divide-&-conquer-based approach, that allows to efficiently retrieve GPMs for large-scale data. The resulting model is composed of independent pattern representations for non-overlapping segments of the given data and consequently reduces computation time significantly. Our performance analysis indicates that our proposal is able to outperform state-of-the-art algorithms for GPM retrieval with respect to the qualities of efficiency and accuracy.

AG-GAN: An Attentive Group-Aware GAN for Pedestrian Trajectory Prediction

Yue Song, Niccolò Bisagno, Syed Zohaib Hassan, Nicola Conci

Responsive image

Auto-TLDR; An attentive group-aware GAN for motion prediction in crowded scenarios

Slides Poster Similar

Understanding human behaviors in crowded scenarios requires analyzing not only the position of the subjects in space, but also the scene context. Existing approaches mostly rely on the motion history of each pedestrian and model the interactions among people by considering the entire surrounding neighborhood. In our approach, we address the problem of motion prediction by applying coherent group clustering and a global attention mechanism on the LSTM-based Generative Adversarial Networks (GANs). The proposed model consists of an attentive group-aware GAN that observes the agents' past motion and predicts future paths, using (i) a group pooling module to model neighborhood interaction, and (ii) an attention module to specifically focus on hidden states. The experimental results demonstrate that our proposal outperforms state-of-the-art models on common benchmark datasets, and is able to generate socially-acceptable trajectories.

Inferring Functional Properties from Fluid Dynamics Features

Andrea Schillaci, Maurizio Quadrio, Carlotta Pipolo, Marcello Restelli, Giacomo Boracchi

Responsive image

Auto-TLDR; Exploiting Convective Properties of Computational Fluid Dynamics for Medical Diagnosis

Slides Poster Similar

In a wide range of applied problems involving fluid flows, Computational Fluid Dynamics (CFD) provides detailed quantitative information on the flow field, at various levels of fidelity and computational cost. However, CFD alone cannot predict high-level functional properties of the system that are not easily obtained from the equations of fluid motion. In this work, we present a data-driven framework to extract additional information, such as medical diagnostic output, from CFD solutions. The task is made difficult by the huge data dimensionality of CFD, together with the limited amount of training data implied by its high computational cost. By pursuing a traditional ML pipeline of pre-processing, feature extraction, and model training, we demonstrate that informative features can be extracted from CFD data. Two experiments, pertaining to different application domains, support the claim that the convective properties implicit into a CFD solution can be leveraged to retrieve functional information for which an analytical definition is missing. Despite the preliminary nature of our study and the relative simplicity of both the geometrical and CFD models, for the first time we demonstrate that the combination of ML and CFD can diagnose a complex system in terms of high-level functional information.

RWF-2000: An Open Large Scale Video Database for Violence Detection

Ming Cheng, Kunjing Cai, Ming Li

Responsive image

Auto-TLDR; Flow Gated Network for Violence Detection in Surveillance Cameras

Slides Poster Similar

In recent years, surveillance cameras are widely deployed in public places, and the general crime rate has been reduced significantly due to these ubiquitous devices. Usually, these cameras provide cues and evidence after crimes were conducted, while they are rarely used to prevent or stop criminal activities in time. It is both time and labor consuming to manually monitor a large amount of video data from surveillance cameras. Therefore, automatically recognizing violent behaviors from video signals becomes essential. In this paper, we summarize several existing video datasets for violence detection and propose a new video dataset with 2,000 videos all captured by surveillance cameras in real-world scenes. Also, we present a new method that utilizes both the merits of 3D-CNNs and optical flow, namely Flow Gated Network. The proposed approach obtains an accuracy of 87.25% on the test set of our proposed RWF-2000 database. The proposed database and source codes of this paper are currently open to access.

