Hyperspectral Imaging for Analysis and Classification of Plastic Waste

Jakub Kraśniewski, Łukasz Dąbała, Lewandowski Marcin

Responsive image

Auto-TLDR; A Hyperspectral Camera for Material Classification

Slides Poster

Environmental protection is one of the main challenges facing society nowadays. Even with constantly growing awareness, not all of the sorting can be done by people themselves - the differences between materials are not visible to the human eye. For that reason, we present the use of a hyperspectral camera as a capture device, which allows us to obtain the full spectrum of the material. In this work we propose a method for efficient recognition of the substance of an item. We conducted several experiments and analysis of the spectra of different materials in different conditions on a special measuring stand. That enabled identification of the best features, which can later be used during classification, which was confirmed during the extensive testing procedure.

Similar papers

Fast Determination of Melanin Based on Skin Hyperspectral Reflectance

Shiwei Li, Mohsen Ardabilian, Abdelmalek Zine

Responsive image

Auto-TLDR; A 3layered Skin Model for Hyperspectral Reflectance Using Monte Carlo Simulations of Biological Components

Slides Poster Similar

A 3layered skin model is built to simulate hyperspectral reflectance using Monte Carlo simulations based on biological components, which include melanin volume fraction, water level, blood volume fraction, oxygen saturation, etc. A forward neural network is trained for mapping biological components and reflectance. Then a database, which contains 50,000 samples spectra from 450 to 750 nm with randomly given biological components information, are generated by this forward neural network. Support vector regression, inverse neural networks and random forest are applied for the regression analysis of reflectance data and melanin volume fraction. Dimensionality reduction is used to accelerate the training time. The performances of three regression methods are measured and show promising prediction results.

One Step Clustering Based on A-Contrario Framework for Detection of Alterations in Historical Violins

Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, Marco Malagodi

Responsive image

Auto-TLDR; A-Contrario Clustering for the Detection of Altered Violins using UVIFL Images

Slides Poster Similar

Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of interventions necessary. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the ``Violins UVIFL imagery'' dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with the state of the art clustering methods shows improved overall precision and recall.

A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes

Maximilian Söchting, Stefano Allegretti, Federico Bolelli, Costantino Grana

Responsive image

Auto-TLDR; Entropy Partitioning Decision Tree for Connected Components Labeling

Slides Poster Similar

Connected Components Labeling represents a fundamental step for many Computer Vision and Image Processing pipelines. Since the first appearance of the task in the sixties, many algorithmic solutions to optimize the computational load needed to label an image have been proposed. Among them, block-based scan approaches and decision trees revealed to be some of the most valuable strategies. However, due to the cost of the manual construction of optimal decision trees and the computational limitations of automatic strategies employed in the past, the application of blocks and decision trees has been restricted to small masks, and thus to 2D algorithms. With this paper we present a novel heuristic algorithm based on decision tree learning methodology, called Entropy Partitioning Decision Tree (EPDT). It allows to compute near-optimal decision trees for large scan masks. Experimental results demonstrate that algorithms based on the generated decision trees outperform state-of-the-art competitors.

Surface IR Reflectance Estimation and Material Recognition Using ToF Camera

Seokyeong Lee, Seungkyu Lee

Responsive image

Auto-TLDR; Material Type Recognition Using IR Reflectance Based Material Type Recognitions

Slides Poster Similar

Recently, various material recognition methods have been introduced that use a single color or light field camera. In prior methods, color and texture information of an object are used as key features. However, there exists fundamental limitation in using color features for material recognition in that material type can be characterized better by surface reflectance, visual appearance rather than its color and textures. In this work, we propose IR surface reflectance based material type recognition method. We use off-the-shelf ToF camera to estimate the IR reflectance of arbitrary surface. Material type recognition is performed on both color and surface IR reflectance features. Several network structures including gradual convolutional neural network are proposed and verified for our material recognition within our own 3D data sets.

Explainable Online Validation of Machine Learning Models for Practical Applications

Wolfgang Fuhl, Yao Rong, Thomas Motz, Michael Scheidt, Andreas Markus Hartel, Andreas Koch, Enkelejda Kasneci

Responsive image

Auto-TLDR; A Reformulation of Regression and Classification for Machine Learning Algorithm Validation

Slides Poster Similar

We present a reformulation of the regression and classification, which aims to validate the result of a machine learning algorithm. Our reformulation simplifies the original problem and validates the result of the machine learning algorithm using the training data. Since the validation of machine learning algorithms must always be explainable, we perform our experiments with the kNN algorithm as well as with an algorithm based on conditional probabilities, which is proposed in this work. For the evaluation of our approach, three publicly available data sets were used and three classification and two regression problems were evaluated. The presented algorithm based on conditional probabilities is also online capable and requires only a fraction of memory compared to the kNN algorithm.

Surface Material Dataset for Robotics Applications (SMDRA): A Dataset with Friction Coefficient and RGB-D for Surface Segmentation

Donghun Noh, Hyunwoo Nam, Min Sung Ahn, Hosik Chae, Sangjoon Lee, Kyle Gillespie, Dennis Hong

Responsive image

Auto-TLDR; A Surface Material Dataset for Robotics Applications

Slides Poster Similar

In this paper, we introduce the Surface Material Dataset for Robotics Applications (SMDRA), a collection of RGB color image, depth data, and pixel-wise friction coefficient data of 10 different materials for computer vision research specifically with robotics applications in mind that require physical contact between the robot and its environment such as robotic manipulators or walking robots. These selected surface materials are both easily accessible around our daily lives and cover a wide range of friction coefficients. Our dataset is unique in that while there is an abundance of RGB-D data due to the popularization of imaging sensors, additional pixel-wise aligned data of a different modality are not readily available. The depth data is collected by an active stereo camera which has shown promise on a variety of different robotic applications. In addition, this dataset is greatly expanded with friction coefficient data. Similarly to humans, this additional information can be helpful in ensuing proper decision making in tasks ranging from grasping orientation and strength to path determination in an unstructured environment. A newly developed friction measuring device was used to obtain this data. We verify that existing Convolutional Neural Network (CNN) architectures, the Fully Convolutional Network (FCN) and U-Net, can be trained on the SMDRA. This result demonstrates that the SMDRA can be utilized to train a neural network model for segmentation and these different modes are not just additional information, but valuable modes that researchers can incorporate and exploit when applying computer vision algorithms on robotic platforms.

Semi-Supervised Deep Learning Techniques for Spectrum Reconstruction

Adriano Simonetto, Vincent Parret, Alexander Gatto, Piergiorgio Sartor, Pietro Zanuttigh

Responsive image

Auto-TLDR; hyperspectral data estimation from RGB data using semi-supervised learning

Slides Poster Similar

State-of-the-art approaches for the estimation of hyperspectral images (HSI) from RGB data are mostly based on deep learning techniques but due to the lack of training data their performances are limited to uncommon scenarios where a large hyperspectral database is available. In this work we present a family of novel deep learning schemes for hyperspectral data estimation able to work when the hyperspectral information at our disposal is limited. Firstly, we introduce a learning scheme exploiting a physical model based on the backward mapping to the RGB space and total variation regularization that can be trained with a limited amount of HSI images. Then, we propose a novel semi-supervised learning scheme able to work even with just a few pixels labeled with hyperspectral information. Finally, we show that the approach can be extended to a transfer learning scenario. The proposed techniques allow to reach impressive performances while requiring only some HSI images or just a few pixels for the training.

