Deep Realistic Novel View Generation for City-Scale Aerial Images

Koundinya Nouduri, Ke Gao, Joshua Fraser, Shizeng Yao, Hadi Aliakbarpour, Filiz Bunyak, Kannappan Palaniappan

Responsive image

Auto-TLDR; End-to-End 3D Voxel Renderer for Multi-View Stereo Data Generation and Evaluation

Slides Poster

In this paper we introduce a novel end-to-end frameworkfor generation of large, aerial, city-scale, realistic syntheticimage sequences with associated accurate and precise camerametadata. The two main purposes for this data are (i) to en-able objective, quantitative evaluation of computer vision al-gorithms and methods such as feature detection, description,and matching or full computer vision pipelines such as 3D re-construction; and (ii) to supply large amounts of high qualitytraining data for deep learning guided computer vision meth-ods. The proposed framework consists of three main mod-ules, a 3D voxel renderer for data generation, a deep neu-ral network for artifact removal, and a quantitative evaluationmodule for Multi-View Stereo (MVS) as an example. The3D voxel renderer enables generation of seen or unseen viewsof a scene from arbitary camera poses with accurate camerametadata parameters. The artifact removal module proposes anovel edge-augmented deep learning network with an explicitedgemap processing stream to remove image artifacts whilepreserving and recovering scene structures for more realis-tic results. Our experiments on two urban, city-scale, aerialdatasets for Albuquerque (ABQ), NM and Los Angeles (LA),CA show promising results in terms structural similarity toreal data and accuracy of reconstructed 3D point clouds

Similar papers

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

A NoGAN Approach for Image and Video Restoration and Compression Artifact Removal

Mameli Filippo, Marco Bertini, Leonardo Galteri, Alberto Del Bimbo

Responsive image

Auto-TLDR; Deep Neural Network for Image and Video Compression Artifact Removal and Restoration

Poster Similar

Lossy image and video compression algorithms introduce several different types of visual artifacts that reduce the visual quality of the compressed media, and the higher the compression rate the higher is the strength of these artifacts. In this work, we describe an approach for visual quality improvement of compressed images and videos to be performed at presentation time, so to obtain the benefits of fast data transfer and reduced data storage, while enjoying a visual quality that could be obtained only reducing the compression rate. To obtain this result we propose to use a deep neural network trained using the NoGAN approach, adapting the popular DeOldify architecture used for colorization. We show how the proposed method can be applied both to image and video compression artifact removal and restoration.

Novel View Synthesis from a 6-DoF Pose by Two-Stage Networks

Xiang Guo, Bo Li, Yuchao Dai, Tongxin Zhang, Hui Deng

Responsive image

Auto-TLDR; Novel View Synthesis from a 6-DoF Pose Using Generative Adversarial Network

Slides Poster Similar

Novel view synthesis is a challenging problem in 3D vision and robotics. Different from the existing works, which need the reference images or 3D model, we propose a novel paradigm to this problem. That is, we synthesize the novel view from a 6-DoF pose directly. Although this setting is the most straightforward way, there are few works addressing it. While, our experiments demonstrate that, with a concise CNN, we could get a meaningful parametric model which could reconstruct the correct scenery images only from the 6-DoF pose. To this end, we propose a two-stage learning strategy, which consists of two consecutive CNNs: GenNet and RefineNet. The GenNet generates a coarse image from a camera pose. The RefineNet is a generative adversarial network that could refine the coarse image. In this way, we decouple the geometric relationship mapping and texture detail rendering. Extensive experiments conducted on the public datasets prove the effectiveness of our method. We believe this paradigm is of high research and application value and could be an important direction in novel view synthesis. We will share our code after the acceptance of this work.

