Compression of YOLOv3 Via Block-Wise and Channel-Wise Pruning for Real-Time and Complicated Autonomous Driving Environment Sensing Applications

Jiaqi Li, Yanan Zhao, Li Gao, Feng Cui

Responsive image

Auto-TLDR; Pruning YOLOv3 with Batch Normalization for Autonomous Driving

Slides Poster

Nowadays, in the area of autonomous driving, the computational power of the object detectors is limited by the embedded devices and the public datasets for autonomous driving are over-idealistic. In this paper, we propose a pipeline combining both block-wise pruning and channel-wise pruning to compress the object detection model iteratively. We enforce the introduced factor of the residual blocks and the scale parameters in Batch Normalization (BN) layers to sparsity to select the less important residual blocks and channels. Moreover, a modified loss function has been proposed to remedy the class-imbalance problem. After removing the unimportant structures iteratively, we get the pruned YOLOv3 trained on our datasets which have more abundant and elaborate classes. Evaluated by our validation sets on the server, the pruned YOLOv3 saves 79.7% floating point operations (FLOPs), 93.8% parameter size, 93.8% model volume and 45.4% inference times with only 4.16% mean of average precision (mAP) loss. Evaluated on the embedded device, the pruned model operates about 13 frames per second with 4.53% mAP loss. These results show that the real-time property and accuracy of the pruned YOLOv3 can meet the needs of the embedded devices in complicated autonomous driving environments.

Similar papers

Slimming ResNet by Slimming Shortcut

Donggyu Joo, Doyeon Kim, Junmo Kim

Responsive image

Auto-TLDR; SSPruning: Slimming Shortcut Pruning on ResNet Based Networks

Slides Poster Similar

Conventional network pruning methods on convolutional neural networks (CNNs) reduce the number of input or output channels of convolution layers. With these approaches, the channels in the plain network can be pruned without any restrictions. However, in case of the ResNet based networks which have shortcuts (skip connections), the channel slimming of existing pruning methods is limited to the inside of each residual block. Since the number of Flops and parameters are also highly related to the number of channels in the shortcuts, more investigation on pruning channels in shortcuts is required. In this paper, we propose a novel pruning method, Slimming Shortcut Pruning (SSPruning), for pruning channels in shortcuts on ResNet based networks. First, we separate the long shortcut in individual regions that can be pruned independently without considering its long connections. Then, by applying our Importance Learning Gate (ILG) which learns the importance of channels globally regardless of channel type and location (i.e., in the shortcut or inside of the block), we can finally achieve an optimally pruned model. Through various experiments, we have confirmed that our method yields outstanding results when we prune the shortcuts and inside of the block together.

Learning to Prune in Training via Dynamic Channel Propagation

Shibo Shen, Rongpeng Li, Zhifeng Zhao, Honggang Zhang, Yugeng Zhou

Responsive image

Auto-TLDR; Dynamic Channel Propagation for Neural Network Pruning

Slides Poster Similar

In this paper, we propose a novel network training mechanism called "dynamic channel propagation" to prune the model during the training period. In particular, we pick up a specific group of channels in each convolutional layer to participate in the forward propagation in training time according to the significance level of channel, which is defined as channel utility. The utility values with respect to all selected channels are updated simultaneously with the error back-propagation process and will constantly change. Furthermore, when the training ends, channels with high utility values are retained whereas those with low utility values are discarded. Hence, our proposed method trains and prunes neural networks simultaneously. We empirically evaluate our novel training method on various representative benchmark datasets and advanced convolutional neural network (CNN) architectures, including VGGNet and ResNet. The experiment results verify superior performance and robust effectiveness of our approach.

HFP: Hardware-Aware Filter Pruning for Deep Convolutional Neural Networks Acceleration

Fang Yu, Chuanqi Han, Pengcheng Wang, Ruoran Huang, Xi Huang, Li Cui

Responsive image

Auto-TLDR; Hardware-Aware Filter Pruning for Convolutional Neural Networks

Slides Poster Similar

Convolutional Neural Networks (CNNs) are powerful but computationally demanding and memory intensive, thus impeding their practical applications on resource-constrained hardware. Filter pruning is an efficient approach for deep CNN compression and acceleration, which aims to eliminate some filters with tolerable performance degradation. In the literature, the majority of approaches prune networks by defining the redundant filters or training the networks with a sparsity prior loss function. These approaches mainly use FLOPs as their speed metric. However, the inference latency of pruned networks cannot be directly controlled on the hardware platform, which is an important dimension of practicality. To address this issue, we propose a novel Hardware-aware Filter Pruning method (HFP) which can produce pruned networks that satisfy the actual latency budget on the hardwares of interest. In addition, we propose an iterative pruning framework called Opti-Cut to decrease the accuracy degradation of pruning process and accelerate the pruning procedure whilst meeting the hardware budget. More specifically, HFP first builds up a lookup table for fast estimating the latency of target network about filter configuration layer by layer. Then, HFP leverages information gain (IG) to globally evaluate the filters' contribution to network output distribution. HFP utilizes the Opti-Cut framework to globally prune filters with the minimum IG one by one until the latency budget is satisfied. We verify the effectiveness of the proposed method on CIFAR-10 and ImageNet. Compared with the state-of-the-art pruning methods, HFP demonstrates superior performances on VGGNet, ResNet and MobileNet V1/V2.

Progressive Gradient Pruning for Classification, Detection and Domain Adaptation

Le Thanh Nguyen-Meidine, Eric Granger, Marco Pedersoli, Madhu Kiran, Louis-Antoine Blais-Morin

Responsive image

Auto-TLDR; Progressive Gradient Pruning for Iterative Filter Pruning of Convolutional Neural Networks

Slides Poster Similar

Although deep neural networks (NNs) have achieved state-of-the-art accuracy in many visual recognition tasks, the growing computational complexity and energy consumption of networks remains an issue, especially for applications on plat-forms with limited resources and requiring real-time processing.Filter pruning techniques have recently shown promising results for the compression and acceleration of convolutional NNs(CNNs). However, these techniques involve numerous steps and complex optimisations because some only prune after training CNNs, while others prune from scratch during training by integrating sparsity constraints or modifying the loss function.In this paper we propose a new Progressive Gradient Pruning(PGP) technique for iterative filter pruning during training. In contrast to previous progressive pruning techniques, it relies on a novel filter selection criterion that measures the change in filter weights, uses a new hard and soft pruning strategy and effectively adapts momentum tensors during the backward propagation pass. Experimental results obtained after training various CNNs on image data for classification, object detection and domain adaptation benchmarks indicate that the PGP technique can achieve a better trade-off between classification accuracy and network (time and memory) complexity than PSFP and other state-of-the-art filter pruning techniques.

Softer Pruning, Incremental Regularization

Linhang Cai, Zhulin An, Yongjun Xu

Responsive image

Auto-TLDR; Asymptotic SofteR Filter Pruning for Deep Neural Network Pruning

Slides Poster Similar

Network pruning is widely used to compress Deep Neural Networks (DNNs). The Soft Filter Pruning (SFP) method zeroizes the pruned filters during training while updating them in the next training epoch. Thus the trained information of the pruned filters is completely dropped. To utilize the trained pruned filters, we proposed a SofteR Filter Pruning (SRFP) method and its variant, Asymptotic SofteR Filter Pruning (ASRFP), simply decaying the pruned weights with a monotonic decreasing parameter. Our methods perform well across various netowrks, datasets and pruning rates, also transferable to weight pruning. On ILSVRC-2012, ASRFP prunes 40% of the parameters on ResNet-34 with 1.63% top-1 and 0.68% top-5 accuracy improvement. In theory, SRFP and ASRFP are an incremental regularization of the pruned filters. Besides, We note that SRFP and ASRFP pursue better results while slowing down the speed of convergence.