Decision Snippet Features

Pascal Welke, Fouad Alkhoury, Christian Bauckhage, Stefan Wrobel

Responsive image

Auto-TLDR; Decision Snippet Features for Interpretability

Slides Poster Similar

Decision trees excel at interpretability of their prediction results. To achieve required prediction accuracies, however, often large ensembles of decision trees -- random forests -- are considered, reducing interpretability due to large size. Additionally, their size slows down inference on modern hardware and restricts their applicability in low-memory embedded devices. We introduce \emph{Decision Snippet Features}, which are obtained from small subtrees that appear frequently in trained random forests. We subsequently show that linear models on top of these features achieve comparable and sometimes even better predictive performance than the original random forest, while reducing the model size by up to two orders of magnitude.

BAT Optimized CNN Model Identifies Water Stress in Chickpea Plant Shoot Images

Shiva Azimi, Taranjit Kaur, Tapan Gandhi

Responsive image

Auto-TLDR; BAT Optimized ResNet-18 for Stress Classification of chickpea shoot images under water deficiency

Slides Poster Similar

Stress due to water deficiency in plants can significantly lower the agricultural yield. It can affect many visible plant traits such as size and surface area, the number of leaves and their color, etc. In recent years, computer vision-based plant phenomics has emerged as a promising tool for plant research and management. Such techniques have the advantage of being non-destructive, non-evasive, fast, and offer high levels of automation. Pulses like chickpeas play an important role in ensuring food security in poor countries owing to their high protein and nutrition content. In the present work, we have built a dataset comprising of two varieties of chickpea plant shoot images under different moisture stress conditions. Specifically, we propose a BAT optimized ResNet-18 model for classifying stress induced by water deficiency using chickpea shoot images. BAT algorithm identifies the optimal value of the mini-batch size to be used for training rather than employing the traditional manual approach of trial and error. Experimentation on two crop varieties (JG and Pusa) reveals that BAT optimized approach achieves an accuracy of 96% and 91% for JG and Pusa varieties that is better than the traditional method by 4%. The experimental results are also compared with state of the art CNN models like Alexnet, GoogleNet, and ResNet-50. The comparison results demonstrate that the proposed BAT optimized ResNet-18 model achieves higher performance than the comparison counterparts.

Viability of Optical Coherence Tomography for Iris Presentation Attack Detection

Renu Sharma, Arun Ross

Responsive image

Auto-TLDR; Optical Coherence Tomography Imaging for Iris Presentation Attack Detection

Slides Poster Similar

In this paper, we first propose the use of Optical Coherence Tomography (OCT) imaging for the problem of iris presentation attack (PA) detection. Secondly, we assess its viability by comparing its performance with respect to traditional modalities, viz., near-infrared (NIR) and visible spectrum. OCT imaging provides a cross-sectional view of an eye, whereas NIR and visible spectrum imaging provide 2D iris textural information. Implementation is performed using three state-of-the-art deep architectures (VGG19, ResNet50 and DenseNet121) to differentiate between bonafide and PA samples for each of the three imaging modalities. Experiments are performed on a dataset of 2,169 bonafide, 177 Van Dyke eyes and 360 cosmetic contact images acquired using all three imaging modalities under intra-attack (known PAs) and cross-attack (unknown PAs) scenario. We observe promising results demonstrating OCT as a viable solution for iris PA detection.

Recovery of 2D and 3D Layout Information through an Advanced Image Stitching Algorithm Using Scanning Electron Microscope Images

Aayush Singla, Bernhard Lippmann, Helmut Graeb

Responsive image

Auto-TLDR; Image Stitching for True Geometrical Layout Recovery in Nanoscale Dimension

Slides Poster Similar

Image stitching describes the process of reconstruction of a high resolution image from combining multiple images. Using a scanning electron microscope as the image source, individual images will show patterns in a nm dimension whereas the combined image may cover an area of several mm2. The recovery of the physical layout of modern semiconductor products manufactured in advanced technologies nodes down to 22 nm requires a perfect stitching process with no deviation with respect to the original design data, as any stitching error will result in failures during the reconstruction of the electrical design. In addition, the recovery of the complete design requires the acquisition of all individual layers of a semiconductor device which represent a 3D structure with interconnections defining error limits on the stitching error for each individual scanned image mosaic. An advanced stitching and alignment process is presented enabling a true geometrical layout recovery in nanoscale dimensions which is also applied and evaluated on other use cases from biological applications.

Automatic Classification of Human Granulosa Cells in Assisted Reproductive Technology Using Vibrational Spectroscopy Imaging

Marina Paolanti, Emanuele Frontoni, Giorgia Gioacchini, Giorgini Elisabetta, Notarstefano Valentina, Zacà Carlotta, Carnevali Oliana, Andrea Borini, Marco Mameli

Responsive image

Auto-TLDR; Predicting Oocyte Quality in Assisted Reproductive Technology Using Machine Learning Techniques

Slides Poster Similar

In the field of reproductive technology, the biochemical composition of female gametes has been successfully investigated with the use of vibrational spectroscopy. Currently, in assistive reproductive technology (ART), there are no shared criteria for the choice of oocyte, and automatic classification methods for the best quality oocytes have not yet been applied. In this paper, considering the lack of criteria in Assisted Reproductive Technology (ART), we use Machine Learning (ML) techniques to predict oocyte quality for a successful pregnancy. To improve the chances of successful implantation and minimize any complications during the pregnancy, Fourier transform infrared microspectroscopy (FTIRM) analysis has been applied on granulosa cells (GCs) collected along with the oocytes during oocyte aspiration, as it is routinely done in ART, and specific spectral biomarkers were selected by multivariate statistical analysis. A proprietary biological reference dataset (BRD) was successfully collected to predict the best oocyte for a successful pregnancy. Personal health information are stored, maintained and backed up using a cloud computing service. Using a user-friendly interface, the user will evaluate whether or not the selected oocyte will have a positive result. This interface includes a dashboard for retrospective analysis, reporting, real-time processing, and statistical analysis. The experimental results are promising and confirm the efficiency of the method in terms of classification metrics: precision, recall, and F1-score (F1) measures.