Dynamic Resource-Aware Corner Detection for Bio-Inspired Vision Sensors

Sherif Abdelmonem Sayed Mohamed, Jawad Yasin, Mohammad-Hashem Haghbayan, Antonio Miele, Jukka Veikko Heikkonen, Hannu Tenhunen, Juha Plosila

Responsive image

Auto-TLDR; Three Layer Filtering-Harris Algorithm for Event-based Cameras in Real-Time

Slides Similar

Event-based cameras are vision devices that transmit only brightness changes with low latency and ultra-low power consumption. Such characteristics make event-based cameras attractive in the field of localization and object tracking in resource-constrained systems. Since the number of generated events in such cameras is huge, the selection and filtering of the incoming events are beneficial from both increasing the accuracy of the features and reducing the computational load. In this paper, we present an algorithm to detect asynchronous corners form a stream of events in real-time on embedded systems. The algorithm is called the Three Layer Filtering-Harris or TLF-Harris algorithm. The algorithm is based on an events' filtering strategy whose purpose is 1) to increase the accuracy by deliberately eliminating some incoming events, i.e., noise and 2) to improve the real-time performance of the system, i.e., preserving a constant throughput in terms of input events per second, by discarding unnecessary events with a limited accuracy loss. An approximation of the Harris algorithm, in turn, is used to exploit its high-quality detection capability with a low-complexity implementation to enable seamless real-time performance on embedded computing platforms. The proposed algorithm is capable of selecting the best corner candidate among neighbors and achieves an average execution time savings of 59 % compared with the conventional Harris score. Moreover, our approach outperforms the competing methods, such as eFAST, eHarris, and FA-Harris, in terms of real-time performance, and surpasses Arc* in terms of accuracy.

Map-Based Temporally Consistent Geolocalization through Learning Motion Trajectories

Bing Zha, Alper Yilmaz

Responsive image

Auto-TLDR; Exploiting Motion Trajectories for Geolocalization of Object on Topological Map using Recurrent Neural Network

Slides Poster Similar

In this paper, we propose a novel trajectory learning method that exploits motion trajectories on topological map using recurrent neural network for temporally consistent geolocalization of object. Inspired by human's ability to both be aware of distance and direction of self-motion in navigation, our trajectory learning method learns a pattern representation of trajectories encoded as a sequence of distances and turning angles to assist self-localization. We pose the learning process as a conditional sequence prediction problem in which each output locates the object on a traversable edge in a map. Considering the prediction sequence ought to be topologically connected in the graph-structured map, we adopt two different hypotheses generation and elimination strategies to eliminate disconnected sequence prediction. We demonstrate our approach on the KITTI stereo visual odometry dataset which is a city-scale environment. The key benefits of our approach to geolocalization are that 1) we take advantage of powerful sequence modeling ability of recurrent neural network and its robustness to noisy input, 2) only require a map in the form of a graph and 3) simply use an affordable sensor that generates motion trajectory. The experiments show that the motion trajectories can be learned by training an recurrent neural network, and temporally consistent geolocation can be predicted with both of the proposed strategies.

Few Shot Learning Framework to Reduce Inter-Observer Variability in Medical Images

Sohini Roychowdhury

Responsive image

Auto-TLDR; Few-Shot Learning for Quality Image Annotation

Slides Poster Similar

Most computer aided pathology detection systems rely on large volumes of quality annotated data to aid diagnostics and follow up procedures. However, quality assuring large volumes of annotated medical image data can be subjective and expensive. In this work we present a novel standardization framework that implements three few-shot learning (FSL) models that can be iteratively trained by atmost 5 images per 3D stack to generate multiple regional proposals (RPs) per test image. These FSL models include a novel parallel echo state network framework and an augmented U-net model. Additionally, we propose a novel target label selection algorithm (TLSA) that measures relative agreeability between RPs and the manually annotated target labels to detect the ``best" quality annotation per image. Using the FSL models, our system achieves 0.28-0.64 Dice coefficient across vendor image stacks for intra-retinal cyst segmentation. Additionally, the TLSA is capable of correctly classifying high quality target labels from their noisy counterparts with 70-97% accuracy. The proposed system significantly automates high quality annotation selection on an image level while minimizing manual quality checking to 12-28% of the images only. Thus, the proposed framework is flexible to extensions for quality image annotation curation of other image stacks as well.

