HP2IFS: Head Pose Estimation Exploiting Partitioned Iterated Function Systems

Carmen Bisogni, Michele Nappi, Chiara Pero, Stefano Ricciardi

Responsive image

Auto-TLDR; PIFS based head pose estimation using fractal coding theory and Partitioned Iterated Function Systems

Slides Poster

Estimating the actual head orientation from 2D images, with regard to its three degrees of freedom, is a well known problem that is highly significant for a large number of applications involving head pose knowledge. Consequently, this topic has been tackled by a plethora of methods and algorithms the most part of which exploits neural networks. Machine learning methods, indeed, achieve accurate head rotation values yet require an adequate training stage and, to that aim, a relevant number of positive and negative examples. In this paper we take a different approach to this topic by using fractal coding theory and particularly Partitioned Iterated Function Systems to extract the fractal code from the input head image and to compare this representation to the fractal code of a reference model through Hamming distance. According to experiments conducted on both the BIWI and the AFLW2000 databases, the proposed PIFS based head pose estimation method provides accurate yaw/pitch/roll angular values, with a performance approaching that of state of the art of machine-learning based algorithms and exceeding most of non-training based approaches.

Similar papers

Sequential Non-Rigid Factorisation for Head Pose Estimation

Stefania Cristina, Kenneth Patrick Camilleri

Responsive image

Auto-TLDR; Sequential Shape-and-Motion Factorisation for Head Pose Estimation in Eye-Gaze Tracking

Slides Poster Similar

Within the context of eye-gaze tracking, the capability of permitting the user to move naturally is an important step towards allowing for more natural user interaction in less constrained scenarios. Natural movement can be characterised by changes in head pose, as well as non-rigid face deformations as the user performs different facial expressions. While the estimation of head pose within the domain of eye-gaze tracking is being increasingly considered, the face is most often regarded as a rigid body. The few methods that factor the challenge of handling face deformations into the head pose estimation problem, often require the availability of a pre-defined face model or a considerable amount of training data. In this paper, we direct our attention towards the application of shape-and-motion factorisation for head pose estimation, since this does not generally rely on the availability of an initial face model. Over the years, various shape-and-motion factorisation methods have been proposed to address the challenges of rigid and non-rigid shape and motion recovery, in a batch or sequential manner. However, the real-time recovery of non-rigid shape and motion by factorisation remains, in general, an open problem. Our work addresses this open problem by proposing a sequential factorisation method for non-rigid shape and motion recovery, which does not rely on the availability of a pre-defined face deformation model or training data. Quantitative and qualitative results show that our method can handle various non-rigid face deformations without deterioration of the head pose estimation accuracy.

Inner Eye Canthus Localization for Human Body Temperature Screening

Claudio Ferrari, Lorenzo Berlincioni, Marco Bertini, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Localization of the Inner Eye Canthus in Thermal Face Images using 3D Morphable Face Model

Slides Poster Similar

In this paper, we propose an automatic approach for localizing the inner eye canthus in thermal face images. We first coarsely detect 5 facial keypoints corresponding to the center of the eyes, the nosetip and the ears. Then we compute a sparse 2D-3D points correspondence using a 3D Morphable Face Model (3DMM). This correspondence is used to project the entire 3D face onto the image, and subsequently locate the inner eye canthus. Detecting this location allows to obtain the most precise body temperature measurement for a person using a thermal camera. We evaluated the approach on a thermal face dataset provided with manually annotated landmarks. However, such manual annotations are normally conceived to identify facial parts such as eyes, nose and mouth, and are not specifically tailored for localizing the eye canthus region. As additional contribution, we enrich the original dataset by using the annotated landmarks to deform and project the 3DMM onto the images. Then, by manually selecting a small region corresponding to the eye canthus, we enrich the dataset with additional annotations. By using the manual landmarks, we ensure the correctness of the 3DMM projection, which can be used as ground-truth for future evaluations. Moreover, we supply the dataset with the 3D head poses and per-point visibility masks for detecting self-occlusions. The data will be publicly released.

Deep Ordinal Regression with Label Diversity

Axel Berg, Magnus Oskarsson, Mark Oconnor

Responsive image

Auto-TLDR; Discrete Regression via Classification for Neural Network Learning

Slides Similar

Regression via classification (RvC) is a common method used for regression problems in deep learning, where the target variable belongs to a set of continuous values. By discretizing the target into a set of non-overlapping classes, it has been shown that training a classifier can improve neural network accuracy compared to using a standard regression approach. However, it is not clear how the set of discrete classes should be chosen and how it affects the overall solution. In this work, we propose that using several discrete data representations simultaneously can improve neural network learning compared to a single representation. Our approach is end-to-end differentiable and can be added as a simple extension to conventional learning methods, such as deep neural networks. We test our method on three challenging tasks and show that our method reduces the prediction error compared to a baseline RvC approach while maintaining a similar model complexity.

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

Joint Face Alignment and 3D Face Reconstruction with Efficient Convolution Neural Networks

Keqiang Li, Huaiyu Wu, Xiuqin Shang, Zhen Shen, Gang Xiong, Xisong Dong, Bin Hu, Fei-Yue Wang

Responsive image

Auto-TLDR; Mobile-FRNet: Efficient 3D Morphable Model Alignment and 3D Face Reconstruction from a Single 2D Facial Image

Slides Poster Similar

3D face reconstruction from a single 2D facial image is a challenging and concerned problem. Recent methods based on CNN typically aim to learn parameters of 3D Morphable Model (3DMM) from 2D images to render face alignment and 3D face reconstruction. Most algorithms are designed for faces with small, medium yaw angles, which is extremely challenging to align faces in large poses. At the same time, they are not efficient usually. The main challenge is that it takes time to determine the parameters accurately. In order to address this challenge with the goal of improving performance, this paper proposes a novel and efficient end-to-end framework. We design an efficient and lightweight network model combined with Depthwise Separable Convolution and Muti-scale Representation, Lightweight Attention Mechanism, named Mobile-FRNet. Simultaneously, different loss functions are used to constrain and optimize 3DMM parameters and 3D vertices during training to improve the performance of the network. Meanwhile, extensive experiments on the challenging datasets show that our method significantly improves the accuracy of face alignment and 3D face reconstruction. The model parameters and complexity of our method are also improved greatly.