Multi-Scanning Based Recurrent Neural Network for Hyperspectral Image Classification

Weilian Zhou, Sei-Ichiro Kamata

Responsive image

Auto-TLDR; Spatial-Spectral Unification for Hyperspectral Image Classification

Slides Poster Similar

As the specialty of hyperspectral image (HSI), it consists of 2D spatial and 1D spectral information. In the field of deep learning, HSI classification is an appealing research topic. Many existing methods process the HSI in spatial or spectral domain separately, which cannot fully extract the representative features and the most used 3D convolutional neural network (3D-CNN) will suffer from mixing up complex spectral information. In this paper, we propose a spatial-spectral unified method by using recurrent neural networks (RNN) and multi-scanning direction strategy to construct spatial-spectral information sequences for learning the spatial dependencies among the central pixel and neighboring pixels. Meanwhile, residual connections and dense connections are introduced into multi-scanning direction sequences to overcome the memory problem in the RNN. The proposed method is tested on two benchmark datasets: the Pavia University dataset and the Pavia Center dataset. The experimental results demonstrate that the proposed method can achieve better classification rate than other state-of-the-art methods.

Multimodal End-To-End Learning for Autonomous Steering in Adverse Road and Weather Conditions

Jyri Sakari Maanpää, Josef Taher, Petri Manninen, Leo Pakola, Iaroslav Melekhov, Juha Hyyppä

Responsive image

Auto-TLDR; End-to-End Learning for Autonomous Steering in Adverse Road and Weather Conditions with Lidar Data

Slides Poster Similar

Autonomous driving is challenging in adverse road and weather conditions in which there might not be lane lines, the road might be covered in snow and the visibility might be poor. We extend the previous work on end-to-end learning for autonomous steering to operate in these adverse real-life conditions with multimodal data. We collected 28 hours of driving data in several road and weather conditions and trained convolutional neural networks to predict the car steering wheel angle from front-facing color camera images and lidar range and reflectance data. We compared the CNN model performances based on the different modalities and our results show that the lidar modality improves the performances of different multimodal sensor-fusion models. We also performed on-road tests with different models and they support this observation.

Real-Time Drone Detection and Tracking with Visible, Thermal and Acoustic Sensors

Fredrik Svanström, Cristofer Englund, Fernando Alonso-Fernandez

Responsive image

Auto-TLDR; Automatic multi-sensor drone detection using sensor fusion

Slides Poster Similar

This paper explores the process of designing an automatic multi-sensor drone detection system. Besides the common video and audio sensors, the system also includes a thermal infrared camera, which is shown to be a feasible solution to the drone detection task. Even with slightly lower resolution, the performance is just as good as a camera in visible range. The detector performance as a function of the sensor-to-target distance is also investigated. In addition, using sensor fusion, the system is made more robust than the individual sensors, helping to reduce false detections. To counteract the lack of public datasets, a novel video dataset containing 650 annotated infrared and visible videos of drones, birds, airplanes and helicopters is also presented. The database is complemented with an audio dataset of the classes drones, helicopters and background noise.

A Novel Random Forest Dissimilarity Measure for Multi-View Learning

Hongliu Cao, Simon Bernard, Robert Sabourin, Laurent Heutte

Responsive image

Auto-TLDR; Multi-view Learning with Random Forest Relation Measure and Instance Hardness

Slides Poster Similar

Multi-view learning is a learning task in which data is described by several concurrent representations. Its main challenge is most often to exploit the complementarities between these representations to help solve a classification/regression task. This is a challenge that can be met nowadays if there is a large amount of data available for learning. However, this is not necessarily true for all real-world problems, where data are sometimes scarce (e.g. problems related to the medical environment). In these situations, an effective strategy is to use intermediate representations based on the dissimilarities between instances. This work presents new ways of constructing these dissimilarity representations, learning them from data with Random Forest classifiers. More precisely, two methods are proposed, which modify the Random Forest proximity measure, to adapt it to the context of High Dimension Low Sample Size (HDLSS) multi-view classification problems. The second method, based on an Instance Hardness measurement, is significantly more accurate than other state-of-the-art measurements including the original RF Proximity measurement and the Large Margin Nearest Neighbor (LMNN) metric learning measurement.

Malware Detection by Exploiting Deep Learning over Binary Programs

Panpan Qi, Zhaoqi Zhang, Wei Wang, Chang Yao

Responsive image

Auto-TLDR; End-to-End Malware Detection without Feature Engineering

Slides Poster Similar

Malware evolves rapidly over time, which makes existing solutions being ineffective in detecting newly released malware. Machine learning models that can learn to capture malicious patterns directly from the data play an increasingly important role in malware analysis. However, traditional machine learning models heavily depend on feature engineering. The extracted static features are vulnerable as hackers could create new malware with different feature values to deceive the machine learning models. In this paper, we propose an end-to-end malware detection framework consisting of convolutional neural network, autoencoder and neural decision trees. It learns the features from multiple domains for malware detection without feature engineering. In addition, since anti-virus products should have a very low false alarm rate to avoid annoying users, we propose a special loss function, which optimizes the recall for a fixed low false positive rate (e.g., less than 0.1%). Experiments show that the proposed framework has achieved a better recall than the baseline models, and the derived loss function also makes a difference.

Proximity Isolation Forests

Antonella Mensi, Manuele Bicego, David Tax

Responsive image

Auto-TLDR; Proximity Isolation Forests for Non-vectorial Data

Slides Poster Similar

Isolation Forests are a very successful approach for solving outlier detection tasks. Isolation Forests are based on classical Random Forest classifiers that require feature vectors as input. There are many situations where vectorial data is not readily available, for instance when dealing with input sequences or strings. In these situations, one can extract higher level characteristics from the input, which is typically hard and often loses valuable information. An alternative is to define a proximity between the input objects, which can be more intuitive. In this paper we propose the Proximity Isolation Forests that extend the Isolation Forests to non-vectorial data. The introduced methodology has been thoroughly evaluated on 8 different problems and it achieves very good results also when compared to other techniques.

Electroencephalography Signal Processing Based on Textural Features for Monitoring the Driver’s State by a Brain-Computer Interface

Giulia Orrù, Marco Micheletto, Fabio Terranova, Gian Luca Marcialis

Responsive image

Auto-TLDR; One-dimensional Local Binary Pattern Algorithm for Estimating Driver Vigilance in a Brain-Computer Interface System

Slides Poster Similar

In this study we investigate a textural processing method of electroencephalography (EEG) signal as an indicator to estimate the driver's vigilance in a hypothetical Brain-Computer Interface (BCI) system. The novelty of the solution proposed relies on employing the one-dimensional Local Binary Pattern (1D-LBP) algorithm for feature extraction from pre-processed EEG data. From the resulting feature vector, the classification is done according to three vigilance classes: awake, tired and drowsy. The claim is that the class transitions can be detected by describing the variations of the micro-patterns' occurrences along the EEG signal. The 1D-LBP is able to describe them by detecting mutual variations of the signal temporarily "close" as a short bit-code. Our analysis allows to conclude that the 1D-LBP adoption has led to significant performance improvement. Moreover, capturing the class transitions from the EEG signal is effective, although the overall performance is not yet good enough to develop a BCI for assessing the driver's vigilance in real environments.