Filter Pruning Using Hierarchical Group Sparse Regularization for Deep Convolutional Neural Networks

Kakeru Mitsuno, Takio Kurita

Responsive image

Auto-TLDR; Hierarchical Group Sparse Regularization for Sparse Convolutional Neural Networks

Slides Poster Similar

Since the convolutional neural networks are often trained with redundant parameters, it is possible to reduce redundant kernels or filters to obtain a compact network without dropping the classification accuracy. In this paper, we propose a filter pruning method using the hierarchical group sparse regularization. It is shown in our previous work that the hierarchical group sparse regularization is effective in obtaining sparse networks in which filters connected to unnecessary channels are automatically close to zero. After training the convolutional neural network with the hierarchical group sparse regularization, the unnecessary filters are selected based on the increase of the classification loss of the randomly selected training samples to obtain a compact network. It is shown that the proposed method can reduce more than 50% parameters of ResNet for CIFAR-10 with only 0.3% decrease in the accuracy of test samples. Also, 34% parameters of ResNet are reduced for TinyImageNet-200 with higher accuracy than the baseline network.

A Modified Single-Shot Multibox Detector for Beyond Real-Time Object Detection

Georgios Orfanidis, Konstantinos Ioannidis, Stefanos Vrochidis, Anastasios Tefas, Ioannis Kompatsiaris

Responsive image

Auto-TLDR; Single Shot Detector in Resource-Restricted Systems with Lighter SSD Variations

Slides Poster Similar

This works focuses on examining the performance of the Single Shot Detector (SSD) model in resource restricted systems where maintaining the power of the full model comprises a significant prerequisite. The proposed SSD variations examine the behavior of lighter versions of SSD while propose measures to limit the unavoidable performance shortage. The outcomes of the conducted research demonstrate a remarkable trade-off between performance losses, speed improvement and the required resource reservation. Thus, the experimental results evidence the efficiency of the presented SSD alterations towards accomplishing higher frame rates and retaining the performance of the original model.

Forground-Guided Vehicle Perception Framework

Kun Tian, Tong Zhou, Shiming Xiang, Chunhong Pan

Responsive image

Auto-TLDR; A foreground segmentation branch for vehicle detection

Slides Poster Similar

As the basis of advanced visual tasks such as vehicle tracking and traffic flow analysis, vehicle detection needs to accurately predict the position and category of vehicle objects. In the past decade, deep learning based methods have made great progress. However, we also notice that some existing cases are not studied thoroughly. First, false positive on the background regions is one of the critical problems. Second, most of the previous approaches only optimize a single vehicle detection model, ignoring the relationship between different visual perception tasks. In response to the above two findings, we introduce a foreground segmentation branch for the first time, which can predict the pixel level of vehicles in advance. Furthermore, two attention modules are designed to guide the work of the detection branch. The proposed method can be easily grafted into the one-stage and two-stage detection framework. We evaluate the effectiveness of our model on LSVH, a dataset with large variations in vehicle scales, and achieve the state-of-the-art detection accuracy.

NAS-EOD: An End-To-End Neural Architecture Search Method for Efficient Object Detection

Huigang Zhang, Liuan Wang, Jun Sun, Li Sun, Hiromichi Kobashi, Nobutaka Imamura

Responsive image

Auto-TLDR; NAS-EOD: Neural Architecture Search for Object Detection on Edge Devices

Slides Similar

Model efficiency for object detection has become more and more important recently, especially when intelligent mobile devices are more and more convenient and developed today. Current small models for this task is either extended from the models for classification task, or pruned directly on the basis of large models. These pipelines are not task-specific or data-oriented so that their performance are not good enough for users. In this work, we propose a neural architecture search (NAS) method to build a detection model automatically that can perform well on edge devices. Specifically, the proposed method supports the search of not only multi-scale feature network, but also backbone network. This enables us to search out a global optimal model. To the best of our knowledge, it is a first attempt for searching an overall detection model via NAS. Additionally, we add latency information into the main objective during performance estimation, so that the search process can find a final model suitable for edge devices. Experiments on the PASCAL VOC benchmark indicate that the searched model (named NAS-EOD) can get good accuracy even without ImageNet pre-training. When using ImageNet pre-training, our model is superior to state-of-the-art small object detection models.

Neural Compression and Filtering for Edge-assisted Real-time Object Detection in Challenged Networks

Yoshitomo Matsubara, Marco Levorato

Responsive image

Auto-TLDR; Deep Neural Networks for Remote Object Detection Using Edge Computing

Slides Poster Similar

The edge computing paradigm places compute-capable devices - edge servers - at the network edge to assist mobile devices in executing data analysis tasks. Intuitively, offloading compute-intense tasks to edge servers can reduce their execution time. However, poor conditions of the wireless channel connecting the mobile devices to the edge servers may degrade the overall capture-to-output delay achieved by edge offloading. Herein, we focus on edge computing supporting remote object detection by means of Deep Neural Networks (DNN), and develop a framework to reduce the amount of data transmitted over the wireless link. The core idea we propose builds on recent approaches splitting DNNs into sections - namely head and tail models - executed by the mobile device and edge server, respectively. The wireless link, then, is used to transport the output of the last layer of the head model to the edge server, instead of the DNN input. Most prior work focuses on classification tasks and leaves the DNN structure unaltered. Herein, we focus on DNNs for three different object detection tasks, which present a much more convoluted structure, and modify the architecture of the network to: (i) achieve in-network compression by introducing a bottleneck layer in the early layers on the head model, and (ii) prefilter pictures that do not contain objects of interest using a convolutional neural network. Results show that the proposed technique represents an effective intermediate option between local and edge computing in a parameter region where these extreme point solutions fail to provide satisfactory performance.

A Discriminant Information Approach to Deep Neural Network Pruning

Zejiang Hou, Sy Kung

Responsive image

Auto-TLDR; Channel Pruning Using Discriminant Information and Reinforcement Learning

Slides Poster Similar

Network pruning has become the de facto tool to accelerate and compress deep convolutional neural networks for mobile and edge applications. Previous works tend to perform channel selection in layer-wise manner based on predefined heuristics, without considering layer importance or systematically optimizing the pruned structure. In this work, we propose a novel channel pruning method that jointly harnesses two strategies: (1) a channel importance ranking heuristics based on the feature-maps discriminant power, (2) a searching method for optimal pruning budget allocation. For the former, we propose a Discriminant Information (DI) based channel selection algorithm. We use a small batch of training samples to compute the DI score for each channel and rank the channel importance so that channels really contributing to the feature-maps discriminant power are retained. For the latter, in order to search the optimal pruning budget allocation, we formulate a reward maximization problem to discover the layer importance and generating the pruning budget accordingly. Such reward maximization can be efficiently solved by the policy gradient algorithm in reinforcement learning, yielding our final pruned network which achieves the best accuracy-efficiency trade-off. Experiments on a variety of CNN architectures and benchmark datasets show that our proposed channel pruning methods compare favorably with previous state-of-the-art methods. On ImageNet, our pruned MobileNetV2 outperforms the previous layer-wise state-of-the-art pruning method CPLI \cite{guo2020channel} by 2\% Top-1 accuracy while reducing the FLOPs by 50\%.