Gender Classification Using Video Sequences of Body Sway Recorded by Overhead Camera

Takuya Kamitani, Yuta Yamaguchi, Shintaro Nakatani, Masashi Nishiyama, Yoshio Iwai

Responsive image

Auto-TLDR; Spatio-Temporal Feature for Gender Classification of a Standing Person Using Body Stance Using Time-Series Signals

Slides Poster Similar

We investigate whether it is possible to classify the gender of a standing person based on a video sequence containing body sway recorded by an overhead camera.Existing methods that extract a feature from the movement of a walking person for gender classification cannot detect the slight movements of a standing person.In this paper,we propose a method for extracting a feature from the body sway of a standing person. We design a spatio-temporal feature for representing body sway using the frequency analysis of time-series signals derived from the local movements of the upper body.To evaluate the accuracy of our method, we acquired video sequences of body sway from 30 females and 30 males using an overhead camera.We found that our method obtained 90.3% accuracy for the gender classification of a standing person. We compared the accuracy of our method with that of parameters based on medical data.We found that the proposed spatio-temporal feature extracted from body sway significantly improved gender classification accuracy.

Wasserstein k-Means with Sparse Simplex Projection

Takumi Fukunaga, Hiroyuki Kasai

Responsive image

Auto-TLDR; SSPW $k$-means: Sparse Simplex Projection-based Wasserstein $ k$-Means Algorithm

Slides Poster Similar

This paper presents a proposal of a faster Wasserstein $k$-means algorithm for histogram data by reducing Wasserstein distance computations exploiting sparse simplex projection. We shrink data samples, centroids and ground cost matrix, which enables significant reduction of the computations to solve optimal transport problems without loss of clustering quality. Furthermore, we dynamically reduce computational complexity by removing lower-valued data samples harnessing sparse simplex projection while keeping degradation of clustering quality lower. We designate this proposed algorithm as sparse simplex projection-based Wasserstein $k$-means, for short, SSPW $k$-means. Numerical evaluations against Wasserstein $k$-means algorithm demonstrate the effectiveness of the proposed SSPW $k$-means on real-world datasets.

Algorithm Recommendation for Data Streams

Jáder Martins Camboim De Sá, Andre Luis Debiaso Rossi, Gustavo Enrique De Almeida Prado Alves Batista, Luís Paulo Faina Garcia

Responsive image

Auto-TLDR; Meta-Learning for Algorithm Selection in Time-Changing Data Streams

Slides Poster Similar

In the last decades, many companies are taking advantage of massive data generation at high frequencies through knowledge discovery to identify valuable information. Machine learning techniques can be employed for knowledge discovery, since they are able to extract patterns from data and induce models to predict future events. However, dynamic and evolving environments generate streams of data that usually are non-stationary. Models induced in these scenarios may perish over time due to seasonality or concept drift. The periodic retraining could help but the fixed algorithm's hypothesis space could no longer be appropriate. An alternative solution is to use meta-learning for periodic algorithm selection in time-changing environments, choosing the bias that best suits the current data. In this paper, we present an enhanced framework for data streams algorithm selection based on MetaStream. Our approach uses meta-learning and incremental learning to actively select the best algorithm for the current concept in a time-changing. Different from previous works, a set of cutting edge meta-features and an incremental learning approach in the meta-level based on LightGBM are used. The results show that this new strategy can improve the recommendation of the best algorithm more accurately in time-changing data.

Learning to Find Good Correspondences of Multiple Objects

Youye Xie, Yingheng Tang, Gongguo Tang, William Hoff

Responsive image

Auto-TLDR; Multi-Object Inliers and Outliers for Perspective-n-Point and Object Recognition

Slides Poster Similar

Given a set of 3D to 2D putative matches, labeling the correspondences as inliers or outliers plays a critical role in a wide range of computer vision applications including the Perspective-n-Point (PnP) and object recognition. In this paper, we study a more generalized problem which allows the matches to belong to multiple objects with distinct poses. We propose a deep architecture to simultaneously label the correspondences as inliers or outliers and classify the inliers into multiple objects. Specifically, we discretize the 3D rotation space into twenty convex cones based on the facets of a regular icosahedron. For each facet, a facet classifier is trained to predict the probability of a correspondence being an inlier for a pose whose rotation normal vector points towards this facet. An efficient RANSAC-based post-processing algorithm is also proposed to further process the prediction results and detect the objects. Experiments demonstrate that our method is very efficient compared to existing methods and is capable of simultaneously labeling and classifying the inliers of multiple objects with high precision.