Online Object Recognition Using CNN-Based Algorithm on High-Speed Camera Imaging

Shigeaki Namiki, Keiko Yokoyama, Shoji Yachida, Takashi Shibata, Hiroyoshi Miyano, Masatoshi Ishikawa

Responsive image

Auto-TLDR; Real-Time Object Recognition with High-Speed Camera Imaging with Population Data Clearing and Data Ensemble

Slides Poster Similar

High-speed camera imaging (e.g., 1,000 fps) is effective to detect and recognize objects moving at high speeds because temporally dense images obtained by a high-speed camera can usually capture the best moment for object detection and recognition. However, the latest recognition algorithms, with their high complexity, are difficult to utilize in real-time applications involving high-speed cameras because a vast amount of images need to be processed with no latency. To tackle this problem, we propose a novel framework for real-time object recognition with high-speed camera imaging. The proposed framework has the key processes of population data cleansing and data ensemble. Population data cleansing improves the recognition accuracy by quantifying the recognizability and by excluding part of the images prior to the recognition process, while data ensemble improves the robustness of object recognition by merging the class probabilities with multiple images of the same object. Experimental results with a real dataset show that our framework is more effective than existing methods.

The Color Out of Space: Learning Self-Supervised Representations for Earth Observation Imagery

Stefano Vincenzi, Angelo Porrello, Pietro Buzzega, Marco Cipriano, Pietro Fronte, Roberto Cuccu, Carla Ippoliti, Annamaria Conte, Simone Calderara

Responsive image

Auto-TLDR; Satellite Image Representation Learning for Remote Sensing

Slides Poster Similar

The recent growth in the number of satellite images fosters the development of effective deep-learning techniques for Remote Sensing (RS). However, their full potential is untapped due to the lack of large annotated datasets. Such a problem is usually countered by fine-tuning a feature extractor that is previously trained on the ImageNet dataset. Unfortunately, the domain of natural images differs from the RS one, which hinders the final performance. In this work, we propose to learn meaningful representations from satellite imagery, leveraging its high-dimensionality spectral bands to reconstruct the visible colors. We conduct experiments on land cover classification (BigEarthNet) and West Nile Virus detection, showing that colorization is a solid pretext task for training a feature extractor. Furthermore, we qualitatively observe that guesses based on natural images and colorization rely on different parts of the input. This paves the way to an ensemble model that eventually outperforms both the above-mentioned techniques.

Visibility Restoration in Infra-Red Images

Olivier Fourt, Jean-Philippe Tarel

Responsive image

Auto-TLDR; Single Image Defogging for Long-Wavelength Infra-Red (LWIR)

Slides Poster Similar

For the last decade, single image defogging has been a subject of interest in image processing. In the visible spectrum, fog and haze decrease the visibility of distant objects. Thus, the objective of the visibility restoration is to remove as much as possible the effect of the fog within the image. Infrared sensors are more and more used in automotive and aviation industries but the effect of fog and haze is not restricted to the visible spectrum and also applies in the infrared band. After recalling the effects of fog in the common sub-bands of the infrared spectrum, we tested if the approach used for single image defogging in the visible spectrum might also work for infrared. This led us to propose a new approach of single image defogging for Long-Wavelength Infra-Red (LWIR) or Thermal Infra-Red. Several experiments are presented showing that the proposed algorithm offers interesting results not only for fog and haze but for bad weather conditions in general, during day and night.

Classification of Spatially Enriched Pixel Time Series with Convolutional Neural Networks

Mohamed Chelali, Camille Kurtz, Anne Puissant, Nicole Vincent

Responsive image

Auto-TLDR; Spatio-Temporal Features Extraction from Satellite Image Time Series Using Random Walk

Slides Poster Similar

Satellite Image Time Series (SITS), MRI sequences, and more generally image time series, constitute 2D+t data providing spatial and temporal information about an observed scene. Given a pattern recognition task such as image classification, considering jointly such rich information is crucial during the decision process. Nevertheless, due to the complex representation of the data-cube, spatio-temporal features extraction from 2D+t data remains difficult to handle. We present in this article an approach to learn such features from this data, and then to proceed to their classification. Our strategy consists in enriching pixel time series with spatial information. It is based on Random Walk to build a novel segment-based representation of the data, passing from a 2D+t dimension to a 2D one, without loosing too much spatial information. Such new representation is then involved in an end-to-end learning process with a classical 2D Convolutional Neural Network (CNN) in order to learn spatio-temporal features for the classification of image time series. Our approach is evaluated on a remote sensing application for the mapping of agricultural crops. Thanks to a visual attention mechanism, the proposed $2D$ spatio-temporal representation makes also easier the interpretation of a SITS to understand spatio-temporal phenomenons related to soil management practices.

Tensorized Feature Spaces for Feature Explosion

Ravdeep Pasricha, Pravallika Devineni, Evangelos Papalexakis, Ramakrishnan Kannan

Responsive image

Auto-TLDR; Tensor Rank Decomposition for Hyperspectral Image Classification

Slides Poster Similar

In this paper, we present a novel framework that uses tensor factorization to generate richer feature spaces for pixel classification in hyperspectral images. In particular, we assess the performance of different tensor rank decomposition methods as compared to the traditional kernel-based approaches for the hyperspectral image classification problem. We propose ORION, which takes as input a hyperspectral image tensor and a rank and outputs an enhanced feature space from the factor matrices of the decomposed tensor. Our method is a feature explosion technique that inherently maps low dimensional input space in R^K to high dimensional space in R^R, where R >> K, say in the order of 1000x, like a kernel. We show how the proposed method exploits the multi-linear structure of hyperspectral three-dimensional tensor. We demonstrate the effectiveness of our method with experiments on three publicly available hyperspectral datasets with labeled pixels and compare their classification performance against traditional linear and non-linear supervised learning methods such as SVM with Linear, Polynomial, RBF kernels, and the Multi-Layer Perceptron model. Finally, we explore the relationship between the rank of the tensor decomposition and the classification accuracy using several hyperspectral datasets with ground truth.

Near-Infrared Depth-Independent Image Dehazing using Haar Wavelets

Sumit Laha, Ankit Sharma, Shengnan Hu, Hassan Foroosh

Responsive image

Auto-TLDR; A fusion algorithm for haze removal using Haar wavelets

Slides Poster Similar

We propose a fusion algorithm for haze removal that combines color information from an RGB image and edge information extracted from its corresponding NIR image using Haar wavelets. The proposed algorithm is based on the key observation that NIR edge features are more prominent in the hazy regions of the image than the RGB edge features in those same regions. To combine the color and edge information, we introduce a haze-weight map which proportionately distributes the color and edge information during the fusion process. Because NIR images are, intrinsically, nearly haze-free, our work makes no assumptions like existing works that rely on a scattering model and essentially designing a depth-independent method. This helps in minimizing artifacts and gives a more realistic sense to the restored haze-free image. Extensive experiments show that the proposed algorithm is both qualitatively and quantitatively better on several key metrics when compared to existing state-of-the-art methods.