SIDGAN: Single Image Dehazing without Paired Supervision

Pan Wei, Xin Wang, Lei Wang, Ji Xiang, Zihan Wang

Responsive image

Auto-TLDR; DehazeGAN: An End-to-End Generative Adversarial Network for Image Dehazing

Slides Poster Similar

Single image dehazing is challenging without scene airlight and transmission map. Most of existing dehazing algorithms tend to estimate key parameters based on manual designed priors or statistics, which may be invalid in some scenarios. Although deep learning-based dehazing methods provide an effective solution, most of them rely on paired training datasets, which are prohibitively difficult to be collected in real world. In this paper, we propose an effective end-to-end generative adversarial network for image dehazing, named DehazeGAN. The proposed DehazeGAN adopts a U-net architecture with a novel color-consistency loss derived from dark channel prior and perceptual loss, which can be trained in an unsupervised fashion without paired synthetic datasets. We create a RealHaze dataset for network training, including 4,000 outdoor hazy images and 4,000 haze-free images. Extensive experiments demonstrate that our proposed DehazeGAN achieves better performance than existing state-of-the-art methods on both synthetic datasets and real-world datasets in terms of PSNR, SSIM, and subjective visual experience.

Towards Efficient 3D Point Cloud Scene Completion Via Novel Depth View Synthesis

Haiyan Wang, Liang Yang, Xuejian Rong, Ying-Li Tian

Responsive image

Auto-TLDR; 3D Point Cloud Completion with Depth View Synthesis and Depth View synthesis

Poster Similar

3D point cloud completion has been a long-standing challenge at scale, and corresponding per-point supervised training strategies suffered from the cumbersome annotations. 2D supervision has recently emerged as a promising alternative for 3D tasks, but specific approaches for 3D point cloud completion still remain to be explored. To overcome these limitations, we propose an end-to-end method that directly lifts a single depth map to a completed point cloud. With one depth map as input, a multi-way novel depth view synthesis network (NDVNet) is designed to infer coarsely completed depth maps under various viewpoints. Meanwhile, a geometric depth perspective rendering module is introduced to utilize the raw input depth map to generate a re-projected depth map for each view. Therefore, the two parallelly generated depth maps for each view are further concatenated and refined by a depth completion network (DCNet). The final completed point cloud is fused from all refined depth views. Experimental results demonstrate the effectiveness of our proposed approach composed of aforementioned components, to produce high-quality state-of-the-art results on the popular SUNCG benchmark.

Boosting High-Level Vision with Joint Compression Artifacts Reduction and Super-Resolution

Xiaoyu Xiang, Qian Lin, Jan Allebach

Responsive image

Auto-TLDR; A Context-Aware Joint CAR and SR Neural Network for High-Resolution Text Recognition and Face Detection

Slides Poster Similar

Due to the limits of bandwidth and storage space, digital images are usually down-scaled and compressed when transmitted over networks, resulting in loss of details and jarring artifacts that can lower the performance of high-level visual tasks. In this paper, we aim to generate an artifact-free high-resolution image from a low-resolution one compressed with an arbitrary quality factor by exploring joint compression artifacts reduction (CAR) and super-resolution (SR) tasks. First, we propose a context-aware joint CAR and SR neural network (CAJNN) that integrates both local and non-local features to solve CAR and SR in one-stage. Finally, a deep reconstruction network is adopted to predict high quality and high-resolution images. Evaluation on CAR and SR benchmark datasets shows that our CAJNN model outperforms previous methods and also takes 26.2% less runtime. Based on this model, we explore addressing two critical challenges in high-level computer vision: optical character recognition of low-resolution texts, and extremely tiny face detection. We demonstrate that CAJNN can serve as an effective image preprocessing method and improve the accuracy for real-scene text recognition (from 85.30% to 85.75%) and the average precision for tiny face detection (from 0.317 to 0.611).

Future Urban Scenes Generation through Vehicles Synthesis

Alessandro Simoni, Luca Bergamini, Andrea Palazzi, Simone Calderara, Rita Cucchiara

Responsive image

Auto-TLDR; Predicting the Future of an Urban Scene with a Novel View Synthesis Paradigm

Slides Poster Similar

In this work we propose a deep learning pipeline to predict the visual future appearance of an urban scene. Despite recent advances, generating the entire scene in an end-to-end fashion is still far from being achieved. Instead, here we follow a two stages approach, where interpretable information is included in the loop and each actor is modelled independently. We leverage a per-object novel view synthesis paradigm; i.e. generating a synthetic representation of an object undergoing a geometrical roto-translation in the 3D space. Our model can be easily conditioned with constraints (e.g. input trajectories) provided by state-of-the-art tracking methods or by the user itself. This allows us to generate a set of diverse realistic futures starting from the same input in a multi-modal fashion. We visually and quantitatively show the superiority of this approach over traditional end-to-end scene-generation methods on CityFlow, a challenging real world dataset.