A Fast and Accurate Object Detector for Handwritten Digit String Recognition

Jun Guo, Wenjing Wei, Yifeng Ma, Cong Peng

Responsive image

Auto-TLDR; ChipNet: An anchor-free object detector for handwritten digit string recognition

Slides Poster Similar

Focusing on handwritten digit string recognition (HDSR), we propose an anchor-free object detector called ChipNet, where a novel encoding method is designed. The input image is divided into columns, and then these columns are encoded by the ground truth. The adjacent columns are responsible for detecting the same target so that it can well address the class-imbalanced problem meanwhile reducing the network computation. ChipNet is composed of convolutional and bidirectional long short term memory networks. Different from the typical detectors, it doesn't use region proposals, anchors or regions of interest pooling. Hence, it can overcome the shortages of anchor-based and dense detectors in HDSR. The experiments are implemented on the synthetic digit strings, the CVL HDS database, and the ORAND-CAR-A & B databases. The high accuracies, which surpass the reported results by a large margin (up to 6.62%), are achieved. Furthermore, it gets 219 FPS speed on 160*32 px resolution images when using a Tesla P100 GPU. The results also show that ChipNet can handle touching, connecting and arbitrary length digit strings, and the obtained accuracies in HDSR are as high as the ones in single handwritten digit recognition.

Object Detection in the DCT Domain: Is Luminance the Solution?

Benjamin Deguerre, Clement Chatelain, Gilles Gasso

Responsive image

Auto-TLDR; Jpeg Deep: Object Detection Using Compressed JPEG Images

Slides Poster Similar

Object detection in images has reached unprecedented performances. The state-of-the-art methods rely on deep architectures that extract salient features and predict bounding boxes enclosing the objects of interest. These methods essentially run on RGB images. However, the RGB images are often compressed by the acquisition devices for storage purpose and transfer efficiency. Hence, their decompression is required for object detectors. To gain in efficiency, this paper proposes to take advantage of the compressed representation of images to carry out object detection usable in constrained resources conditions. Specifically, we focus on JPEG images and propose a thorough analysis of detection architectures newly designed in regard of the peculiarities of the JPEG norm. This leads to a x1.7 speed up in comparison with a standard RGB-based architecture, while only reducing the detection performance by 5.5%. Additionally, our empirical findings demonstrate that only part of the compressed JPEG information, namely the luminance component, may be required to match detection accuracy of the full input methods. Code is made available at : https://github.com/D3lt4lph4/jpeg_deep.

Towards Low-Bit Quantization of Deep Neural Networks with Limited Data

Yong Yuan, Chen Chen, Xiyuan Hu, Silong Peng

Responsive image

Auto-TLDR; Low-Precision Quantization of Deep Neural Networks with Limited Data

Slides Poster Similar

Recent machine learning methods use increasingly large deep neural networks to achieve state-of-the-art results in various tasks. Network quantization can effectively reduce computation and memory costs without modifying network structures, facilitating the deployment of deep neural networks (DNNs) on cloud and edge devices. However, most of the existing methods usually need time-consuming training or fine-tuning and access to the original training dataset that may be unavailable due to privacy or security concerns. In this paper, we present a novel method to achieve low-precision quantization of deep neural networks with limited data. Firstly, to reduce the complexity of per-channel quantization and the degeneration of per-layer quantization, we introduce group-wise quantization which separates the output channels into groups that each group is quantized separately. Secondly, to better distill knowledge from the pre-trained FP32 model with limited data, we introduce a two-stage knowledge distillation method that divides the optimization process into independent optimization stage and joint optimization stage to address the limitation of layer-wise supervision and global supervision. Extensive experiments on ImageNet2012 (ResNet18/50, ShuffleNetV2, and MobileNetV2) demonstrate that the proposed approach can significantly improve the quantization model's accuracy when only a few training samples are available. We further show that the method also extends to other computer vision architectures and tasks such as object detection and semantic segmentation.

Yolo+FPN: 2D and 3D Fused Object Detection with an RGB-D Camera

Ya Wang

Responsive image

Auto-TLDR; Yolo+FPN: Combining 2D and 3D Object Detection for Real-Time Object Detection

Slides Poster Similar

In this paper we propose a new deep neural network system, called Yolo+FPN, which fuses both 2D and 3D object detection algorithms to achieve better real-time object detection results and faster inference speed, to be used on real robots. Finding an optimized fusion strategy to efficiently combine 3D object detection with 2D detection information is useful and challenging for both indoor and outdoor robots. In order to satisfy real-time requirements, a trade-off between accuracy and efficiency is needed. We not only have improved training and test accuracies and lower mean losses on the KITTI object detection benchmark, but also achieve better average precision on 3D detection of all classes in three levels of difficulty. Also, we implemented Yolo+FPN system using an RGB-D camera, and compared the speed of 2D and 3D object detection using different GPUs. For the real implementation of both indoor and outdoor scenes, we focus on person detection, which is the most challenging and important among the three classes.

FeatureNMS: Non-Maximum Suppression by Learning Feature Embeddings

Niels Ole Salscheider

Responsive image

Auto-TLDR; FeatureNMS: Non-Maximum Suppression for Multiple Object Detection

Slides Poster Similar

Most state of the art object detectors output multiple detections per object. The duplicates are removed in a post-processing step called Non-Maximum Suppression. Classical Non-Maximum Suppression has shortcomings in scenes that contain objects with high overlap: The idea of this heuristic is that a high bounding box overlap corresponds to a high probability of having a duplicate. We propose FeatureNMS to solve this problem. FeatureNMS recognizes duplicates not only based on the intersection over union between bounding boxes, but also based on the difference of feature vectors. These feature vectors can encode more information like visual appearance. Our approach outperforms classical NMS and derived approaches and achieves state of the art performance.

On the Information of Feature Maps and Pruning of Deep Neural Networks

Mohammadreza Soltani, Suya Wu, Jie Ding, Robert Ravier, Vahid Tarokh

Responsive image

Auto-TLDR; Compressing Deep Neural Models Using Mutual Information

Slides Poster Similar

A technique for compressing deep neural models achieving competitive performance to state-of-the-art methods is proposed. The approach utilizes the mutual information between the feature maps and the output of the model in order to prune the redundant layers of the network. Extensive numerical experiments on both CIFAR-10, CIFAR-100, and Tiny ImageNet data sets demonstrate that the proposed method can be effective in compressing deep models, both in terms of the numbers of parameters and operations. For instance, by applying the proposed approach to DenseNet model with 0.77 million parameters and 293 million operations for classification of CIFAR-10 data set, a reduction of 62.66% and 41.00% in the number of parameters and the number of operations are respectively achieved, while increasing the test error only by less than 1%.

Small Object Detection by Generative and Discriminative Learning

Yi Gu, Jie Li, Chentao Wu, Weijia Jia, Jianping Chen

Responsive image

Auto-TLDR; Generative and Discriminative Learning for Small Object Detection

Slides Poster Similar

With the development of deep convolutional neural networks (CNNs), the object detection accuracy has been greatly improved. But the performance of small object detection is still far from satisfactory, mainly because small objects are so tiny that the information contained in the feature map is limited. Existing methods focus on improving classification accuracy but still suffer from the limitation of bounding box prediction. To solve this issue, we propose a detection framework by generative and discriminative learning. First, a reconstruction generator network is designed to reconstruct the mapping from low frequency to high frequency for anchor box prediction. Then, a detector module extracts the regions of interest (ROIs) from generated results and implements a RoI-Head to predict object category and refine bounding box. In order to guide the reconstructed image related to the corresponding one, a discriminator module is adopted to tell from the generated result and the original image. Extensive evaluations on the challenging MS-COCO dataset demonstrate that our model outperforms most state-of-the-art models in detecting small objects, especially the reconstruction module improves the average precision for small object (APs) by 7.7%.