Estimation of Abundance and Distribution of SaltMarsh Plants from Images Using Deep Learning

Jayant Parashar, Suchendra Bhandarkar, Jacob Simon, Brian Hopkinson, Steven Pennings

Responsive image

Auto-TLDR; CNN-based approaches to automated plant identification and localization in salt marsh images

Poster Similar

Recent advances in computer vision and machine learning, most notably deep convolutional neural networks (CNNs), are exploited to identify and localize various plant species in salt marsh images. Three different approaches are explored that provide estimations of abundance and spatial distribution at varying levels of granularity in terms of spatial resolution. In the coarsest-grained approach, CNNs are tasked with identifying which of six plant species are present/absent in large patches within the salt marsh images. CNNs with diverse topological properties and attention mechanisms are shown capable of providing accurate estimations with >90 % precision and recall in the case of the more abundant plant species whereas the performance declines for less common plant species. Estimation of percent cover of each plant species is performed at a finer spatial resolution, where smaller image patches are extracted and the CNNs tasked with identifying the plant species or substrate at the center of the image patch. For the percent cover estimation task, the CNNs are observed to exhibit a performance profile similar to that for the presence/absence estimation task, but with an ~ 5-10% reduction in precision and recall. Finally, fine-grained estimation of the spatial distribution of the various plant species is performed via semantic segmentation. The Deeplab-V3 semantic segmentation architecture is observed to provide very accurate estimations for abundant plant species; however,a significant degradation in performance is observed in the case of less abundant plant species and, in extreme cases, rare plant classes are seen to be ignored entirely. Overall, a clear trade-off is observed between the CNN estimation quality and the spatial resolution of the underlying estimation thereby offering guidance for ecological applications of CNN-based approaches to automated plant identification and localization in salt marsh images.

Real Time Fencing Move Classification and Detection at Touch Time During a Fencing Match

Cem Ekin Sunal, Chris G. Willcocks, Boguslaw Obara

Responsive image

Auto-TLDR; Fencing Body Move Classification and Detection Using Deep Learning

Slides Similar

Fencing is a fast-paced sport played with swords which are Epee, Foil, and Saber. However, such fast-pace can cause referees to make wrong decisions. Review of slow-motion camera footage in tournaments helps referees’ decision making, but it interrupts the match and may not be available for every organization. Motivated by the need for better decision making, analysis, and availability, we introduce the first fully-automated deep learning classification and detection system for fencing body moves at the moment a touch is made. This is an important step towards creating a fencing analysis system, with player profiling and decision tools that will benefit the fencing community. The proposed architecture combines You Only Look Once version three (YOLOv3) with a ResNet-34 classifier, trained on ImageNet settings to obtain 83.0\% test accuracy on the fencing moves. These results are exciting development in the sport, providing immediate feedback and analysis along with accessibility, hence making it a valuable tool for trainers and fencing match referees.

On Learning Random Forests for Random Forest Clustering

Manuele Bicego, Francisco Escolano

Responsive image

Auto-TLDR; Learning Random Forests for Clustering

Slides Poster Similar

In this paper we study the poorly investigated problem of learning Random Forests for distance-based Random Forest clustering. We studied both classic schemes as well as alternative approaches, novel in this context. In particular, we investigated the suitability of Gaussian Density Forests, Random Forests specifically designed for density estimation. Further, we introduce a novel variant of Random Forest, based on an effective non parametric by-pass estimator of the Renyi entropy, which can be useful when the parametric assumption is too strict. An empirical evaluation involving different datasets and different RF-clustering strategies confirms that the learning step is crucial for RF-clustering. We also present a set of practical guidelines useful to determine the most suitable variant of RF-clustering according to the problem under examination.

Fully Convolutional Neural Networks for Raw Eye Tracking Data Segmentation, Generation, and Reconstruction

Wolfgang Fuhl, Yao Rong, Enkelejda Kasneci

Responsive image

Auto-TLDR; Semantic Segmentation of Eye Tracking Data with Fully Convolutional Neural Networks

Slides Poster Similar

In this paper, we use fully convolutional neural networks for the semantic segmentation of eye tracking data. We also use these networks for reconstruction, and in conjunction with a variational auto-encoder to generate eye movement data. The first improvement of our approach is that no input window is necessary, due to the use of fully convolutional networks and therefore any input size can be processed directly. The second improvement is that the used and generated data is raw eye tracking data (position X, Y and time) without preprocessing. This is achieved by pre-initializing the filters in the first layer and by building the input tensor along the z axis. We evaluated our approach on three publicly available datasets and compare the results to the state of the art.

Weight Estimation from an RGB-D Camera in Top-View Configuration

Marco Mameli, Marina Paolanti, Nicola Conci, Filippo Tessaro, Emanuele Frontoni, Primo Zingaretti

Responsive image

Auto-TLDR; Top-View Weight Estimation using Deep Neural Networks

Slides Poster Similar

The development of so-called soft-biometrics aims at providing information related to the physical and behavioural characteristics of a person. This paper focuses on bodyweight estimation based on the observation from a top-view RGB-D camera. In fact, the capability to estimate the weight of a person can be of help in many different applications, from health-related scenarios to business intelligence and retail analytics. To deal with this issue, a TVWE (Top-View Weight Estimation) framework is proposed with the aim of predicting the weight. The approach relies on the adoption of Deep Neural Networks (DNNs) that have been trained on depth data. Each network has also been modified in its top section to replace classification with prediction inference. The performance of five state-of-art DNNs has been compared, namely VGG16, ResNet, Inception, DenseNet and Efficient-Net. In addition, a convolutional auto-encoder has also been included for completeness. Considering the limited literature in this domain, the TVWE framework has been evaluated on a new publicly available dataset: “VRAI Weight estimation Dataset”, which also collects, for each subject, labels related to weight, gender, and height. The experimental results have demonstrated that the proposed methods are suitable for this task, bringing different and significant insights for the application of the solution in different domains.

Deep Fusion of RGB and NIR Paired Images Using Convolutional Neural Networks

琳 梅, Cheolkon Jung

Responsive image

Auto-TLDR; Deep Fusion of RGB and NIR paired images in low light condition using convolutional neural networks

Slides Poster Similar

In low light condition, the captured color (RGB) images are highly degraded by noise with severe texture loss. In this paper, we propose deep fusion of RGB and NIR paired images in low light condition using convolutional neural networks (CNNs). The proposed deep fusion network consists of three independent sub-networks: denoising, enhancing, and fusion. We build a denoising sub-network to eliminate noise from noisy RGB images. After denoising, we perform an enhancing sub-network to increase the brightness of low light RGB images. Since NIR image contains fine details, we fuse it with the Y channel of RGB image through a fusion sub-network. Experimental results demonstrate that the proposed method successfully fuses RGB and NIR images, and generates high quality fusion results containing textures and colors.