Story Comparison for Estimating Field of View Overlap in a Video Collection

Thierry Malon, Sylvie Chambon, Alain Crouzil, Vincent Charvillat

Responsive image

Auto-TLDR; Finding Videos with Overlapping Fields of View Using Video Data

Slides Similar

Determining the links between large amounts of video data with no prior knowledge of the camera positions is a hard task to automate. From a collection of videos acquired from static cameras simultaneously, we propose a method for finding groups of videos with overlapping fields of view. Each video is first processed individually: at regular time steps, objects are detected and are assigned a category and an appearance descriptor. Next, the video is split into cells at different resolutions and we assign to each cell its story: it consists of the list of objects detected in the cell over time. Once the stories are established for each video, the links between cells of different videos are determined by comparing their stories: two cells are linked if they show simultaneous detections of objects of the same category with similar appearances. Pairs of videos with overlapping fields of view are identified using these links between cells. A link graph is finally returned, in which each node represents a video, and the edges indicate pairs of overlapping videos. The approach is evaluated on a set of 63 real videos from both public datasets and live surveillance videos, as well as on 84 synthetic videos, and shows promising results.

Estimation of Clinical Tremor Using Spatio-Temporal Adversarial AutoEncoder

Li Zhang, Vidya Koesmahargyo, Isaac Galatzer-Levy

Responsive image

Auto-TLDR; ST-AAE: Spatio-temporal Adversarial Autoencoder for Clinical Assessment of Hand Tremor Frequency and Severity

Slides Poster Similar

Collecting sufficient well-labeled training data is a challenging task in many clinical applications. Besides the tremendous efforts required for data collection, clinical assessments are also impacted by raters’ variabilities, which may be significant even among experienced clinicians. The high demands of reproducible and scalable data-driven approaches in these areas necessitates relevant research on learning with limited data. In this work, we propose a spatio-temporal adversarial autoencoder (ST-AAE) for clinical assessment of hand tremor frequency and severity. The ST-AAE integrates spatial and temporal information simultaneously into the original AAE, taking optical flows as inputs. Using only optical flows, irrelevant background or static objects from RGB frames are largely eliminated, so that the AAE is directed to effectively learn key feature representations of the latent space from tremor movements. The ST-AAE was evaluated with both volunteer and clinical data. The volunteer results showed that the ST-AAE improved model performance significantly by 15% increase on accuracy. Leave-one-out (on subjects) cross validation was used to evaluate the accuracy for all the 3068 video segments from 28 volunteers. The weighted average of the AUCs of ROCs is 0.97. The results demonstrated that the ST-AAE model, trained with a small number of subjects, can be generalized well to different subjects. In addition, the model trained only by volunteer data was also evaluated with 32 clinical videos from 9 essential tremor patients, the model predictions correlate well with the clinical ratings: correlation coefficient r = 0.91 and 0.98 for in-person ratings and video watching ratings, respectively.

To Honor Our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII

Marc Cheong, Mark Alfano

Responsive image

Auto-TLDR; Obituaries of World War I and World War II: A Map of Values and Virtues attributed to Australian Military Personnel

Slides Poster Similar

Obituaries represent a prominent way of expressing the human universal of grief. According to philosophers, obituaries are a ritualized way of evaluating both individuals who have passed away and the communities that helped to shape them. The basic idea is that you can tell what it takes to count as a good person of a particular type in a particular community by seeing how persons of that type are described and celebrated in their obituaries. Obituaries of those killed in conflict, in particular, are rich repositories of communal values, as they reflect the values and virtues that are admired and respected in individuals who are considered to be heroes in their communities. In this paper, we use natural language processing techniques to map the patterns of values and virtues attributed to Australian military personnel who were killed in action during World War I and World War II. Doing so reveals several clusters of values and virtues that tend to be attributed together. In addition, we use named entity recognition and geotagging the track the movements of these soldiers to various theatres of the wars, including North Africa, Europe, and the Pacific.