Exploiting Non-Linear Redundancy for Neural Model Compression

Muhammad Ahmed Shah, Raphael Olivier, Bhiksha Raj

Responsive image

Auto-TLDR; Compressing Deep Neural Networks with Linear Dependency

Slides Poster Similar

Deploying deep learning models with millions, even billions, of parameters is challenging given real world memory, power and compute constraints. In an effort to make these models more practical, in this paper, we propose a novel model compression approach that exploits linear dependence between the activations in a layer to eliminate entire structural units (neurons/convolutional filters). Our approach also adjusts the weights of the layer in a manner that is provably lossless while training if the removed neuron was perfectly predictable. We combine this approach with an annealing algorithm that may be applied during training, or even on a trained model, and demonstrate, using popular datasets, that our technique can reduce the parameters of VGG and AlexNet by more than 97\% on \cifar, 85\% on \caltech, and 19\% on ImageNet at less than 2\% loss in accuracy. Furthermore, we provide theoretical results showing that in overparametrized, locally linear (ReLU) neural networks where redundant features exist, and with correct hyperparameter selection, our method is indeed able to capture and suppress those dependencies.

Construction Worker Hardhat-Wearing Detection Based on an Improved BiFPN

Chenyang Zhang, Zhiqiang Tian, Jingyi Song, Yaoyue Zheng, Bo Xu

Responsive image

Auto-TLDR; A One-Stage Object Detection Method for Hardhat-Wearing in Construction Site

Slides Poster Similar

Work in the construction site is considered to be one of the occupations with the highest safety risk factor. Therefore, safety plays an important role in construction site. One of the most fundamental safety rules in construction site is to wear a hardhat. To strengthen the safety of the construction site, most of the current methods use multi-stage method for hardhat-wearing detection. These methods have limitations in terms of adaptability and generalizability. In this paper, we propose a one-stage object detection method based on convolutional neural network. We present a multi-scale strategy that selects the high-resolution feature maps of DarkNet-53 to effectively identify small-scale hardhats. In addition, we propose an improved weighted bi-directional feature pyramid network (BiFPN), which could fuse more semantic features from more scales. The proposed method can not only detect hardhat-wearing, but also identify the color of the hardhat. Experimental results show that the proposed method achieves a mAP of 87.04%, which outperforms several state-of-the-art methods on a public dataset.

SyNet: An Ensemble Network for Object Detection in UAV Images

Berat Mert Albaba, Sedat Ozer

Responsive image

Auto-TLDR; SyNet: Combining Multi-Stage and Single-Stage Object Detection for Aerial Images

Poster Similar

Recent advances in camera equipped drone applications and their widespread use increased the demand on vision based object detection algorithms for aerial images. Object detection process is inherently a challenging task as a generic computer vision problem, however, since the use of object detection algorithms on UAVs (or on drones) is relatively a new area, it remains as a more challenging problem to detect objects in aerial images. There are several reasons for that including: (i) the lack of large drone datasets including large object variance, (ii) the large orientation and scale variance in drone images when compared to the ground images, and (iii) the difference in texture and shape features between the ground and the aerial images. Deep learning based object detection algorithms can be classified under two main categories: (a) single-stage detectors and (b) multi-stage detectors. Both single-stage and multi-stage solutions have their advantages and disadvantages over each other. However, a technique to combine the good sides of each of those solutions could yield even a stronger solution than each of those solutions individually. In this paper, we propose an ensemble network, SyNet, that combines a multi-stage method with a single-stage one with the motivation of decreasing the high false negative rate of multi-stage detectors and increasing the quality of the single-stage detector proposals. As building blocks, CenterNet and Cascade R-CNN with pretrained feature extractors are utilized along with an ensembling strategy. We report the state of the art results obtained by our proposed solution on two different datasets: namely MS-COCO and visDrone with \%52.1 $mAP_{IoU = 0.75}$ is obtained on MS-COCO $val2017$ dataset and \%26.2 $mAP_{IoU = 0.75}$ is obtained on VisDrone $test-set$. Our code is available at: https://github.com/mertalbaba/SyNet}{https://github.com/mer talbaba/SyNet

Dynamic Multi-Path Neural Network

Yingcheng Su, Yichao Wu, Ken Chen, Ding Liang, Xiaolin Hu

Responsive image

Auto-TLDR; Dynamic Multi-path Neural Network

Slides Similar

Although deeper and larger neural networks have achieved better performance, due to overwhelming burden on computation, they cannot meet the demands of deployment on resource-limited devices. An effective strategy to address this problem is to make use of dynamic inference mechanism, which changes the inference path for different samples at runtime. Existing methods only reduce the depth by skipping an entire specific layer, which may lose important information in this layer. In this paper, we propose a novel method called Dynamic Multi-path Neural Network (DMNN), which provides more topology choices in terms of both width and depth on the fly. For better modelling the inference path selection, we further introduce previous state and object category information to guide the training process. Compared to previous dynamic inference techniques, the proposed method is more flexible and easier to incorporate into most modern network architectures. Experimental results on ImageNet and CIFAR-100 demonstrate the superiority of our method on both efficiency and classification accuracy.

Activation Density Driven Efficient Pruning in Training

Timothy Foldy-Porto, Yeshwanth Venkatesha, Priyadarshini Panda

Responsive image

Auto-TLDR; Real-Time Neural Network Pruning with Compressed Networks

Slides Poster Similar

Neural network pruning with suitable retraining can yield networks with considerably fewer parameters than the original with comparable degrees of accuracy. Typical pruning methods require large, fully trained networks as a starting point from which they perform a time-intensive iterative pruning and retraining procedure to regain the original accuracy. We propose a novel pruning method that prunes a network real-time during training, reducing the overall training time to achieve an efficient compressed network. We introduce an activation density based analysis to identify the optimal relative sizing or compression for each layer of the network. Our method is architecture agnostic, allowing it to be employed on a wide variety of systems. For VGG-19 and ResNet18 on CIFAR-10, CIFAR-100, and TinyImageNet, we obtain exceedingly sparse networks (up to $200 \times$ reduction in parameters and over $60 \times$ reduction in inference compute operations in the best case) with accuracy comparable to the baseline network. By reducing the network size periodically during training, we achieve total training times that are shorter than those of previously proposed pruning methods. Furthermore, training compressed networks at different epochs with our proposed method yields considerable reduction in training compute complexity ($1.6\times$ to $3.2\times$ lower) at near iso-accuracy as compared to a baseline network trained entirely from scratch.

One-Stage Multi-Task Detector for 3D Cardiac MR Imaging

Weizeng Lu, Xi Jia, Wei Chen, Nicolò Savioli, Antonio De Marvao, Linlin Shen, Declan O'Regan, Jinming Duan

Responsive image

Auto-TLDR; Multi-task Learning for Real-Time, simultaneous landmark location and bounding box detection in 3D space

Slides Poster Similar

Fast and accurate landmark location and bounding box detection are important steps in 3D medical imaging. In this paper, we propose a novel multi-task learning framework, for real-time, simultaneous landmark location and bounding box detection in 3D space. Our method extends the famous single-shot multibox detector (SSD) from single-task learning to multi-task learning and from 2D to 3D. Furthermore, we propose a post-processing approach to refine the network landmark output, by averaging the candidate landmarks. Owing to these settings, the proposed framework is fast and accurate. For 3D cardiac magnetic resonance (MR) images with size 224 × 224 × 64, our framework runs about 128 volumes per second (VPS) on GPU and achieves 6.75mm average point-to-point distance error for landmark location, which outperforms both state-of-the-art and baseline methods. We also show that segmenting the 3D image cropped with the bounding box results in both improved performance and efficiency.