A Flatter Loss for Bias Mitigation in Cross-Dataset Facial Age Estimation

Ali Akbari, Muhammad Awais, Zhenhua Feng, Ammarah Farooq, Josef Kittler

Responsive image

Auto-TLDR; Cross-dataset Age Estimation for Neural Network Training

Slides Poster Similar

Existing studies in facial age estimation have mostly focused on intra-dataset protocols that assume training and test images captured under similar conditions. However, this is rarely valid in practical applications, where training and test sets usually have different characteristics. In this paper, we advocate a cross-dataset protocol for age estimation benchmarking. In order to improve the cross-dataset age estimation performance, we mitigate the inherent bias caused by the learning algorithm. To this end, we propose a novel loss function that is more effective for neural network training. The relative smoothness of the proposed loss function is its advantage with regards to the optimisation process performed by stochastic gradient decent. Its lower gradient, compared with existing loss functions, facilitates the discovery of and convergence to a better optimum, and consequently a better generalisation. The cross-dataset experimental results demonstrate the superiority of the proposed method over the state-of-the-art algorithms in terms of accuracy and generalisation capability.

Multi-Attribute Regression Network for Face Reconstruction

Xiangzheng Li, Suping Wu

Responsive image

Auto-TLDR; A Multi-Attribute Regression Network for Face Reconstruction

Slides Poster Similar

In this paper, we propose a multi-attribute regression network (MARN) to investigate the problem of face reconstruction, especially in challenging cases when faces undergo large variations including severe poses, extreme expressions, and partial occlusions in unconstrained environments. The traditional 3DMM parametric regression method is absent from the learning of identity, expression, and attitude attributes, resulting in lacking geometric details in the reconstructed face. Our MARN method is to enable the network to better extract the feature information of face identity, expression, and pose attributes. We introduced identity, expression, and pose attribute loss functions to enhance the learning of details in each attribute. At the same time, we carefully design the geometric contour constraint loss function and use the constraints of sparse 2D face landmarks to improve the reconstructed geometric contour information. The experimental results show that our face reconstruction method has achieved significant results on the AFLW2000-3D and AFLW datasets compared with the most advanced methods. In addition, there has been a great improvement in dense face alignment. .

Learning Semantic Representations Via Joint 3D Face Reconstruction and Facial Attribute Estimation

Zichun Weng, Youjun Xiang, Xianfeng Li, Juntao Liang, Wanliang Huo, Yuli Fu

Responsive image

Auto-TLDR; Joint Framework for 3D Face Reconstruction with Facial Attribute Estimation

Slides Poster Similar

We propose a novel joint framework for 3D face reconstruction (3DFR) that integrates facial attribute estimation (FAE) as an auxiliary task. One of the essential problems of 3DFR is to extract semantic facial features (e.g., Big Nose, High Cheekbones, and Asian) from in-the-wild 2D images, which is inherently involved with FAE. These two tasks, though heterogeneous, are highly relevant to each other. To achieve this, we leverage a Convolutional Neural Network to extract shared facial representations for both shape decoder and attribute classifier. We further develop an in-batch hybrid-task training scheme that enables our model to learn from heterogeneous facial datasets jointly within a mini-batch. Thanks to the joint loss that provides supervision from both 3DFR and FAE domains, our model learns the correlations between 3D shapes and facial attributes, which benefit both feature extraction and shape inference. Quantitative evaluation and qualitative visualization results confirm the effectiveness and robustness of our joint framework.

Quality-Based Representation for Unconstrained Face Recognition

Nelson Méndez-Llanes, Katy Castillo-Rosado, Heydi Mendez-Vazquez, Massimo Tistarelli

Responsive image

Auto-TLDR; activation map for face recognition in unconstrained environments

Slides Similar

Significant advances have been achieved in face recognition in the last decade thanks to the development of deep learning methods. However, recognizing faces captured in uncontrolled environments is still a challenging problem for the scientific community. In these scenarios, the performance of most of existing deep learning based methods abruptly falls, due to the bad quality of the face images. In this work, we propose to use an activation map to represent the quality information in a face image. Different face regions are analyzed to determine their quality and then only those regions with good quality are used to perform the recognition using a given deep face model. For experimental evaluation, in order to simulate unconstrained environments, three challenging databases, with different variations in appearance, were selected: the Labeled Faces in the Wild Database, the Celebrities in Frontal-Profile in the Wild Database, and the AR Database. Three deep face models were used to evaluate the proposal on these databases and in all cases, the use of the proposed activation map allows the improvement of the recognition rates obtained by the original models in a range from 0.3 up to 31%. The obtained results experimentally demonstrated that the proposal is able to select those face areas with higher discriminative power and enough identifying information, while ignores the ones with spurious information.

Estimating Gaze Points from Facial Landmarks by a Remote Spherical Camera

Shigang Li

Responsive image

Auto-TLDR; Gaze Point Estimation from a Spherical Image from Facial Landmarks

Slides Poster Similar

From a spherical image, a gaze point, instead of gaze vectors, can be estimated directly because a remote spherical camera can observe a user's face and a gaze target simultaneously. This paper investigates the problem of estimating a gaze point in a spherical image from facial landmarks. In contrast with the existing methods which usually assume gaze points move on a narrow plane, the proposed method can cope with the situation where gaze points vary in depth for a relatively wide field of view. As shown in the results of comparative experiments, we find the orthogonal coordinates of facial landmarks on a unit sphere is a reasonable representation in comparison with spherical polar coordinates; the cues of head pose is helpful to improve the accuracy of gaze points. Consequently, the proposed method achieves a performance on the accuracy of gaze points estimation which is comparable to the state of the art methods.

ID Documents Matching and Localization with Multi-Hypothesis Constraints

Guillaume Chiron, Nabil Ghanmi, Ahmad Montaser Awal

Responsive image

Auto-TLDR; Identity Document Localization in the Wild Using Multi-hypothesis Exploration

Slides Poster Similar

This paper presents an approach for spotting and accurately localizing identity documents in the wild. Contrary to blind solutions that often rely on borders and corners detection, the proposed approach requires a classification a priori along with a list of predefined models. The matching and accurate localization are performed using specific ID document features. This process is especially difficult due to the intrinsic variable nature of ID models (text fields, multi-pass printing with offset, unstable layouts, added artifacts, blinking security elements, non-rigid materials). We tackle the problem by putting different combinations of features in competition within a multi-hypothesis exploration where only the best document quadrilateral candidate is retained thanks to a custom visual similarity metric. The idea is to find, in a given context, at least one feature able to correctly crop the document. The proposed solution has been tested and has shown its benefits on both the MIDV-500 academic dataset and an industrial one supposedly more representative of a real-life application.