On Morphological Hierarchies for Image Sequences

Caglayan Tuna, Alain Giros, François Merciol, Sébastien Lefèvre

Responsive image

Auto-TLDR; Comparison of Hierarchies for Image Sequences

Slides Poster Similar

Morphological hierarchies form a popular framework aiming at emphasizing the multiscale structure of digital image by performing an unsupervised spatial partitioning of the data. These hierarchies have been recently extended to cope with image sequences, and different strategies have been proposed to allow their construction from spatio-temporal data. In this paper, we compare these hierarchical representation strategies for image sequences according to their structural properties. We introduce a projection method to make these representations comparable. Furthermore, we extend one of these recent strategies in order to obtain more efficient hierarchical representations for image sequences. Experiments were conducted on both synthetic and real datasets, the latter being made of satellite image time series. We show that building one hierarchy by using spatial and temporal information together is more efficient comparing to other existing strategies.

Automatic Tuberculosis Detection Using Chest X-Ray Analysis with Position Enhanced Structural Information

Hermann Jepdjio Nkouanga, Szilard Vajda

Responsive image

Auto-TLDR; Automatic Chest X-ray Screening for Tuberculosis in Rural Population using Localized Region on Interest

Slides Poster Similar

For Tuberculosis (TB) detection beside the more expensive diagnosis solutions such as culture or sputum smear analysis one could consider the automatic analysis of the chest X-ray (CXR). This could mimic the lung region reading by the radiologist and it could provide a cheap solution to analyze and diagnose pulmonary abnormalities such as TB which often co- occurs with HIV. This software based pulmonary screening can be a reliable and affordable solution for rural population in different parts of the world such as India, Africa, etc. Our fully automatic system is processing the incoming CXR image by applying image processing techniques to detect the region on interest (ROI) followed by a computationally cheap feature extraction involving edge detection using Laplacian of Gaussian which we enrich by counting the local distribution of the intensities. The choice to ”zoom in” the ROI and look for abnormalities locally is motivated by the fact that some pulmonary abnormalities are localized in specific regions of the lungs. Later on the classifiers can decide about the normal or abnormal nature of each lung X-ray. Our goal is to find a simple feature, instead of a combination of several ones, -proposed and promoted in recent years’ literature, which can properly describe the different pathological alterations in the lungs. Our experiments report results on two publicly available data collections1, namely the Shenzhen and the Montgomery collection. For performance evaluation, measures such as area under the curve (AUC), and accuracy (ACC) were considered, achieving AUC = 0.81 (ACC = 83.33%) and AUC = 0.96 (ACC = 96.35%) for the Montgomery and Schenzen collections, respectively. Several comparisons are also provided to other state- of-the-art systems reported recently in the field.

Complex-Object Visual Inspection: Empirical Studies on a Multiple Lighting Solution

Maya Aghaei, Matteo Bustreo, Pietro Morerio, Nicolò Carissimi, Alessio Del Bue, Vittorio Murino

Responsive image

Auto-TLDR; A Novel Illumination Setup for Automatic Visual Inspection of Complex Objects

Slides Poster Similar

The design of an automatic visual inspection system is usually performed in two stages. While the first stage consists in selecting the most suitable hardware setup for highlighting most effectively the defects on the surface to be inspected, the second stage concerns the development of algorithmic solutions to exploit the potentials offered by the collected data. In this paper, first, we present a novel illumination setup embedding four illumination configurations to resemble diffused, dark-field, and front lighting techniques. Second, we analyze the contributions brought by deploying the proposed setup in the training phase only, mimicking the scenario in which an already developed visual inspection system cannot be modified on the customer site. Along with an exhaustive set of experiments, in this paper, we demonstrate the suitability of the proposed setup for effective illumination of complex-objects, defined as manufactured items with variable surface characteristics that cannot be determined a priori. Eventually, we provide insights into the importance of multiple light configurations availability during training and their natural boosting effect which, without the need to modify the system design in the evaluation phase, lead to improvements in the overall system performance.

Towards Tackling Multi-Label Imbalances in Remote Sensing Imagery

Dominik Koßmann, Thorsten Wilhelm, Gernot Fink

Responsive image

Auto-TLDR; Class imbalance in land cover datasets using attribute encoding schemes

Slides Poster Similar

Recent advances in automated image analysis have lead to an increased number of proposed datasets in remote sensing applications. This permits the successful employment of data hungry state-of-the-art deep neural networks. However, the Earth is not covered equally by semantically meaningful classes. Thus, many land cover datasets suffer from a severe class imbalance. We show that by taking appropriate measures, the performance in the minority classes can be improved by up to 30 percent without affecting the performance in the majority classes strongly. Additionally, we investigate the use of an attribute encoding scheme to represent the inherent class hierarchies commonly observed in land cover analysis.

The eXPose Approach to Crosslier Detection

Antonio Barata, Frank Takes, Hendrik Van Den Herik, Cor Veenman

Responsive image

Auto-TLDR; EXPose: Crosslier Detection Based on Supervised Category Modeling

Slides Poster Similar

Transit of wasteful materials within the European Union is highly regulated through a system of permits. Waste processing costs vary greatly depending on the waste category of a permit. Therefore, companies may have a financial incentive to allege transporting waste with erroneous categorisation. Our goal is to assist inspectors in selecting potentially manipulated permits for further investigation, making their task more effective and efficient. Due to data limitations, a supervised learning approach based on historical cases is not possible. Standard unsupervised approaches, such as outlier detection and data quality-assurance techniques, are not suited since we are interested in targeting non-random modifications in both category and category-correlated features. For this purpose we (1) introduce the concept of crosslier: an anomalous instance of a category which lies across other categories; (2) propose eXPose: a novel approach to crosslier detection based on supervised category modelling; and (3) present the crosslier diagram: a visualisation tool specifically designed for domain experts to easily assess crossliers. We compare eXPose against traditional outlier detection methods in various benchmark datasets with synthetic crossliers and show the superior performance of our method in targeting these instances.

Hierarchical Routing Mixture of Experts

Wenbo Zhao, Yang Gao, Shahan Ali Memon, Bhiksha Raj, Rita Singh

Responsive image

Auto-TLDR; A Binary Tree-structured Hierarchical Routing Mixture of Experts for Regression

Slides Poster Similar

In regression tasks the distribution of the data is often too complex to be fitted by a single model. In contrast, partition-based models are developed where data is divided and fitted by local models. These models partition the input space and do not leverage the input-output dependency of multimodal-distributed data, and strong local models are needed to make good predictions. Addressing these problems, we propose a binary tree-structured hierarchical routing mixture of experts (HRME) model that has classifiers as non-leaf node experts and simple regression models as leaf node experts. The classifier nodes jointly soft-partition the input-output space based on the natural separateness of multimodal data. This enables simple leaf experts to be effective for prediction. Further, we develop a probabilistic framework for the HRME model, and propose a recursive Expectation-Maximization (EM) based algorithm to learn both the tree structure and the expert models. Experiments on a collection of regression tasks validate the effectiveness of our method compared to a variety of other regression models.