On-Manifold Adversarial Data Augmentation Improves Uncertainty Calibration

Kanil Patel, William Beluch, Dan Zhang, Michael Pfeiffer, Bin Yang

Responsive image

Auto-TLDR; On-Manifold Adversarial Data Augmentation for Uncertainty Estimation

Slides Similar

Uncertainty estimates help to identify ambiguous, novel, or anomalous inputs, but the reliable quantification of uncertainty has proven to be challenging for modern deep networks. To improve uncertainty estimation, we propose On-Manifold Adversarial Data Augmentation or OMADA, which specifically attempts to generate challenging examples by following an on-manifold adversarial attack path in the latent space of an autoencoder that closely approximates the decision boundaries between classes. On a variety of datasets and for multiple network architectures, OMADA consistently yields more accurate and better calibrated classifiers than baseline models, and outperforms competing approaches such as Mixup, as well as achieving similar performance to (at times better than) post-processing calibration methods such as temperature scaling. Variants of OMADA can employ different sampling schemes for ambiguous on-manifold examples based on the entropy of their estimated soft labels, which exhibit specific strengths for generalization, calibration of predicted uncertainty, or detection of out-of-distribution inputs.

Temporal Pattern Detection in Time-Varying Graphical Models

Federico Tomasi, Veronica Tozzo, Annalisa Barla

Responsive image

Auto-TLDR; A dynamical network inference model that leverages on kernels to consider general temporal patterns

Slides Poster Similar

Graphical models allow to describe the interplay among variables of a system through a compact representation, suitable when relations evolve over time. For example, in a biological setting, genes interact differently depending on external environmental or metabolic factors. To incorporate this dynamics a viable strategy is to estimate a sequence of temporally related graphs assuming similarity among samples in different time points. While adjacent time points may direct the analysis towards a robust estimate of the underlying graph, the resulting model will not incorporate long-term or recurrent temporal relationships. In this work we propose a dynamical network inference model that leverages on kernels to consider general temporal patterns (such as circadian rhythms or seasonality). We show how our approach may also be exploited when the recurrent patterns are unknown, by coupling the network inference with a clustering procedure that detects possibly non-consecutive similar networks. Such clusters are then used to build similarity kernels. The convexity of the functional is determined by whether we impose or infer the kernel. In the first case, the optimisation algorithm exploits efficiently proximity operators with closed-form solutions. In the other case, we resort to an alternating minimisation procedure which jointly learns the temporal kernel and the underlying network. Extensive analysis on synthetic data shows the efficacy of our models compared to state-of-the-art methods. Finally, we applied our approach on two real-world applications to show how considering long-term patterns is fundamental to have insights on the behaviour of a complex system.

A Plane-Based Approach for Indoor Point Clouds Registration

Ketty Favre, Muriel Pressigout, Luce Morin, Eric Marchand

Responsive image

Auto-TLDR; A plane-based registration approach for indoor environments based on LiDAR data

Slides Poster Similar

Iterative Closest Point (ICP) is one of the mostly used algorithms for 3D point clouds registration. This classical approach can be impacted by the large number of points contained in a point cloud. Planar structures, which are less numerous than points, can be used in well-structured man-made environment. In this paper we propose a registration method inspired by the ICP algorithm in a plane-based registration approach for indoor environments. This method is based solely on data acquired with a LiDAR sensor. A new metric based on plane characteristics is introduced to find the best plane correspondences. The optimal transformation is estimated through a two-step minimization approach, successively performing robust plane-to-plane minimization and non-linear robust point-to-plane registration. Experiments on the Autonomous Systems Lab (ASL) dataset show that the proposed method enables to successfully register 100% of the scans from the three indoor sequences. Experiments also show that the proposed method is more robust in large motion scenarios than other state-of-the-art algorithms.

GazeMAE: General Representations of Eye Movements Using a Micro-Macro Autoencoder

Louise Gillian C. Bautista, Prospero Naval

Responsive image

Auto-TLDR; Fast and Slow Eye Movement Representations for Sentiment-agnostic Eye Tracking

Slides Poster Similar

Eye movements are intricate and dynamic events that contain a wealth of information about the subject and the stimuli. We propose an abstract representation of eye movements that preserve the important nuances in gaze behavior while being stimuli-agnostic. We consider eye movements as raw position and velocity signals and train a deep temporal convolutional autoencoder to learn micro-scale and macro-scale representations corresponding to the fast and slow features of eye movements. These joint representations are evaluated by fitting a linear classifier on various tasks and outperform other works in biometrics and stimuli classification. Further experiments highlight the validity and generalizability of this method, bringing eye tracking research closer to real-world applications.