Attribute-Based Quality Assessment for Demographic Estimation in Face Videos

Fabiola Becerra-Riera, Annette Morales-González, Heydi Mendez-Vazquez, Jean-Luc Dugelay

Responsive image

Auto-TLDR; Facial Demographic Estimation in Video Scenarios Using Quality Assessment

Slides Similar

Most existing works regarding facial demographic estimation are focused on still image datasets, although nowadays the need to analyze video content in real applications is increasing. We propose to tackle gender, age and ethnicity estimation in the context of video scenarios. Our main contribution is to use an attribute-specific quality assessment procedure to select best quality frames from a video sequence for each of the three demographic modalities. Best quality frames are classified with fine-tuned MobileNet models and a final video prediction is obtained with a majority voting strategy among the best selected frames. Our validation on three different datasets and our comparison with state-of-the-art models, show the effectiveness of the proposed demographic classifiers and the quality pipeline, which allows to reduce both: the number of frames to be classified and the processing time in practical applications; and improves the soft biometrics prediction accuracy.

Light3DPose: Real-Time Multi-Person 3D Pose Estimation from Multiple Views

Alessio Elmi, Davide Mazzini, Pietro Tortella

Responsive image

Auto-TLDR; 3D Pose Estimation of Multiple People from a Few calibrated Camera Views using Deep Learning

Slides Poster Similar

We present an approach to perform 3D pose estimation of multiple people from a few calibrated camera views. Our architecture, leveraging the recently proposed unprojection layer, aggregates feature-maps from a 2D pose estimator backbone into a comprehensive representation of the 3D scene. Such intermediate representation is then elaborated by a fully-convolutional volumetric network and a decoding stage to extract 3D skeletons with sub-voxel accuracy. Our method achieves state of the art MPJPE on the CMU Panoptic dataset using a few unseen views and obtains competitive results even with a single input view. We also assess the transfer learning capabilities of the model by testing it against the publicly available Shelf dataset obtaining good performance metrics. The proposed method is inherently efficient: as a pure bottom-up approach, it is computationally independent of the number of people in the scene. Furthermore, even though the computational burden of the 2D part scales linearly with the number of input views, the overall architecture is able to exploit a very lightweight 2D backbone which is orders of magnitude faster than the volumetric counterpart, resulting in fast inference time. The system can run at 6 FPS, processing up to 10 camera views on a single 1080Ti GPU.

PROPEL: Probabilistic Parametric Regression Loss for Convolutional Neural Networks

Muhammad Asad, Rilwan Basaru, S M Masudur Rahman Al Arif, Greg Slabaugh

Responsive image

Auto-TLDR; PRObabilistic Parametric rEgression Loss for Probabilistic Regression Using Convolutional Neural Networks

Slides Similar

In recent years, Convolutional Neural Networks (CNNs) have enabled significant advancements to the state-of-the-art in computer vision. For classification tasks, CNNs have widely employed probabilistic output and have shown the significance of providing additional confidence for predictions. However, such probabilistic methodologies are not widely applicable for addressing regression problems using CNNs, as regression involves learning unconstrained continuous and, in many cases, multi-variate target variables. We propose a PRObabilistic Parametric rEgression Loss (PROPEL) that facilitates CNNs to learn parameters of probability distributions for addressing probabilistic regression problems. PROPEL is fully differentiable and, hence, can be easily incorporated for end-to-end training of existing CNN regression architectures using existing optimization algorithms. The proposed method is flexible as it enables learning complex unconstrained probabilities while being generalizable to higher dimensional multi-variate regression problems. We utilize a PROPEL-based CNN to address the problem of learning hand and head orientation from uncalibrated color images. Our experimental validation and comparison with existing CNN regression loss functions show that PROPEL improves the accuracy of a CNN by enabling probabilistic regression, while significantly reducing required model parameters by 10x, resulting in improved generalization as compared to the existing state-of-the-art.

Adaptive Feature Fusion Network for Gaze Tracking in Mobile Tablets

Yiwei Bao, Yihua Cheng, Yunfei Liu, Feng Lu

Responsive image

Auto-TLDR; Adaptive Feature Fusion Network for Multi-stream Gaze Estimation in Mobile Tablets

Slides Poster Similar

Recently, many multi-stream gaze estimation methods have been proposed. They estimate gaze from eye and face appearances and achieve reasonable accuracy. However, most of the methods simply concatenate the features extracted from eye and face appearance. The feature fusion process has been ignored. In this paper, we propose a novel Adaptive Feature Fusion Network (AFF-Net), which performs gaze tracking task in mobile tablets. We stack two-eye feature maps and utilize Squeeze-and-Excitation layers to adaptively fuse two-eye features based on different eye features. Meanwhile, we also propose Adaptive Group Normalization to recalibrate eye features with the guidance of face appearance characteristics. Extensive experiments on both GazeCapture and MPIIFaceGaze datasets demonstrate consistently superior performance of the proposed method.

Learning Non-Rigid Surface Reconstruction from Spatio-Temporal Image Patches

Matteo Pedone, Abdelrahman Mostafa, Janne Heikkilä

Responsive image

Auto-TLDR; Dense Spatio-Temporal Depth Maps of Deformable Objects from Video Sequences

Slides Poster Similar

We present a method to reconstruct a dense spatio-temporal depth map of a non-rigidly deformable object directly from a video sequence. The estimation of depth is performed locally on spatio-temporal patches of the video, and then the full depth video of the entire shape is recovered by combining them together. Since the geometric complexity of a local spatio-temporal patch of a deforming non-rigid object is often simple enough to be faithfully represented with a parametric model, we artificially generate a database of small deforming rectangular meshes rendered with different material properties and light conditions, along with their corresponding depth videos, and use such data to train a convolutional neural network. We tested our method on both synthetic and Kinect data and experimentally observed that the reconstruction error is significantly lower than the one obtained using other approaches like conventional non-rigid structure from motion.

Object Features and Face Detection Performance: Analyses with 3D-Rendered Synthetic Data

Jian Han, Sezer Karaoglu, Hoang-An Le, Theo Gevers

Responsive image

Auto-TLDR; Synthetic Data for Face Detection Using 3DU Face Dataset

Slides Poster Similar

This paper is to provide an overview of how object features from images influence face detection performance, and how to select synthetic faces to address specific features. To this end, we investigate the effects of occlusion, scale, viewpoint, background, and noise by using a novel synthetic image generator based on 3DU Face Dataset. To examine the effects of different features, we selected three detectors (Faster RCNN, HR, SSH) as representative of various face detection methodologies. Comparing different configurations of synthetic data on face detection systems, it showed that our synthetic dataset could complement face detectors to become more robust against features in the real world. Our analysis also demonstrated that a variety of data augmentation is necessary to address nuanced differences in performance.