ESResNet: Environmental Sound Classification Based on Visual Domain Models

Andrey Guzhov, Federico Raue, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Environmental Sound Classification with Short-Time Fourier Transform Spectrograms

Slides Poster Similar

Environmental Sound Classification (ESC) is an active research area in the audio domain and has seen a lot of progress in the past years. However, many of the existing approaches achieve high accuracy by relying on domain-specific features and architectures, making it harder to benefit from advances in other fields (e.g., the image domain). Additionally, some of the past successes have been attributed to a discrepancy of how results are evaluated (i.e., on unofficial splits of the UrbanSound8K (US8K) dataset), distorting the overall progression of the field. The contribution of this paper is twofold. First, we present a model that is inherently compatible with mono and stereo sound inputs. Our model is based on simple log-power Short-Time Fourier Transform (STFT) spectrograms and combines them with several well-known approaches from the image domain (i.e., ResNet, Siamese-like networks and attention). We investigate the influence of cross-domain pre-training, architectural changes, and evaluate our model on standard datasets. We find that our model out-performs all previously known approaches in a fair comparison by achieving accuracies of 97.0 % (ESC-10), 91.5 % (ESC-50) and 84.2 % / 85.4 % (US8K mono / stereo). Second, we provide a comprehensive overview of the actual state of the field, by differentiating several previously reported results on the US8K dataset between official or unofficial splits. For better reproducibility, our code (including any re-implementations) is made available.

A Versatile Crack Inspection Portable System Based on Classifier Ensemble and Controlled Illumination

Milind Gajanan Padalkar, Carlos Beltran-Gonzalez, Matteo Bustreo, Alessio Del Bue, Vittorio Murino

Responsive image

Auto-TLDR; Lighting Conditions for Crack Detection in Ceramic Tile

Slides Poster Similar

This paper presents a novel setup for automatic visual inspection of cracks in ceramic tile as well as studies the effect of various classifiers and height-varying illumination conditions for this task. The intuition behind this setup is that cracks can be better visualized under specific lighting conditions than others. Our setup, which is designed for field work with constraints in its maximum dimensions, can acquire images for crack detection with multiple lighting conditions using the illumination sources placed at multiple heights. Crack detection is then performed by classifying patches extracted from the acquired images in a sliding window fashion. We study the effect of lights placed at various heights by training classifiers both on customized as well as state-of-the-art architectures and evaluate their performance both at patch-level and image-level, demonstrating the effectiveness of our setup. More importantly, ours is the first study that demonstrates how height-varying illumination conditions can affect crack detection with the use of existing state-of-the-art classifiers. We provide an insight about the illumination conditions that can help in improving crack detection in a challenging real-world industrial environment.

Smart Inference for Multidigit Convolutional Neural Network Based Barcode Decoding

Duy-Thao Do, Tolcha Yalew, Tae Joon Jun, Daeyoung Kim

Responsive image

Auto-TLDR; Smart Inference for Barcode Decoding using Deep Convolutional Neural Network

Slides Poster Similar

Barcodes are ubiquitous and have been used in most of critical daily activities for decades. However, most of traditional decoders require well-founded barcode under a relatively standard condition. While wilder conditioned barcodes such as underexposed, occluded, blurry, wrinkled and rotated are commonly captured in reality, those traditional decoders show weakness of recognizing. Several works attempted to solve those challenging barcodes, but many limitations still exist. This work aims to solve the decoding problem using deep convolutional neural network with the possibility of running on portable devices. Firstly, we proposed a special modification of inference based on the feature of having checksum and test-time augmentation, named as Smart Inference (SI) in prediction phase of a trained model. SI considerably boosts accuracy and reduces the false prediction for trained models. Secondly, we have created a large practical evaluation dataset of real captured 1D barcode under various challenging conditions to test our methods vigorously, which is publicly available for other researchers. The experiments' results demonstrated the SI effectiveness with the highest accuracy of 95.85% which outperformed many existing decoders on the evaluation set. Finally, we successfully minimized the best model by knowledge distillation to a shallow model which is shown to have high accuracy (90.85%) with good inference speed of 34.2 ms per image on a real edge device.

Domain Siamese CNNs for Sparse Multispectral Disparity Estimation

David-Alexandre Beaupre, Guillaume-Alexandre Bilodeau

Responsive image

Auto-TLDR; Multispectral Disparity Estimation between Thermal and Visible Images using Deep Neural Networks

Slides Poster Similar

Multispectral disparity estimation is a difficult task for many reasons: it as all the same challenges as traditional visible-visible disparity estimation (occlusions, repetitive patterns, textureless surfaces), in addition of having very few common visual information between images (e.g. color information vs. thermal information). In this paper, we propose a new CNN architecture able to do disparity estimation between images from different spectrum, namely thermal and visible in our case. Our proposed model takes two patches as input and proceeds to do domain feature extraction for each of them. Features from both domains are then merged with two fusion operations, namely correlation and concatenation. These merged vectors are then forwarded to their respective classification heads, which are responsible for classifying the inputs as being same or not. Using two merging operations gives more robustness to our feature extraction process, which leads to more precise disparity estimation. Our method was tested using the publicly available LITIV 2014 and LITIV 2018 datasets, and showed best results when compared to other state of the art methods.

Detecting Marine Species in Echograms Via Traditional, Hybrid, and Deep Learning Frameworks

Porto Marques Tunai, Alireza Rezvanifar, Melissa Cote, Alexandra Branzan Albu, Kaan Ersahin, Todd Mudge, Stephane Gauthier

Responsive image

Auto-TLDR; End-to-End Deep Learning for Echogram Interpretation of Marine Species in Echograms

Slides Poster Similar

This paper provides a comprehensive comparative study of traditional, hybrid, and deep learning (DL) methods for detecting marine species in echograms. Acoustic backscatter data obtained from multi-frequency echosounders is visualized as echograms and typically interpreted by marine biologists via manual or semi-automatic methods, which are time-consuming. Challenges related to automatic echogram interpretation are the variable size and acoustic properties of the biological targets (marine life), along with significant inter-class similarities. Our study explores and compares three types of approaches that cover the entire range of machine learning methods. Based on our experimental results, we conclude that an end-to-end DL-based framework, that can be readily scaled to accommodate new species, is overall preferable to other learning approaches for echogram interpretation, even when only a limited number of annotated training samples is available.

Segmentation of Axillary and Supraclavicular Tumoral Lymph Nodes in PET/CT: A Hybrid CNN/Component-Tree Approach

Diana Lucia Farfan Cabrera, Nicolas Gogin, David Morland, Benoît Naegel, Dimitri Papathanassiou, Nicolas Passat

Responsive image

Auto-TLDR; Coupling Convolutional Neural Networks and Component-Trees for Lymph node Segmentation from PET/CT Images

Slides Similar

The analysis of axillary and supraclavicular lymph nodes is a primary prognostic factor for the staging of breast cancer. However, due to the size of lymph nodes and the low resolution of PET data, their segmentation is challenging. We investigate the relevance of considering axillary and supraclavicular lymph node segmentation from PET/CT images by coupling Convolutional Neural Networks (CNNs) and Component-Trees (C-Trees). Building upon the U-Net architecture, we propose a framework that couples a multi-modal U-Net fed with PET and CT, coupled with a hierarchical model obtained from the PET that provides additional high-level region-based features as input channels. Our working hypotheses are twofold. First, we take advantage of both anatomical information from CT for detecting the nodes, and from functional information from PET for detecting the pathological ones. Second, we consider region-based attributes extracted from C-Tree analysis of 3D PET/CT images to improve the CNN segmentation. We carried out experiments on a dataset of 240 pathological lymph nodes from 52 patients scans, and compared our outputs with human expert-defined ground-truth, leading to promising results.