Derivation of Geometrically and Semantically Annotated UAV Datasets at Large Scales from 3D City Models

Sidi Wu, Lukas Liebel, Marco Körner

Responsive image

Auto-TLDR; Large-Scale Dataset of Synthetic UAV Imagery for Geometric and Semantic Annotation

Slides Poster Similar

While in high demand for the development of deep learning approaches, extensive datasets of annotated UAV imagery are still scarce today. Manual annotation, however, is time-consuming and, thus, has limited the potential for creating large-scale datasets. We tackle this challenge by presenting a procedure for the automatic creation of simulated UAV image sequences in urban areas and pixel-level annotations from publicly available data sources. We synthesize photo-realistic UAV imagery from Goole Earth Studio and derive annotations from an open CityGML model that not only provides geometric but also semantic information. The first dataset we exemplarily created using our approach contains 144000 images of Berlin, Germany, with four types of annotations, namely semantic labels as well as depth, surface normals, and edge maps. In the future, a complete pipeline regarding all the technical problems will be provided, together with more accurate models to refine some of the empirical settings currently, to automatically generate a large-scale dataset with reliable ground-truth annotations over the whole city of Berlin. The dataset, as well as the source code, will be published by then. Different methods will also be facilitated to test the usability of the dataset. We believe our dataset can be used for, and not limited to, tasks like pose estimation, geo-localization, monocular depth estimation, edge detection, building/surface classification, and plane segmentation. A potential research pipeline for geo-localization based on the synthetic dataset is provided.

Towards Artifacts-Free Image Defogging

Gabriele Graffieti, Davide Maltoni

Responsive image

Auto-TLDR; CurL-Defog: Learning Based Defogging with CycleGAN and HArD

Slides Similar

In this paper we present a novel defogging technique, named CurL-Defog, aimed at minimizing the creation of artifacts. The majority of learning based defogging approaches relies on paired data (i.e., the same images with and without fog), where fog is artificially added to clear images: this often provides good results on mildly fogged images but does not generalize well to real difficult cases. On the other hand, the models trained with real unpaired data (e.g. CycleGAN) can provide visually impressive results but often produce unwanted artifacts. In this paper we propose a curriculum learning strategy coupled with an enhanced CycleGAN model in order to reduce the number of produced artifacts, while maintaining state-of-the- art performance in terms of contrast enhancement and image reconstruction. We also introduce a new metric, called HArD (Hazy Artifact Detector) to numerically quantify the amount of artifacts in the defogged images, thus avoiding the tedious and subjective manual inspection of the results. The proposed approach compares favorably with state-of-the-art techniques on both real and synthetic datasets.

RISEdb: A Novel Indoor Localization Dataset

Carlos Sanchez Belenguer, Erik Wolfart, Álvaro Casado Coscollá, Vitor Sequeira

Responsive image

Auto-TLDR; Indoor Localization Using LiDAR SLAM and Smartphones: A Benchmarking Dataset

Slides Poster Similar

In this paper we introduce a novel public dataset for developing and benchmarking indoor localization systems. We have selected and 3D mapped a set of representative indoor environments including a large office building, a conference room, a workshop, an exhibition area and a restaurant. Our acquisition pipeline is based on a portable LiDAR SLAM backpack to map the buildings and to accurately track the pose of the user as it moves freely inside them. We introduce the calibration procedures that enable us to acquire and geo-reference live data coming from different independent sensors rigidly attached to the backpack. This has allowed us to collect long sequences of spherical and stereo images, together with all the sensor readings coming from a consumer smartphone and locate them inside the map with centimetre accuracy. The dataset addresses many of the limitations of existing indoor localization datasets regarding the scale and diversity of the mapped buildings; the number of acquired sequences under varying conditions; the accuracy of the ground-truth trajectory; the availability of a detailed 3D model and the availability of different sensor types. It enables the benchmarking of existing and the development of new indoor localization approaches, in particular for deep learning based systems that require large amounts of labeled training data.