Audio-Video Detection of the Active Speaker in Meetings

Francisco Madrigal, Frederic Lerasle, Lionel Pibre, Isabelle Ferrané

Responsive image

Auto-TLDR; Active Speaker Detection with Visual and Contextual Information from Meeting Context

Slides Poster Similar

Meetings are a common activity that provides certain challenges when creating systems that assist them. Such is the case of the Active speaker detection, which can provide useful information for human interaction modeling, or human-robot interaction. Active speaker detection is mostly done using speech, however, certain visual and contextual information can provide additional insights. In this paper we propose an active speaker detection framework that integrates audiovisual features with social information, from the meeting context. Visual cue is processed using a Convolutional Neural Network (CNN) that captures the spatio-temporal relationships. We analyze several CNN architectures with both cues: raw pixels (RGB images) and motion (estimated with optical flow). Contextual reasoning is done with an original methodology, based on the gaze of all participants. We evaluate our proposal with a public \textcolor{black}{benchmark} in state-of-art: AMI corpus. We show how the addition of visual and context information improves the performance of the active speaker detection.

Automatic Estimation of Self-Reported Pain by Interpretable Representations of Motion Dynamics

Benjamin Szczapa, Mohammed Daoudi, Stefano Berretti, Pietro Pala, Zakia Hammal, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Pain Intensity Measurement from Facial Points Using Gram Matrices

Slides Poster Similar

We propose an automatic method for pain intensity measurement from video. For each video, pain intensity was measured using the dynamics of facial movement using 66 facial points. Gram matrices formulation was used for facial points trajectory representations on the Riemannian manifold of symmetric positive semi-definite matrices of fixed rank. Curve fitting and temporal alignment were then used to smooth the extracted trajectories. A SVR regression model was then trained to encode the extracted trajectories into ten pain intensity scores consistent with the Visual Analogue Scale for pain intensity measurement. The proposed approach was evaluated using the UNBC McMaster Shoulder Pain Expression database and compared to the state of the art on the same data. Using both 5-folds cross-validation and leave-one-subject-out cross-validation, our results are competitive with respect to state of the art methods.

Pose-Robust Face Recognition by Deep Meta Capsule Network-Based Equivariant Embedding

Fangyu Wu, Jeremy Simon Smith, Wenjin Lu, Bailing Zhang

Responsive image

Auto-TLDR; Deep Meta Capsule Network-based Equivariant Embedding Model for Pose-Robust Face Recognition

Similar

Despite the exceptional success in face recognition related technologies, handling large pose variations still remains a key challenge. Current techniques for pose-robust face recognition either, directly extract pose-invariant features, or first synthesize a face that matches the target pose before feature extraction. It is more desirable to learn face representations equivariant to pose variations. To this end, this paper proposes a deep meta Capsule network-based Equivariant Embedding Model (DM-CEEM) with three distinct novelties. First, the proposed RB-CapsNet allows DM-CEEM to learn an equivariant embedding for pose variations and achieve the desired transformation for input face images. Second, we introduce a new version of a Capsule network called RB-CapsNet to extend CapsNet to perform a profile-to-frontal face transformation in deep feature space. Third, we train the DM-CEEM in a meta way by treating a single overall classification target as multiple sub-tasks that satisfy certain unknown probabilities. In each sub-task, we sample the support and query sets randomly. The experimental results on both controlled and in-the-wild databases demonstrate the superiority of DM-CEEM over state-of-the-art.

Video Face Manipulation Detection through Ensemble of CNNs

Nicolo Bonettini, Edoardo Daniele Cannas, Sara Mandelli, Luca Bondi, Paolo Bestagini, Stefano Tubaro

Responsive image

Auto-TLDR; Face Manipulation Detection in Video Sequences Using Convolutional Neural Networks

Slides Similar

In the last few years, several techniques for facial manipulation in videos have been successfully developed and made available to the masses (i.e., FaceSwap, deepfake, etc.). These methods enable anyone to easily edit faces in video sequences with incredibly realistic results and a very little effort. Despite the usefulness of these tools in many fields, if used maliciously, they can have a significantly bad impact on society (e.g., fake news spreading, cyber bullying through fake revenge porn). The ability of objectively detecting whether a face has been manipulated in a video sequence is then a task of utmost importance. In this paper, we tackle the problem of face manipulation detection in video sequences targeting modern facial manipulation techniques. In particular, we study the ensembling of different trained Convolutional Neural Network (CNN) models. In the proposed solution, different models are obtained starting from a base network (i.e., EfficientNetB4) making use of two different concepts: (i) attention layers; (ii) siamese training. We show that combining these networks leads to promising face manipulation detection results on two publicly available datasets with more than 119000 videos.

Rotation Detection in Finger Vein Biometrics Using CNNs

Bernhard Prommegger, Georg Wimmer, Andreas Uhl

Responsive image

Auto-TLDR; A CNN based rotation detector for finger vein recognition

Slides Poster Similar

Finger vein recognition deals with the identification of subjects based on their venous pattern within the fingers. The recognition accuracy of finger vein recognition systems suffers from different internal and external factors. One of the major problems are misplacements of the finger during acquisition. In particular longitudinal finger rotation poses a severe problem for such recognition systems. The detection and correction of such rotations is a difficult task as typically finger vein scanners acquire only a single image from the vein pattern. Therefore, important information such as the shape of the finger or the depth of the veins within the finger, which are needed for the rotation detection, are not available. This work presents a CNN based rotation detector that is capable of estimating the rotational difference between vein images of the same finger without providing any additional information. The experiments executed not only show that the method delivers highly accurate results, but it also generalizes so that the trained CNN can also be applied on data sets which have not been included during the training of the CNN. Correcting the rotation difference between images using the CNN's rotation prediction leads to EER improvements between 50-260% for a well-established vein-pattern based method (Maximum Curvature) on four public finger vein databases.

Learning Natural Thresholds for Image Ranking

Somayeh Keshavarz, Quang Nhat Tran, Richard Souvenir

Responsive image

Auto-TLDR; Image Representation Learning and Label Discretization for Natural Image Ranking

Slides Poster Similar

For image ranking tasks with naturally continuous output, such as age and scenicness estimation, it is common to discretize the label range and apply methods from (ordered) classification analysis. In this paper, we propose a data-driven approach for simultaneous representation learning and label discretization. Compared to arbitrarily selecting thresholds, we seek to learn thresholds and image representations by minimizing a novel loss function in an end-to-end model. We demonstrate our combined approach on a variety of image ranking tasks and demonstrate that it outperforms task-specific methods. Additionally, our learned partitioning scheme can be transferred to improve methods that rely on discretization.