Tiny Object Detection in Aerial Images

Jinwang Wang, Wen Yang, Haowen Guo, Ruixiang Zhang, Gui-Song Xia

Responsive image

Auto-TLDR; Tiny Object Detection in Aerial Images Using Multiple Center Points Based Learning Network

Slides Similar

Object detection in Earth Vision has achieved great progress in recent years. However, tiny object detection in aerial images remains a very challenging problem since the tiny objects contain a small number of pixels and are easily confused with the background. To advance tiny object detection research in aerial images, we present a new dataset for Tiny Object Detection in Aerial Images (AI-TOD). Specifically, AI-TOD comes with 700,621 object instances for eight categories across 28,036 aerial images. Compared to existing object detection datasets in aerial images, the mean size of objects in AI-TOD is about 12.8 pixels, which is much smaller than others. To build a benchmark for tiny object detection in aerial images, we evaluate the state-of-the-art object detectors on our AI-TOD dataset. Experimental results show that direct application of these approaches on AI-TOD produces suboptimal object detection results, thus new specialized detectors for tiny object detection need to be designed. Therefore, we propose a multiple center points based learning network (M-CenterNet) to improve the localization performance of tiny object detection, and experimental results show the significant performance gain over the competitors.

Neuron-Based Network Pruning Based on Majority Voting

Ali Alqahtani, Xianghua Xie, Ehab Essa, Mark W. Jones

Responsive image

Auto-TLDR; Large-Scale Neural Network Pruning using Majority Voting

Slides Poster Similar

The achievement of neural networks in a variety of applications is accompanied by a dramatic increase in computational costs and memory requirements. In this paper, we propose an efficient method to simultaneously identify the critical neurons and prune the model during training without involving any pre-training or fine-tuning procedures. Unlike existing methods, which accomplish this task in a greedy fashion, we propose a majority voting technique to compare the activation values among neurons and assign a voting score to quantitatively evaluate their importance.This mechanism helps to effectively reduce model complexity by eliminating the less influential neurons and aims to determine a subset of the whole model that can represent the reference model with much fewer parameters within the training process. Experimental results show that majority voting efficiently compresses the network with no drop in model accuracy, pruning more than 79\% of the original model parameters on CIFAR10 and more than 91\% of the original parameters on MNIST. Moreover, we show that with our proposed method, sparse models can be further pruned into even smaller models by removing more than 60\% of the parameters, whilst preserving the reference model accuracy.

Efficient-Receptive Field Block with Group Spatial Attention Mechanism for Object Detection

Jiacheng Zhang, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; E-RFB: Efficient-Receptive Field Block for Deep Neural Network for Object Detection

Slides Poster Similar

Object detection has been paid rising attention in computer vision field. Convolutional Neural Networks (CNNs) extract high-level semantic features of images, which directly determine the performance of object detection. As a common solution, embedding integration modules into CNNs can enrich extracted features and thereby improve the performance. However, the instability and inconsistency of internal multiple branches exist in these modules. To address this problem, we propose a novel multibranch module called Efficient-Receptive Field Block (E-RFB), in which multiple levels of features are combined for network optimization. Specifically, by downsampling and increasing depth, the E-RFB provides sufficient RF. Second, in order to eliminate the inconsistency across different branches, a novel spatial attention mechanism, namely, Group Spatial Attention Module (GSAM) is proposed. The GSAM gradually narrows a feature map by channel grouping; thus it encodes the information between spatial and channel dimensions into the final attention heat map. Third, the proposed module can be easily joined in various CNNs to enhance feature representation as a plug-and-play component. With SSD-style detectors, our method halves the parameters of the original detection head and achieves high accuracy on the PASCAL VOC and MS COCO datasets. Moreover, the proposed method achieves superior performance compared with state-of-the-art methods based on similar framework.

Learning Sparse Deep Neural Networks Using Efficient Structured Projections on Convex Constraints for Green AI

Michel Barlaud, Frederic Guyard

Responsive image

Auto-TLDR; Constrained Deep Neural Network with Constrained Splitting Projection

Slides Poster Similar

In recent years, deep neural networks (DNN) have been applied to different domains and achieved dramatic performance improvements over state-of-the-art classical methods. These performances of DNNs were however often obtained with networks containing millions of parameters and which training required heavy computational power. In order to cope with this computational issue a huge literature deals with proximal regularization methods which are time consuming.\\ In this paper, we propose instead a constrained approach. We provide the general framework for our new splitting projection gradient method. Our splitting algorithm iterates a gradient step and a projection on convex sets. We study algorithms for different constraints: the classical $\ell_1$ unstructured constraint and structured constraints such as the nuclear norm, the $\ell_{2,1} $ constraint (Group LASSO). We propose a new $\ell_{1,1} $ structured constraint for which we provide a new projection algorithm We demonstrate the effectiveness of our method on three popular datasets (MNIST, Fashion MNIST and CIFAR). Experiments on these datasets show that our splitting projection method with our new $\ell_{1,1} $ structured constraint provides the best reduction of memory and computational power. Experiments show that fully connected linear DNN are more efficient for green AI.

FastSal: A Computationally Efficient Network for Visual Saliency Prediction

Feiyan Hu, Kevin Mcguinness

Responsive image

Auto-TLDR; MobileNetV2: A Convolutional Neural Network for Saliency Prediction

Slides Poster Similar

This paper focuses on the problem of visual saliency prediction, predicting regions of an image that tend to attract human visual attention, under a constrained computational budget. We modify and test various recent efficient convolutional neural network architectures like EfficientNet and MobileNetV2 and compare them with existing state-of-the-art saliency models such as SalGAN and DeepGaze II both in terms of standard accuracy metrics like AUC and NSS, and in terms of the computational complexity and model size. We find that MobileNetV2 makes an excellent backbone for a visual saliency model and can be effective even without a complex decoder. We also show that knowledge transfer from a more computationally expensive model like DeepGaze II can be achieved via pseudo-labelling an unlabelled dataset, and that this approach gives result on-par with many state-of-the-art algorithms with a fraction of the computational cost and model size.

MagnifierNet: Learning Efficient Small-Scale Pedestrian Detector towards Multiple Dense Regions

Qi Cheng, Mingqin Chen, Yingjie Wu, Fei Chen, Shiping Lin

Responsive image

Auto-TLDR; MagnifierNet: A Simple but Effective Small-Scale Pedestrian Detection Towards Multiple Dense Regions

Slides Poster Similar

Despite the success of pedestrian detection, there is still a significant gap in the performance of the detection of pedestrians at different scales. Detecting small-scale pedestrians is extremely challenging due to the low resolution of their convolution features which is essential for downstream classifiers. To address this issue, we observed pedestrian datasets and found that pedestrians often gather together in crowded public places. Then we propose MagnifierNet, a simple but effective small-scale pedestrian detector towards multiple dense regions. MagnifierNet uses our proposed sweep-line based grouping algorithm to find dense regions based on the number of pedestrians in the grouped region. And we adopt a new definition of small-scale pedestrians through grid search and KL-divergence. Besides, our grouping method can also be used as a new strategy for pedestrian data augmentation. The ablation study demonstrates that MagnifierNet improves the representation of small-scale pedestrians. We validate the effectiveness of MagnifierNet on CityPersons and KITTI datasets. Experimental results show that MagnifierNet achieves the best small-scale pedestrian detection performance on CityPersons benchmark without any external data, and also achieves competitive performance for detecting small-scale pedestrians on KITTI dataset without bells and whistles.