Machine-Learned Regularization and Polygonization of Building Segmentation Masks

Stefano Zorzi, Ksenia Bittner, Friedrich Fraundorfer

Responsive image

Auto-TLDR; Automatic Regularization and Polygonization of Building Segmentation masks using Generative Adversarial Network

Slides Poster Similar

We propose a machine learning based approach for automatic regularization and polygonization of building segmentation masks. Taking an image as input, we first predict building segmentation maps exploiting generic fully convolutional network (FCN). A generative adversarial network (GAN) is then involved to perform a regularization of building boundaries to make them more realistic, i.e., having more rectilinear outlines which construct right angles if required. This is achieved through the interplay between the discriminator which gives a probability of input image being true and generator that learns from discriminator’s response to create more realistic images. Finally, we train the backbone convolutional neural network (CNN) which is adapted to predict sparse outcomes corresponding to building corners out of regularized building segmentation results. Experiments on three building segmentation datasets demonstrate that the proposed method is not only capable of obtaining accurate results, but also of producing visually pleasing building outlines parameterized as polygons.

MBD-GAN: Model-Based Image Deblurring with a Generative Adversarial Network

Li Song, Edmund Y. Lam

Responsive image

Auto-TLDR; Model-Based Deblurring GAN for Inverse Imaging

Slides Poster Similar

This paper presents a methodology to tackle inverse imaging problems by leveraging the synergistic power of imaging model and deep learning. The premise is that while learning-based techniques have quickly become the methods of choice in various applications, they often ignore the prior knowledge embedded in imaging models. Incorporating the latter has the potential to improve the image estimation. Specifically, we first provide a mathematical basis of using generative adversarial network (GAN) in inverse imaging through considering an optimization framework. Then, we develop the specific architecture that connects the generator and discriminator networks with the imaging model. While this technique can be applied to a variety of problems, from image reconstruction to super-resolution, we take image deblurring as the example here, where we show in detail the implementation and experimental results of what we call the model-based deblurring GAN (MBD-GAN).

Edge-Guided CNN for Denoising Images from Portable Ultrasound Devices

Yingnan Ma, Fei Yang, Anup Basu

Responsive image

Auto-TLDR; Edge-Guided Convolutional Neural Network for Portable Ultrasound Images

Slides Poster Similar

Ultrasound is a non-invasive tool that is useful for medical diagnosis and treatment. To reduce long wait times and add convenience to patients, portable ultrasound scanning devices are becoming increasingly popular. These devices can be held in one palm, and are compatible with modern cell phones. However, the quality of ultrasound images captured from the portable scanners is relatively poor compared to standard ultrasound scanning systems in hospitals. To improve the quality of the ultrasound images obtained from portable ultrasound devices, we propose a new neural network architecture called Edge-Guided Convolutional Neural Network (EGCNN), which can preserve significant edge information in ultrasound images when removing noise. We also study and compare the effectiveness of classical filtering approaches in removing speckle noise in these images. Experimental results show that after applying the proposed EGCNN, various organs can be better recognized from ultrasound images. This approach is expected to lead to better accuracy in diagnostics in the future.

D3Net: Joint Demosaicking, Deblurring and Deringing

Tomas Kerepecky, Filip Sroubek

Responsive image

Auto-TLDR; Joint demosaicking deblurring and deringing network with light-weight architecture inspired by the alternating direction method of multipliers

Slides Similar

Images acquired with standard digital cameras have Bayer patterns and suffer from lens blur. A demosaicking step is implemented in every digital camera, yet blur often remains unattended due to computational cost and instability of deblurring algorithms. Linear methods, which are computationally less demanding, produce ringing artifacts in deblurred images. Complex non-linear deblurring methods avoid artifacts, however their complexity imply offline application after camera demosaicking, which leads to sub-optimal performance. In this work, we propose a joint demosaicking deblurring and deringing network with a light-weight architecture inspired by the alternating direction method of multipliers. The proposed network has a transparent and clear interpretation compared to other black-box data driven approaches. We experimentally validate its superiority over state-of-the-art demosaicking methods with offline deblurring.