Snapshot Hyperspectral Imaging Based on Weighted High-Order Singular Value Regularization

Hua Huang, Cheng Niankai, Lizhi Wang

Responsive image

Auto-TLDR; High-Order Tensor Optimization for Hyperspectral Imaging

Slides Poster Similar

Snapshot hyperspectral imaging can capture the 3D hyperspectral image (HSI) with a single 2D measurement and has attracted increasing attention recently. Recovering the underlying HSI from the compressive measurement is an ill-posed problem and exploiting the image prior is essential for solving this ill-posed problem. However, existing reconstruction methods always start from modeling image prior with the 1D vector or 2D matrix and cannot fully exploit the structurally spectral-spatial nature in 3D HSI, thus leading to a poor fidelity. In this paper, we propose an effective high-order tensor optimization based method to boost the reconstruction fidelity for snapshot hyperspectral imaging. We first build high-order tensors by exploiting the spatial-spectral correlation in HSI. Then, we propose a weight high-order singular value regularization (WHOSVR) based low-rank tensor recovery model to characterize the structure prior of HSI. By integrating the structure prior in WHOSVR with the system imaging process, we develop an optimization framework for HSI reconstruction, which is finally solved via the alternating minimization algorithm. Extensive experiments implemented on two representative systems demonstrate that our method outperforms state-of-the-art methods.

Algorithm Recommendation for Data Streams

Jáder Martins Camboim De Sá, Andre Luis Debiaso Rossi, Gustavo Enrique De Almeida Prado Alves Batista, Luís Paulo Faina Garcia

Responsive image

Auto-TLDR; Meta-Learning for Algorithm Selection in Time-Changing Data Streams

Slides Poster Similar

In the last decades, many companies are taking advantage of massive data generation at high frequencies through knowledge discovery to identify valuable information. Machine learning techniques can be employed for knowledge discovery, since they are able to extract patterns from data and induce models to predict future events. However, dynamic and evolving environments generate streams of data that usually are non-stationary. Models induced in these scenarios may perish over time due to seasonality or concept drift. The periodic retraining could help but the fixed algorithm's hypothesis space could no longer be appropriate. An alternative solution is to use meta-learning for periodic algorithm selection in time-changing environments, choosing the bias that best suits the current data. In this paper, we present an enhanced framework for data streams algorithm selection based on MetaStream. Our approach uses meta-learning and incremental learning to actively select the best algorithm for the current concept in a time-changing. Different from previous works, a set of cutting edge meta-features and an incremental learning approach in the meta-level based on LightGBM are used. The results show that this new strategy can improve the recommendation of the best algorithm more accurately in time-changing data.

Using Machine Learning to Refer Patients with Chronic Kidney Disease to Secondary Care

Lee Au-Yeung, Xianghua Xie, Timothy Marcus Scale, James Anthony Chess

Responsive image

Auto-TLDR; A Machine Learning Approach for Chronic Kidney Disease Prediction using Blood Test Data

Slides Poster Similar

There has been growing interest recently in using machine learning techniques as an aid in clinical medicine. Machine learning offers a range of classification algorithms which can be applied to medical data to aid in making clinical predictions. Recent studies have demonstrated the high predictive accuracy of various classification algorithms applied to clinical data. Several studies have already been conducted in diagnosing or predicting chronic kidney disease at various stages using different sets of variables. In this study we are investigating the use machine learning techniques with blood test data. Such a system could aid renal teams in making recommendations to primary care general practitioners to refer patients to secondary care where patients may benefit from earlier specialist assessment and medical intervention. We are able to achieve an overall accuracy of 88.48\% using logistic regression, 87.12\% using ANN and 85.29\% using SVM. ANNs performed with the highest sensitivity at 89.74\% compared to 86.67\% for logistic regression and 85.51\% for SVM.

Learning Defects in Old Movies from Manually Assisted Restoration

Arthur Renaudeau, Travis Seng, Axel Carlier, Jean-Denis Durou, Fabien Pierre, Francois Lauze, Jean-François Aujol

Responsive image

Auto-TLDR; U-Net: Detecting Defects in Old Movies by Inpainting Techniques

Slides Poster Similar

We propose to detect defects in old movies, as the first step of a larger framework of old movies restoration by inpainting techniques. The specificity of our work is to learn a film restorer's expertise from a pair of sequences, composed of a movie with defects, and the same movie which was semi-automatically restored with the help of a specialized software. In order to detect those defects with minimal human interaction and further reduce the time spent for a restoration, we feed a U-Net with consecutive defective frames as input to detect the unexpected variations of pixel intensity over space and time. Since the output of the network is a mask of defect location, we first have to create the dataset of mask frames on the basis of restored frames from the software used by the film restorer, instead of classical synthetic ground truth, which is not available. These masks are estimated by computing the absolute difference between restored frames and defectuous frames, combined with thresholding and morphological closing. Our network succeeds in automatically detecting real defects with more precision than the manual selection with an all-encompassing shape, including some the expert restorer could have missed for lack of time.

RISEdb: A Novel Indoor Localization Dataset

Carlos Sanchez Belenguer, Erik Wolfart, Álvaro Casado Coscollá, Vitor Sequeira

Responsive image

Auto-TLDR; Indoor Localization Using LiDAR SLAM and Smartphones: A Benchmarking Dataset

Slides Poster Similar

In this paper we introduce a novel public dataset for developing and benchmarking indoor localization systems. We have selected and 3D mapped a set of representative indoor environments including a large office building, a conference room, a workshop, an exhibition area and a restaurant. Our acquisition pipeline is based on a portable LiDAR SLAM backpack to map the buildings and to accurately track the pose of the user as it moves freely inside them. We introduce the calibration procedures that enable us to acquire and geo-reference live data coming from different independent sensors rigidly attached to the backpack. This has allowed us to collect long sequences of spherical and stereo images, together with all the sensor readings coming from a consumer smartphone and locate them inside the map with centimetre accuracy. The dataset addresses many of the limitations of existing indoor localization datasets regarding the scale and diversity of the mapped buildings; the number of acquired sequences under varying conditions; the accuracy of the ground-truth trajectory; the availability of a detailed 3D model and the availability of different sensor types. It enables the benchmarking of existing and the development of new indoor localization approaches, in particular for deep learning based systems that require large amounts of labeled training data.