RefiNet: 3D Human Pose Refinement with Depth Maps

Andrea D'Eusanio, Stefano Pini, Guido Borghi, Roberto Vezzani, Rita Cucchiara

Responsive image

Auto-TLDR; RefiNet: A Multi-stage Framework for 3D Human Pose Estimation

Slides Similar

Human Pose Estimation is a fundamental task for many applications in the Computer Vision community and it has been widely investigated in the 2D domain, i.e. intensity images. Therefore, most of the available methods for this task are mainly based on 2D Convolutional Neural Networks and huge manually-annotated RGB datasets, achieving stunning results. In this paper, we propose RefiNet, a multi-stage framework that regresses an extremely-precise 3D human pose estimation from a given 2D pose and a depth map. The framework consists of three different modules, each one specialized in a particular refinement and data representation, i.e. depth patches, 3D skeleton and point clouds. Moreover, we collect a new dataset, namely Baracca, acquired with RGB, depth and thermal cameras and specifically created for the automotive context. Experimental results confirm the quality of the refinement procedure that largely improves the human pose estimations of off-the-shelf 2D methods.

HPERL: 3D Human Pose Estimastion from RGB and LiDAR

Michael Fürst, Shriya T.P. Gupta, René Schuster, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; 3D Human Pose Estimation Using RGB and LiDAR Using Weakly-Supervised Approach

Slides Poster Similar

In-the-wild human pose estimation has a huge potential for various fields, ranging from animation and action recognition to intention recognition and prediction for autonomous driving. The current state-of-the-art is focused only on RGB and RGB-D approaches for predicting the 3D human pose. However, not using precise LiDAR depth information limits the performance and leads to very inaccurate absolute pose estimation. With LiDAR sensors becoming more affordable and common on robots and autonomous vehicle setups, we propose an end-to-end architecture using RGB and LiDAR to predict the absolute 3D human pose with unprecedented precision. Additionally, we introduce a weakly-supervised approach to generate 3D predictions using 2D pose annotations from PedX. This allows for many new opportunities in the field of 3D human pose estimation.

Detection of Makeup Presentation Attacks Based on Deep Face Representations

Christian Rathgeb, Pawel Drozdowski, Christoph Busch

Responsive image

Auto-TLDR; An Attack Detection Scheme for Face Recognition Using Makeup Presentation Attacks

Slides Poster Similar

Facial cosmetics have the ability to substantially alter the facial appearance, which can negatively affect the decisions of a face recognition. In addition, it was recently shown that the application of makeup can be abused to launch so-called makeup presentation attacks. In such attacks, the attacker might apply heavy makeup in order to achieve the facial appearance of a target subject for the purpose of impersonation. In this work, we assess the vulnerability of a COTS face recognition system to makeup presentation attacks employing the publicly available Makeup Induced Face Spoofing (MIFS) database. It is shown that makeup presentation attacks might seriously impact the security of the face recognition system. Further, we propose an attack detection scheme which distinguishes makeup presentation attacks from genuine authentication attempts by analysing differences in deep face representations obtained from potential makeup presentation attacks and corresponding target face images. The proposed detection system employs a machine learning-based classifier, which is trained with synthetically generated makeup presentation attacks utilizing a generative adversarial network for facial makeup transfer in conjunction with image warping. Experimental evaluations conducted using the MIFS database reveal a detection equal error rate of 0.7% for the task of separating genuine authentication attempts from makeup presentation attacks.

Weight Estimation from an RGB-D Camera in Top-View Configuration

Marco Mameli, Marina Paolanti, Nicola Conci, Filippo Tessaro, Emanuele Frontoni, Primo Zingaretti

Responsive image

Auto-TLDR; Top-View Weight Estimation using Deep Neural Networks

Slides Poster Similar

The development of so-called soft-biometrics aims at providing information related to the physical and behavioural characteristics of a person. This paper focuses on bodyweight estimation based on the observation from a top-view RGB-D camera. In fact, the capability to estimate the weight of a person can be of help in many different applications, from health-related scenarios to business intelligence and retail analytics. To deal with this issue, a TVWE (Top-View Weight Estimation) framework is proposed with the aim of predicting the weight. The approach relies on the adoption of Deep Neural Networks (DNNs) that have been trained on depth data. Each network has also been modified in its top section to replace classification with prediction inference. The performance of five state-of-art DNNs has been compared, namely VGG16, ResNet, Inception, DenseNet and Efficient-Net. In addition, a convolutional auto-encoder has also been included for completeness. Considering the limited literature in this domain, the TVWE framework has been evaluated on a new publicly available dataset: “VRAI Weight estimation Dataset”, which also collects, for each subject, labels related to weight, gender, and height. The experimental results have demonstrated that the proposed methods are suitable for this task, bringing different and significant insights for the application of the solution in different domains.

Multi-Scale Keypoint Matching

Sina Lotfian, Hassan Foroosh

Responsive image

Auto-TLDR; Multi-Scale Keypoint Matching Using Multi-Scale Information

Slides Poster Similar

We propose a new hierarchical method to match keypoints by exploiting information across multiple scales. Traditionally, for each keypoint a single scale is detected and the matching process is done in the specific scale. We replace this approach with matching across scale-space. The holistic information from higher scales are used for early rejection of candidates that are far away in the feature space. The more localized and finer details of lower scale are then used to decide between remaining possible points. The proposed multi-scale solution is more consistent with the multi-scale processing that is present in the human visual system and is therefore biologically plausible. We evaluate our method on several datasets and achieve state of the art accuracy, while significantly outperforming others in extraction time.

Better Prior Knowledge Improves Human-Pose-Based Extrinsic Camera Calibration

Olivier Moliner, Sangxia Huang, Kalle Åström

Responsive image

Auto-TLDR; Improving Human-pose-based Extrinsic Calibration for Multi-Camera Systems

Slides Poster Similar

Accurate extrinsic calibration of wide baseline multi-camera systems enables better understanding of 3D scenes for many applications and is of great practical importance. Classical Structure-from-Motion calibration methods require special calibration equipment so that accurate point correspondences can be detected between different views. In addition, an operator with some training is usually needed to ensure that data is collected in a way that leads to good calibration accuracy. This limits the ease of adoption of such technologies. Recently, methods have been proposed to use human pose estimation models to establish point correspondences, thus removing the need for any special equipment. The challenge with this approach is that human pose estimation algorithms typically produce much less accurate feature points compared to classical patch-based methods. Another problem is that ambient human motion might not be optimal for calibration. We build upon prior works and introduce several novel ideas to improve the accuracy of human-pose-based extrinsic calibration. Our first contribution is a robust reprojection loss based on a better understanding of the sources of pose estimation error. Our second contribution is a 3D human pose likelihood model learned from motion capture data. We demonstrate significant improvements in calibration accuracy by evaluating our method on four publicly available datasets.