Channel Planting for Deep Neural Networks Using Knowledge Distillation

Kakeru Mitsuno, Yuichiro Nomura, Takio Kurita

Responsive image

Auto-TLDR; Incremental Training for Deep Neural Networks with Knowledge Distillation

Slides Poster Similar

In recent years, deeper and wider neural networks have shown excellent performance in computer vision tasks, while their enormous amount of parameters results in increased computational cost and overfitting. Several methods have been proposed to compress the size of the networks without reducing network performance. Network pruning can reduce redundant and unnecessary parameters from a network. Knowledge distillation can transfer the knowledge of deeper and wider networks to smaller networks. The performance of the smaller network obtained by these methods is bounded by the predefined network. Neural architecture search has been proposed, which can search automatically the architecture of the networks to break the structure limitation. Also, there is a dynamic configuration method to train networks incrementally as sub-networks. In this paper, we present a novel incremental training algorithm for deep neural networks called planting. Our planting can search the optimal network architecture with smaller number of parameters for improving the network performance by augmenting channels incrementally to layers of the initial networks while keeping the earlier trained parameters fixed. Also, we propose using the knowledge distillation method for training the channels planted. By transferring the knowledge of deeper and wider networks, we can grow the networks effectively and efficiently. We evaluate the effectiveness of the proposed method on different datasets such as CIFAR-10/100 and STL-10. For the STL-10 dataset, we show that we are able to achieve comparable performance with only 7% parameters compared to the larger network and reduce the overfitting caused by a small amount of the data.

WeightAlign: Normalizing Activations by Weight Alignment

Xiangwei Shi, Yunqiang Li, Xin Liu, Jan Van Gemert

Responsive image

Auto-TLDR; WeightAlign: Normalization of Activations without Sample Statistics

Slides Poster Similar

Batch normalization (BN) allows training very deep networks by normalizing activations by mini-batch sample statistics which renders BN unstable for small batch sizes. Current small-batch solutions such as Instance Norm, Layer Norm, and Group Norm use channel statistics which can be computed even for a single sample. Such methods are less stable than BN as they critically depend on the statistics of a single input sample. To address this problem, we propose a normalization of activation without sample statistics. We present WeightAlign: a method that normalizes the weights by the mean and scaled standard derivation computed within a filter, which normalizes activations without computing any sample statistics. Our proposed method is independent of batch size and stable over a wide range of batch sizes. Because weight statistics are orthogonal to sample statistics, we can directly combine WeightAlign with any method for activation normalization. We experimentally demonstrate these benefits for classification on CIFAR-10, CIFAR-100, ImageNet, for semantic segmentation on PASCAL VOC 2012 and for domain adaptation on Office-31.

VPU Specific CNNs through Neural Architecture Search

Ciarán Donegan, Hamza Yous, Saksham Sinha, Jonathan Byrne

Responsive image

Auto-TLDR; Efficient Convolutional Neural Networks for Edge Devices using Neural Architecture Search

Slides Poster Similar

The success of deep learning at computer vision tasks has led to an ever-increasing number of applications on edge devices. Often with the use of edge AI hardware accelerators like the Intel Movidius Vision Processing Unit (VPU). Performing computer vision tasks on edge devices is challenging. Many Convolutional Neural Networks (CNNs) are too complex to run on edge devices with limited computing power. This has created large interest in designing efficient CNNs and one promising way of doing this is through Neural Architecture Search (NAS). NAS aims to automate the design of neural networks. NAS can also optimize multiple different objectives together, like accuracy and efficiency, which is difficult for humans. In this paper, we use a differentiable NAS method to find efficient CNNs for VPU that achieves state-of-the-art classification accuracy on ImageNet. Our NAS designed model outperforms MobileNetV2, having almost 1\% higher top-1 accuracy while being 13\% faster on MyriadX VPU. To the best of our knowledge, this is the first time a VPU specific CNN has been designed using a NAS algorithm. Our results also reiterate the fact that efficient networks must be designed for each specific hardware. We show that efficient networks targeted at different devices do not perform as well on the VPU.

PointDrop: Improving Object Detection from Sparse Point Clouds Via Adversarial Data Augmentation

Wenxin Ma, Jian Chen, Qing Du, Wei Jia

Responsive image

Auto-TLDR; PointDrop: Improving Robust 3D Object Detection to Sparse Point Clouds

Slides Poster Similar

Current 3D object detection methods achieve accurate and efficient results on the standard point cloud dataset. However, in real-world applications, due to the expensive cost of obtaining the annotated 3D object detection data, we expect to directly apply the model trained on the standard dataset to real-world scenarios. This strategy may fail because the point cloud samples obtained in the real-world scenarios may be much sparser due to various reasons (occlusion, low reflectivity of objects and fewer laser beams) and existing methods do not consider the limitations of their models on sparse point clouds. To improve the robustness of an object detector to sparser point clouds, we propose PointDrop, which learns to drop the features of some key points in the point clouds to generate challenging sparse samples for data augmentation. Moreover, PointDrop is able to adjust the difficulty of the generated samples based on the capacity of the detector and thus progressively improve the performance of the detector. We create two sparse point clouds datasets from the KITTI dataset to evaluate our method, and the experimental results show that PointDrop significantly improves the robustness of the detector to sparse point clouds.

Deep Real-Time Hand Detection Using CFPN on Embedded Systems

Pirdiansyah Hendri, Jun-Wei Hsieh, Ping Yang Chen

Responsive image

Auto-TLDR; Concatenated Feature Pyramid Network for Small Hand Detection on Embedded Devices

Slides Poster Similar

Real-time HI (Human Interface) systems need accurate and efficient hand detection models to meet the limited resources in budget, dimension, memory, computing, and electric power. In recent years, object detection became a less challenging task with the latest deep CNN-based state-of-the-art models, i.e., RCNN, SSD, and YOLO; however, these models cannot provide the desired efficiency and accuracy for HI systems on embedded devices due to their complex time-consuming architecture. In addition, the detection of small hands (<30x30 pixels) is still a challenging task for all the above existing methods. Thus, we propose a shallow model named Concatenated Feature Pyramid Network (CFPN) to provide above mentioned performance for small hand detection. The superiority of CFPN is confirmed on a HandFlow dataset with mAP:0.5 of 95.6 and FPS of 33 on Nvidia TX2. The COCO dataset is also used to compare with other state-of-the-art method and shows the highest efficiency and accuracy with the proposed CFPN model. Thus we conclude that the proposed model is useful for real-life small hand detection on embedded devices.

Dynamic Low-Light Image Enhancement for Object Detection Via End-To-End Training

Haifeng Guo, Yirui Wu, Tong Lu

Responsive image

Auto-TLDR; Object Detection using Low-Light Image Enhancement for End-to-End Training

Slides Poster Similar

Object detection based on convolutional neural networks is a hot research topic in computer vision. The illumination component in the image has a great impact on object detection, and it will cause a sharp decline in detection performance under low-light conditions. Using low-light image enhancement technique as a pre-processing mechanism can improve image quality and obtain better detection results.However, due to the complexity of low-light environments, the existing enhancement methods may have negative effects on some samples. Therefore, it is difficult to improve the overall detection performance in low-light conditions. In this paper, our goal is to use image enhancement to improve object detection performance rather than perceptual quality for humans. We propose a novel framework that combines low-light enhancement and object detection for end-to-end training. The framework can dynamically select different enhancement subnetworks for each sample to improve the performance of the detector. Our proposed method consists of two stage: the enhancement stage and the detection stage. The enhancement stage dynamically enhances the low-light images under the supervision of several enhancement methods and output corresponding weights. During the detection stage, the weights offers information on object classification to generate high-quality region proposals and in turn result in accurate detection. Our experiments present promising results, which show that the proposed method can significantly improve the detection performance in low-light environment.

Utilising Visual Attention Cues for Vehicle Detection and Tracking

Feiyan Hu, Venkatesh Gurram Munirathnam, Noel E O'Connor, Alan Smeaton, Suzanne Little

Responsive image

Auto-TLDR; Visual Attention for Object Detection and Tracking in Driver-Assistance Systems

Slides Poster Similar

Advanced Driver-Assistance Systems (ADAS) have been attracting attention from many researchers. Vision based sensors are the closest way to emulate human driver visual behavior while driving. In this paper, we explore possible ways to use visual attention (saliency) for object detection and tracking. We investigate: 1) How a visual attention map such as a subjectness attention or saliency map and an objectness attention map can facilitate region proposal generation in a 2-stage object detector; 2) How a visual attention map can be used for tracking multiple objects. We propose a neural network that can simultaneously detect objects as and generate objectness and subjectness maps to save computational power. We further exploit the visual attention map during tracking using a sequential Monte Carlo probability hypothesis density (PHD) filter. The experiments are conducted on KITTI and DETRAC datasets. The use of visual attention and hierarchical features has shown a considerable improvement of≈8% in object detection which effectively increased tracking performance by≈4% on KITTI dataset.

Multiple-Step Sampling for Dense Object Detection and Counting

Zhaoli Deng, Yang Chenhui

Responsive image

Auto-TLDR; Multiple-Step Sampling for Dense Objects Detection

Slides Poster Similar

A multitude of similar or even identical objects are positioned closely in dense scenes, which brings about difficulties in object-detecting and object-counting. Since the poor performance of Faster R-CNN, recent works prefer to detect dense objects with the utilization of multi-layer feature maps. Nevertheless, they require complex post-processing to minimize overlap between adjacent bounding boxes, which reduce their detection speed. However, we find that such a multilayer prediction is not necessary. It is observed that there exists a waste of ground-truth boxes during sampling, causing the lack of positive samples and the final failure of Faster R-CNN training. Motivated by this observation we propose a multiple-step sampling method for anchor sampling. Our method reduces the waste of ground-truth boxes in three steps according to different rules. Besides, we balance the positive and negative samples, and samples at different quality. Our method improves base detector (Faster R-CNN), the detection tests on SKU-110K and CARPK benchmarks indicate that our approach offers a good trade-off between accuracy and speed.

MINT: Deep Network Compression Via Mutual Information-Based Neuron Trimming

Madan Ravi Ganesh, Jason Corso, Salimeh Yasaei Sekeh

Responsive image

Auto-TLDR; Mutual Information-based Neuron Trimming for Deep Compression via Pruning

Slides Poster Similar

Most approaches to deep neural network compression via pruning either evaluate a filter’s importance using its weights or optimize an alternative objective function with sparsity constraints. While these methods offer a useful way to approximate contributions from similar filters, they often either ignore the dependency between layers or solve a more difficult optimization objective than standard cross-entropy. Our method, Mutual Information-based Neuron Trimming (MINT), approaches deep compression via pruning by enforcing sparsity based on the strength of the relationship between filters of adjacent layers, across every pair of layers. The relationship is calculated using conditional geometric mutual information which evaluates the amount of similar information exchanged between the filters using a graph-based criterion. When pruning a network, we ensure that retained filters contribute the majority of the information towards succeeding layers which ensures high performance. Our novel approach outperforms existing state-of-the-art compression-via-pruning methods on the standard benchmarks for this task: MNIST, CIFAR-10, and ILSVRC2012, across a variety of network architectures. In addition, we discuss our observations of a common denominator between our pruning methodology’s response to adversarial attacks and calibration statistics when compared to the original network.

How Does DCNN Make Decisions?

Yi Lin, Namin Wang, Xiaoqing Ma, Ziwei Li, Gang Bai

Responsive image

Auto-TLDR; Exploring Deep Convolutional Neural Network's Decision-Making Interpretability

Slides Poster Similar

Deep Convolutional Neural Networks (DCNN), despite imitating the human visual system, present no such decision credibility as human observers. This phenomenon, therefore, leads to the limitations of DCNN's applications in the security and trusted computing, such as self-driving cars and medical diagnosis. Focusing on this issue, our work aims to explore the way DCNN makes decisions. In this paper, the major contributions we made are: firstly, provide the hypothesis, “point-wise activation” of convolution function, according to the analysis of DCNN’s architectures and training process; secondly, point out the effect of “point-wise activation” on DCNN’s uninterpretable classification and pool robustness, and then suggest, in particular, the contradiction between the traditional and DCNN’s convolution kernel functions; finally, distinguish decision-making interpretability from semantic interpretability, and indicate that DCNN’s decision-making mechanism need to evolve towards the direction of semantics in the future. Besides, the “point-wise activation” hypothesis and conclusions proposed in our paper are supported by extensive experimental results.

Speeding-Up Pruning for Artificial Neural Networks: Introducing Accelerated Iterative Magnitude Pruning

Marco Zullich, Eric Medvet, Felice Andrea Pellegrino, Alessio Ansuini

Responsive image

Auto-TLDR; Iterative Pruning of Artificial Neural Networks with Overparametrization

Slides Poster Similar

In recent years, Artificial Neural Networks (ANNs) pruning has become the focal point of many researches, due to the extreme overparametrization of such models. This has urged the scientific world to investigate methods for the simplification of the structure of weights in ANNs, mainly in an effort to reduce time for both training and inference. Frankle and Carbin and later Renda, Frankle, and Carbin introduced and refined an iterative pruning method which is able to effectively prune the network of a great portion of its parameters with little to no loss in performance. On the downside, this method requires a large amount of time for its application, since, for each iteration, the network has to be trained for (almost) the same amount of epochs of the unpruned network. In this work, we show that, for a limited setting, if targeting high overall sparsity rates, this time can be effectively reduced for each iteration, save for the last one, by more than 50%, while yielding a final product (i.e., final pruned network) whose performance is comparable to the ANN obtained using the existing method.

Detecting Objects with High Object Region Percentage

Fen Fang, Qianli Xu, Liyuan Li, Ying Gu, Joo-Hwee Lim

Responsive image

Auto-TLDR; Faster R-CNN for High-ORP Object Detection

Slides Poster Similar

Object shape is a subtle but important factor for object detection. It has been observed that the object-region-percentage (ORP) can be utilized to improve detection accuracy for elongated objects, which have much lower ORPs than other types of objects. In this paper, we propose an approach to improve the detection performance for objects whose ORPs are relatively higher.To address the problem of high-ORP object detection, we propose a method consisting of three steps. First, we adjust the ground truth bounding boxes of high-ORP objects to an optimal range. Second, we train an object detector, Faster R-CNN, based on adjusted bounding boxes to achieve high recall. Finally, we train a DCNN to learn the adjustment ratios towards four directions and adjust detected bounding boxes of objects to get better localization for higher precision. We evaluate the effectiveness of our method on 12 high-ORP objects in COCO and 8 objects in a proprietary gearbox dataset. The experimental results show that our method can achieve state-of-the-art performance on these objects while costing less resources in training and inference stages.