Computational Data Analysis for First Quantization Estimation on JPEG Double Compressed Images

Sebastiano Battiato, Oliver Giudice, Francesco Guarnera, Giovanni Puglisi

Responsive image

Auto-TLDR; Exploiting Discrete Cosine Transform Coefficients for Multimedia Forensics

Slides Poster Similar

Multimedia Forensics experts work consists in providing answers about integrity of a specific media content and from where it comes from. Exploitation of any traces from JPEG double compressed images is often one of the main investigative path to be used for these purposes. Thus it is fundamental to have tools and algorithms able to safely estimate the first quantization matrix to further proceed with camera model identification and related tasks. In this paper, a technique based on extensive simulation is proposed, with the aim to infer the first quantization for a certain numbers of Discrete Cosine Transform (DCT) coefficients exploiting local image statistics without using any a-priori knowledge. The method provides also a reliable confidence value for the estimation which is of great importance for forensic purposes. Experimental results w.r.t. the state-of-the-art demonstrate the effectiveness of the proposed technique both in terms of precision and overall reliability.

Effective Deployment of CNNs for 3DoF Pose Estimation and Grasping in Industrial Settings

Daniele De Gregorio, Riccardo Zanella, Gianluca Palli, Luigi Di Stefano

Responsive image

Auto-TLDR; Automated Deep Learning for Robotic Grasping Applications

Slides Poster Similar

In this paper we investigate how to effectively deploy deep learning in practical industrial settings, such as robotic grasping applications. When a deep-learning based solution is proposed, usually lacks of any simple method to generate the training data. In the industrial field, where automation is the main goal, not bridging this gap is one of the main reasons why deep learning is not as widespread as it is in the academic world. For this reason, in this work we developed a system composed by a 3-DoF Pose Estimator based on Convolutional Neural Networks (CNNs) and an effective procedure to gather massive amounts of training images in the field with minimal human intervention. By automating the labeling stage, we also obtain very robust systems suitable for production-level usage. An open source implementation of our solution is provided, alongside with the dataset used for the experimental evaluation.

Efficient Grouping for Keypoint Detection

Alexey Sidnev, Ekaterina Krasikova, Maxim Kazakov

Responsive image

Auto-TLDR; Automatic Keypoint Grouping for DeepFashion2 Dataset

Slides Poster Similar

DeepFashion2 dataset raises a new challenge for a keypoint detection task. It contains 13 categories with a different number of keypoints, 294 in total. Direct prediction of all keypoints leads to huge memory consumption, slow training, and inference speed. This paper presents a study of keypoint grouping approach and how it affects performance on the example of CenterNet architecture. We propose a simple and efficient automatic grouping technique and apply it to DeepFashion2 fashion landmark task and MS COCO Human Pose task. It allows reducing memory consumption up to 30%, decreasing inference time up to 30%, and training time up to 26% without compromising accuracy.

Facial Expression Recognition Using Residual Masking Network

Luan Pham, Vu Huynh, Tuan Anh Tran

Responsive image

Auto-TLDR; Deep Residual Masking for Automatic Facial Expression Recognition

Slides Poster Similar

Automatic facial expression recognition (FER) has gained much attention due to its applications in human-computer interaction. Among the approaches to improve FER tasks, this paper focuses on deep architecture with the attention mechanism. We propose a novel Masking idea to boost the performance of CNN in facial expression task. It uses a segmentation network to refine feature maps, enabling the network to focus on relevant information to make correct decisions. In experiments, we combine the ubiquitous Deep Residual Network and Unet-like architecture to produce a Residual Masking Network. The proposed method holds state-of-the-art (SOTA) accuracy on the well-known FER2013 and private VEMO datasets. Our works are available on Github.

Real-Time Driver Drowsiness Detection Using Facial Action Units

Malaika Vijay, Nandagopal Netrakanti Vinayak, Maanvi Nunna, Subramanyam Natarajan

Responsive image

Auto-TLDR; Real-Time Detection of Driver Drowsiness using Facial Action Units using Extreme Gradient Boosting

Slides Poster Similar

This paper presents a two-stage, vision-based pipeline for the real-time detection of driver drowsiness using Facial Action Units (FAUs). FAUs capture movements in groups of muscles in the face like widening of the eyes or dropping of the jaw. The first stage of the pipeline employs a Convolutional Neural Network (CNN) trained to detect FAUs. The output of the penultimate layer of this network serves as an image embedding that captures features relevant to FAU detection. These embeddings are then used to predict drowsiness using an Extreme Gradient Boosting (XGBoost) classifier. A separate XGBoost model is trained for each user of the system so that behavior specific to each user can be modeled into the drowsiness classifier. We show that user-specific classifiers require very little data and low training time to yield high prediction accuracies in real-time.

How Unique Is a Face: An Investigative Study

Michal Balazia, S L Happy, Francois Bremond, Antitza Dantcheva

Responsive image

Auto-TLDR; Uniqueness of Face Recognition: Exploring the Impact of Factors such as image resolution, feature representation, database size, age and gender

Slides Poster Similar

Face recognition has been widely accepted as a means of identification in applications ranging from border control to security in the banking sector. Surprisingly, while widely accepted, we still lack the understanding of the uniqueness or distinctiveness of face as a biometric characteristic. In this work, we study the impact of factors such as image resolution, feature representation, database size, age and gender on uniqueness denoted by the Kullback-Leibler divergence between genuine and impostor distributions. Towards understanding the impact, we present experimental results on the datasets AT&T, LFW, IMDb-Face, as well as ND-TWINS, with the feature extraction algorithms VGGFace, VGG16, ResNet50, InceptionV3, MobileNet and DenseNet121, that reveal the quantitative impact of the named factors. While these are early results, our findings indicate the need for a better understanding of the concept of biometric uniqueness and its implication on face recognition.

Learning Visual Voice Activity Detection with an Automatically Annotated Dataset

Stéphane Lathuiliere, Pablo Mesejo, Radu Horaud

Responsive image

Auto-TLDR; Deep Visual Voice Activity Detection with Optical Flow

Slides Similar

Visual voice activity detection (V-VAD) uses visual features to predict whether a person is speaking or not. V-VAD is useful whenever audio VAD (A-VAD) is inefficient either because the acoustic signal is difficult to analyze or is simply missing. We propose two deep architectures for V-VAD, one based on facial landmarks and one based on optical flow. Moreover, available datasets, used for learning and for testing V-VAD, lack content variability. We introduce a novel methodology to automatically create and annotate very large datasets in-the-wild, based on combining A-VAD and face detection. A thorough empirical evaluation shows the advantage of training the proposed deep V-VAD models with such a dataset.

Rotational Adjoint Methods for Learning-Free 3D Human Pose Estimation from IMU Data

Caterina Emilia Agelide Buizza, Yiannis Demiris

Responsive image

Auto-TLDR; Learning-free 3D Human Pose Estimation from Inertial Measurement Unit Data

Poster Similar

We present a new framework for learning-free 3D human pose estimation from Inertial Measurement Unit (IMU) data. The proposed method does not rely on a full motion sequence to calculate a pose for any particular time point and thus can operate in real-time. A cost function based only on joint rotations is used, removing the need for frequent transformations between rotations and 3D Cartesian coordinates. A Jacobian that preserves skeleton structure is derived using Adjoint methods from Variational Data Assimilation. To facilitate further research in IMU-based Motion Capture, we provide a dataset that combines RGB and depth images from an Intel RealSense camera, marker-based motion capture from an Optitrack system and Xsens IMU data. We have evaluated our method on both our dataset and the Total Capture dataset, showing an average error across 24 joints of 0.45 and 0.48 radians respectively.

Orthographic Projection Linear Regression for Single Image 3D Human Pose Estimation

Yahui Zhang, Shaodi You, Theo Gevers

Responsive image

Auto-TLDR; A Deep Neural Network for 3D Human Pose Estimation from a Single 2D Image in the Wild

Slides Poster Similar

3D human pose estimation from a single 2D image in the wild is an important computer vision task but yet extremely challenging. Unlike images taken from indoor and well constrained environments, 2D outdoor images in the wild are extremely complex because of varying imaging conditions. Furthermore, 2D images usually do not have corresponding 3D pose ground truth making a supervised approach ill constrained. Therefore, in this paper, we propose to associate the 3D human pose, the 2D human pose projection and the 2D image appearance through a new orthographic projection based linear regression module. Unlike existing reprojection based approaches, our orthographic projection and regression do not suffer from small angle problems, which usually lead to overfitting in the depth dimension. Hence, we propose a deep neural network which adopts the 2D pose, 3D pose regression and orthographic projection linear regression module. The proposed method shows state-of-the art performance on the Human3.6M dataset and generalizes well to in-the-wild images.

Unsupervised Learning of Landmarks Based on Inter-Intra Subject Consistencies

Weijian Li, Haofu Liao, Shun Miao, Le Lu, Jiebo Luo

Responsive image

Auto-TLDR; Unsupervised Learning for Facial Landmark Discovery using Inter-subject Landmark consistencies

Slides Similar

We present a novel unsupervised learning approach to image landmark discovery by incorporating the inter-subject landmark consistencies on facial images. This is achieved via an inter-subject mapping module that transforms original subject landmarks based on an auxiliary subject-related structure. To recover from the transformed images back to the original subject, the landmark detector is forced to learn spatial locations that contain the consistent semantic meanings both for the paired intra-subject images and between the paired inter-subject images. Our proposed method is extensively evaluated on two public facial image datasets (MAFL, AFLW) with various settings. Experimental results indicate that our method can extract the consistent landmarks for both datasets and achieve better performances compared to the previous state-of-the-art methods quantitatively and qualitatively.

ClusterFace: Joint Clustering and Classification for Set-Based Face Recognition

Samadhi Poornima Kumarasinghe Wickrama Arachchilage, Ebroul Izquierdo

Responsive image

Auto-TLDR; Joint Clustering and Classification for Face Recognition in the Wild

Slides Poster Similar

Deep learning technology has enabled successful modeling of complex facial features when high quality images are available. Nonetheless, accurate modeling and recognition of human faces in real world scenarios 'on the wild' or under adverse conditions remains an open problem. When unconstrained faces are mapped into deep features, variations such as illumination, pose, occlusion, etc., can create inconsistencies in the resultant feature space. Hence, deriving conclusions based on direct associations could lead to degraded performance. This rises the requirement for a basic feature space analysis prior to face recognition. This paper devises a joint clustering and classification scheme which learns deep face associations in an easy-to-hard way. Our method is based on hierarchical clustering where the early iterations tend to preserve high reliability. The rationale of our method is that a reliable clustering result can provide insights on the distribution of the feature space, that can guide the classification that follows. Experimental evaluations on three tasks, face verification, face identification and rank-order search, demonstrates better or competitive performance compared to the state-of-the-art, on all three experiments.

Movement-Induced Priors for Deep Stereo

Yuxin Hou, Muhammad Kamran Janjua, Juho Kannala, Arno Solin

Responsive image

Auto-TLDR; Fusing Stereo Disparity Estimation with Movement-induced Prior Information

Slides Poster Similar

We propose a method for fusing stereo disparity estimation with movement-induced prior information. Instead of independent inference frame-by-frame, we formulate the problem as a non-parametric learning task in terms of a temporal Gaussian process prior with a movement-driven kernel for inter-frame reasoning. We present a hierarchy of three Gaussian process kernels depending on the availability of motion information, where our main focus is on a new gyroscope-driven kernel for handheld devices with low-quality MEMS sensors, thus also relaxing the requirement of having full 6D camera poses available. We show how our method can be combined with two state-of-the-art deep stereo methods. The method either work in a plug-and-play fashion with pre-trained deep stereo networks, or further improved by jointly training the kernels together with encoder--decoder architectures, leading to consistent improvement.

Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated Convolution

Renshu Gu, Gaoang Wang, Jenq-Neng Hwang

Responsive image

Auto-TLDR; 3D Human Pose Estimation for Multi-Human Videos with Occlusion

Slides Similar

3D human pose estimation (HPE) is crucial in human behavior analysis, augmented reality/virtual reality (AR/VR) applications, and self-driving industry. Videos that contain multiple potentially occluded people captured from freely moving monocular cameras are very common in real-world scenarios, while 3D HPE for such scenarios is quite challenging, partially because there is a lack of such data with accurate 3D ground truth labels in existing datasets. In this paper, we propose a temporal regression network with a gated convolution module to transform 2D joints to 3D and recover the missing occluded joints in the meantime. A simple yet effective localization approach is further conducted to transform the normalized pose to the global trajectory. To verify the effectiveness of our approach, we also collect a new moving camera multi-human (MMHuman) dataset that includes multiple people with heavy occlusion captured by moving cameras. The 3D ground truth joints are provided by accurate motion capture (MoCap) system. From the experiments on static-camera based Human3.6M data and our own collected moving-camera based data, we show that our proposed method outperforms most state-of-the-art 2D-to-3D pose estimation methods, especially for the scenarios with heavy occlusions.