ScarfNet: Multi-Scale Features with Deeply Fused and Redistributed Semantics for Enhanced Object Detection

Jin Hyeok Yoo, Dongsuk Kum, Jun Won Choi

Responsive image

Auto-TLDR; Semantic Fusion of Multi-scale Feature Maps for Object Detection

Slides Poster Similar

Convolutional neural networks (CNNs) have led us to achieve significant progress in object detection research. To detect objects of various sizes, object detectors often exploit the hierarchy of the multiscale feature maps called {\it feature pyramids}, which are readily obtained by the CNN architecture. However, the performance of these object detectors is limited because the bottom-level feature maps, which experience fewer convolutional layers, lack the semantic information needed to capture the characteristics of the small objects. To address such problems, various methods have been proposed to increase the depth for the bottom-level features used for object detection. While most approaches are based on the generation of additional features through the top-down pathway with lateral connections, our approach directly fuses multi-scale feature maps using bidirectional long short-term memory (biLSTM) in an effort to leverage the gating functions and parameter-sharing in generating deeply fused semantics. The resulting semantic information is redistributed to the individual pyramidal feature at each scale through the channel-wise attention model. We integrate our semantic combining and attentive redistribution feature network (ScarfNet) with the baseline object detectors, i.e., Faster R-CNN, single-shot multibox detector (SSD), and RetinaNet. Experimental results show that our method offers a significant performance gain over the baseline detectors and outperforms the competing multiscale fusion methods in the PASCAL VOC and COCO detection benchmarks.

Fast and Accurate Real-Time Semantic Segmentation with Dilated Asymmetric Convolutions

Leonel Rosas-Arias, Gibran Benitez-Garcia, Jose Portillo-Portillo, Gabriel Sanchez-Perez, Keiji Yanai

Responsive image

Auto-TLDR; FASSD-Net: Dilated Asymmetric Pyramidal Fusion for Real-Time Semantic Segmentation

Slides Poster Similar

Recent works have shown promising results applied to real-time semantic segmentation tasks. To maintain fast inference speed, most of the existing networks make use of light decoders, or they simply do not use them at all. This strategy helps to maintain a fast inference speed; however, their accuracy performance is significantly lower in comparison to non-real-time semantic segmentation networks. In this paper, we introduce two key modules aimed to design a high-performance decoder for real-time semantic segmentation for reducing the accuracy gap between real-time and non-real-time segmentation networks. Our first module, Dilated Asymmetric Pyramidal Fusion (DAPF), is designed to substantially increase the receptive field on the top of the last stage of the encoder, obtaining richer contextual features. Our second module, Multi-resolution Dilated Asymmetric (MDA) module, fuses and refines detail and contextual information from multi-scale feature maps coming from early and deeper stages of the network. Both modules exploit contextual information without excessively increasing the computational complexity by using asymmetric convolutions. Our proposed network entitled “FASSD-Net” reaches 78.8% of mIoU accuracy on the Cityscapes validation dataset at 41.1 FPS on full resolution images (1024x2048). Besides, with a light version of our network, we reach 74.1% of mIoU at 133.1 FPS (full resolution) on a single NVIDIA GTX 1080Ti card with no additional acceleration techniques. The source code and pre-trained models are available at https://github.com/GibranBenitez/FASSD-Net.

Triplet-Path Dilated Network for Detection and Segmentation of General Pathological Images

Jiaqi Luo, Zhicheng Zhao, Fei Su, Limei Guo

Responsive image

Auto-TLDR; Triplet-path Network for One-Stage Object Detection and Segmentation in Pathological Images

Slides Similar

Deep learning has been widely applied in the field of medical image processing. However, compared with flourishing visual tasks in natural images, the progress achieved in pathological images is not remarkable, and detection and segmentation, which are among basic tasks of computer vision, are regarded as two independent tasks. In this paper, we make full use of existing datasets and construct a triplet-path network using dilated convolutions to cooperatively accomplish one-stage object detection and nuclei segmentation for general pathological images. First, in order to meet the requirement of detection and segmentation, a novel structure called triplet feature generation (TFG) is designed to extract high-resolution and multiscale features, where features from different layers can be properly integrated. Second, considering that pathological datasets are usually small, a location-aware and partially truncated loss function is proposed to improve the classification accuracy of datasets with few images and widely varying targets. We compare the performance of both object detection and instance segmentation with state-of-the-art methods. Experimental results demonstrate the effectiveness and efficiency of the proposed network on two datasets collected from multiple organs.

ACRM: Attention Cascade R-CNN with Mix-NMS for Metallic Surface Defect Detection

Junting Fang, Xiaoyang Tan, Yuhui Wang

Responsive image

Auto-TLDR; Attention Cascade R-CNN with Mix Non-Maximum Suppression for Robust Metal Defect Detection

Slides Poster Similar

Metallic surface defect detection is of great significance in quality control for production. However, this task is very challenging due to the noise disturbance, large appearance variation, and the ambiguous definition of the defect individual. Traditional image processing methods are unable to detect the damaged region effectively and efficiently. In this paper, we propose a new defect detection method, Attention Cascade R-CNN with Mix-NMS (ACRM), to classify and locate defects robustly. Three submodules are developed to achieve this goal: 1) a lightweight attention block is introduced, which can improve the ability in capture global and local feature both in the spatial and channel dimension; 2) we firstly apply the cascade R-CNN to our task, which exploits multiple detectors to sequentially refine the detection result robustly; 3) we introduce a new method named Mix Non-Maximum Suppression (Mix-NMS), which can significantly improve its ability in filtering the redundant detection result in our task. Extensive experiments on a real industrial dataset show that ACRM achieves state-of-the-art results compared to the existing methods, demonstrating the effectiveness and robustness of our detection method.

CCA: Exploring the Possibility of Contextual Camouflage Attack on Object Detection

Shengnan Hu, Yang Zhang, Sumit Laha, Ankit Sharma, Hassan Foroosh

Responsive image

Auto-TLDR; Contextual camouflage attack for object detection

Slides Poster Similar

Deep neural network based object detection has become the cornerstone of many real-world applications. Along with this success comes concerns about its vulnerability to malicious attacks. To gain more insight into this issue, we propose a contextual camouflage attack (CCA for short) algorithm to influence the performance of object detectors. In this paper, we use an evolutionary search strategy and adversarial machine learning in interactions with a photo-realistic simulated environment to find camouflage patterns that are effective over a huge variety of object locations, camera poses, and lighting conditions. The proposed camouflages are validated effective to most of the state-of-the-art object detectors.

Mobile Phone Surface Defect Detection Based on Improved Faster R-CNN

Tao Wang, Can Zhang, Runwei Ding, Ge Yang

Responsive image

Auto-TLDR; Faster R-CNN for Mobile Phone Surface Defect Detection

Slides Poster Similar

Various surface defects will inevitably occur in the production process of mobile phones, which have a huge impact on the enterprise. Therefore, precise defect detection is of great significance in the production of mobile phones. However, the traditional manual inspection and machine vision inspection have low efficiency and accuracy respectively which cannot meet the rapid production needs of modern enterprises. In this paper, we proposed a mobile phone surface defect (MPSD) detection model based on deep learning, which greatly reduce the requirement of a large dataset and improve detection performance. First, Boundary Equilibrium Generative Adversarial Networks (BEGAN) is used to generate and augment the defect data. Then, based on Faster R-CNN model, Feature Pyramid Network (FPN) and ResNet 101 are combined as feature extraction network to get more small target defect features. Further, replacing the ROI pooling layer with an ROI Align layer reduces the quantization deviation during the pooling process. Finally, we train and evaluate our model on our own dataset. The experimental results indicate that compared with some traditional methods based on handcrafted feature extraction and the traditional Faster R-CNN, the improved Faster R-CNN achieves 99.43% mAP, which is more effective in MPSD defect detection area.