StrongPose: Bottom-up and Strong Keypoint Heat Map Based Pose Estimation

Niaz Ahmad, Jongwon Yoon

Responsive image

Auto-TLDR; StrongPose: A bottom-up box-free approach for human pose estimation and action recognition

Slides Poster Similar

Adaptation of deep convolutional neural network has made revolutionary progress in human pose estimation, various applications in recent years have drawn considerable attention. However, prediction and localization of the keypoints in single and multi-person images are a challenging problem. Towards this purpose, we present a bottom-up box-free approach for the task of pose estimation and action recognition. We proposed a StrongPose system model that uses part-based modeling to tackle object-part associations. The model utilizes a convolution network that learns how to detect Strong Keypoints Heat Maps (SKHM) and predict their comparative displacements, enabling us to group keypoints into person pose instances. Further, we produce Body Heat Maps (BHM) with the help of keypoints which allows us to localize the human body in the picture. The StrongPose framework is based on fully-convolutional engineering and permits proficient inference, with runtime basically autonomous of the number of individuals display within the scene. Train and test on COCO data alone, our framework achieves COCO test-dev keypoint average precision of 0.708 using ResNet-101 and 0.725 using ResNet-152, which considerably outperforms all prior bottom-up pose estimation frameworks.

A Systematic Investigation on End-To-End Deep Recognition of Grocery Products in the Wild

Marco Leo, Pierluigi Carcagni, Cosimo Distante

Responsive image

Auto-TLDR; Automatic Recognition of Products on grocery shelf images using Convolutional Neural Networks

Slides Poster Similar

Automatic recognition of products on grocery shelf images is a new and attractive topic in computer vision and machine learning since, it can be exploited in different application areas. This paper introduces a complete end-to-end pipeline (without preliminary radiometric and spatial transformations usually involved while dealing with the considered issue) and it provides a systematic investigation of recent machine learning models based on convolutional neural networks for addressing the product recognition task by exploiting the proposed pipeline on a recent challenging grocery product dataset. The investigated models were never been used in this context: they derive from the successful and more generic object recognition task and have been properly tuned to address this specific issue. Besides, also ensembles of nets built by most advanced theoretical fundaments have been taken into account. Gathered classification results were very encouraging since the recognition accuracy has been improved up to 15\% with respect to the leading approaches in the state of art on the same dataset. A discussion about the pros and cons of the investigated solutions are discussed by paving the path towards new research lines.

Lightweight Low-Resolution Face Recognition for Surveillance Applications

Yoanna Martínez-Díaz, Heydi Mendez-Vazquez, Luis S. Luevano, Leonardo Chang, Miguel Gonzalez-Mendoza

Responsive image

Auto-TLDR; Efficiency of Lightweight Deep Face Networks on Low-Resolution Surveillance Imagery

Slides Poster Similar

Typically, real-world requirements to deploy face recognition models in unconstrained surveillance scenarios demand to identify low-resolution faces with extremely low computational cost. In the last years, several methods based on complex deep learning models have been proposed with promising recognition results but at a high computational cost. Inspired by the compactness and computation efficiency of lightweight deep face networks and their high accuracy on general face recognition tasks, in this work we propose to benchmark two recently introduced lightweight face models on low-resolution surveillance imagery to enable efficient system deployment. In this way, we conduct a comprehensive evaluation on the two typical settings: LR-to-HR and LR-to-LR matching. In addition, we investigate the effect of using trained models with down-sampled synthetic data from high-resolution images, as well as the combination of different models, for face recognition on real low-resolution images. Experimental results show that the used lightweight face models achieve state-of-the-art results on low-resolution benchmarks with low memory footprint and computational complexity. Moreover, we observed that combining models trained with different degradations improves the recognition accuracy on low-resolution surveillance imagery, which is feasible due to their low computational cost.

Detecting Manipulated Facial Videos: A Time Series Solution

Zhang Zhewei, Ma Can, Gao Meilin, Ding Bowen

Responsive image

Auto-TLDR; Face-Alignment Based Bi-LSTM for Fake Video Detection

Slides Poster Similar

We propose a new method to expose fake videos based on a time series solution. The method is based on bidirectional long short-term memory (Bi-LSTM) backbone architecture with two different types of features: {Face-Alignment} and {Dense-Face-Alignment}, in which both of them are physiological signals that can be distinguished between fake and original videos. We choose 68 landmark points as the feature of {Face-Alignment} and Pose Adaptive Feature (PAF) for {Dense-Face-Alignment}. Based on these two facial features, we designed two deep networks. In addition, we optimize our network by adding an attention mechanism that improves detection precision. Our method is tested over benchmarks of Face Forensics/Face Forensics++ dataset and show a promising performance on inference speed while maintaining accuracy with state-of art solutions that deal against DeepFake.

PEAN: 3D Hand Pose Estimation Adversarial Network

Linhui Sun, Yifan Zhang, Jing Lu, Jian Cheng, Hanqing Lu

Responsive image

Auto-TLDR; PEAN: 3D Hand Pose Estimation with Adversarial Learning Framework

Slides Poster Similar

Despite recent emerging research attention, 3D hand pose estimation still suffers from the problems of predicting inaccurate or invalid poses which conflict with physical and kinematic constraints. To address these problems, we propose a novel 3D hand pose estimation adversarial network (PEAN) which can implicitly utilize such constraints to regularize the prediction in an adversarial learning framework. PEAN contains two parts: a 3D hierarchical estimation network (3DHNet) to predict hand pose, which decouples the task into multiple subtasks with a hierarchical structure; a pose discrimination network (PDNet) to judge the reasonableness of the estimated 3D hand pose, which back-propagates the constraints to the estimation network. During the adversarial learning process, PDNet is expected to distinguish the estimated 3D hand pose and the ground truth, while 3DHNet is expected to estimate more valid pose to confuse PDNet. In this way, 3DHNet is capable of generating 3D poses with accurate positions and adaptively adjusting the invalid poses without additional prior knowledge. Experiments show that the proposed 3DHNet does a good job in predicting hand poses, and introducing PDNet to 3DHNet does further improve the accuracy and reasonableness of the predicted results. As a result, the proposed PEAN achieves the state-of-the-art performance on three public hand pose estimation datasets.

Age Gap Reducer-GAN for Recognizing Age-Separated Faces

Daksha Yadav, Naman Kohli, Mayank Vatsa, Richa Singh, Afzel Noore

Responsive image

Auto-TLDR; Generative Adversarial Network for Age-separated Face Recognition

Slides Poster Similar

In this paper, we propose a novel algorithm for matching faces with temporal variations caused due to age progression. The proposed generative adversarial network algorithm is a unified framework which combines facial age estimation and age-separated face verification. The key idea of this approach is to learn the age variations across time by conditioning the input image on the subject's gender and the target age group to which the face needs to be progressed. The loss function accounts for reducing the age gap between the original image and generated face image as well as preserving the identity. Both visual fidelity and quantitative evaluations demonstrate the efficacy of the proposed architecture on different facial age databases for age-separated face recognition.