Extending Single Beam Lidar to Full Resolution by Fusing with Single Image Depth Estimation

Yawen Lu, Yuxing Wang, Devarth Parikh, Guoyu Lu

Responsive image

Auto-TLDR; Self-supervised LIDAR for Low-Cost Depth Estimation

Slides Similar

Depth estimation is playing an important role in indoor and outdoor scene understanding, autonomous driving, augmented reality and many other tasks. Vehicles and robotics are able to use active illumination sensors such as LIDAR to receive high precision depth estimation. However, high-resolution Lidars are usually too expensive, which limits its massive production on various applications. Though single beam LIDAR enjoys the benefits of low cost, one beam depth sensing is not usually sufficient to perceive the surrounding environment in many scenarios. In this paper, we propose a learning-based framework to explore to replicate similar or even higher performance as costly LIDARs with our designed self-supervised network and a low-cost single-beam LIDAR. After the accurate calibration with a visible camera, the single beam LIDAR can adjust the scale uncertainty of the depth map estimated by the visible camera. The adjusted depth map enjoys the benefits of high resolution and sensing accuracy as high beam LIDAR and maintains low-cost as single beam LIDAR. Thus we can achieve similar sensing effect of high beam LIDAR with more than a 50-100 times cheaper price (e.g., \$80000 Velodyne HDL-64E LIDAR v.s. \$1000 SICK TIM-781 2D LIDAR and normal camera). The proposed approach is verified on our collected dataset and public dataset with superior depth-sensing performance.

SECI-GAN: Semantic and Edge Completion for Dynamic Objects Removal

Francesco Pinto, Andrea Romanoni, Matteo Matteucci, Phil Torr

Responsive image

Auto-TLDR; SECI-GAN: Semantic and Edge Conditioned Inpainting Generative Adversarial Network

Slides Poster Similar

Image inpainting aims at synthesizing the missing content of damaged and corrupted images to produce visually realistic restorations; typical applications are in image restoration, automatic scene editing, super-resolution, and dynamic object removal. In this paper, we propose Semantic and Edge Conditioned Inpainting Generative Adversarial Network (SECI-GAN), an architecture that jointly exploits the high-level cues extracted by semantic segmentation and the fine-grained details captured by edge extraction to condition the image inpainting process. SECI-GAN is designed with a particular focus on recovering big regions belonging to the same object (e.g. cars or pedestrians) in the context of dynamic object removal from complex street views. To demonstrate the effectiveness of SECI-GAN, we evaluate our results on the Cityscapes dataset, showing that SECI-GAN is better than competing state-of-the-art models at recovering the structure and the content of the missing parts while producing consistent predictions.

3D Semantic Labeling of Photogrammetry Meshes Based on Active Learning

Mengqi Rong, Shuhan Shen, Zhanyi Hu

Responsive image

Auto-TLDR; 3D Semantic Expression of Urban Scenes Based on Active Learning

Slides Poster Similar

As different urban scenes are similar but still not completely consistent, coupled with the complexity of labeling directly in 3D, high-level understanding of 3D scenes has always been a tricky problem. In this paper, we propose a procedural approach for 3D semantic expression of urban scenes based on active learning. We first start with a small labeled image set to fine-tune a semantic segmentation network and then project its probability map onto a 3D mesh model for fusion, finally outputs a 3D semantic mesh model in which each facet has a semantic label and a heat model showing each facet’s confidence. Our key observation is that our algorithm is iterative, in each iteration, we use the output semantic model as a supervision to select several valuable images for annotation to co-participate in the fine-tuning for overall improvement. In this way, we reduce the workload of labeling but not the quality of 3D semantic model. Using urban areas from two different cities, we show the potential of our method and demonstrate its effectiveness.

RSAN: Residual Subtraction and Attention Network for Single Image Super-Resolution

Shuo Wei, Xin Sun, Haoran Zhao, Junyu Dong

Responsive image

Auto-TLDR; RSAN: Residual subtraction and attention network for super-resolution

Slides Similar

The single-image super-resolution (SISR) aims to recover a potential high-resolution image from its low-resolution version. Recently, deep learning-based methods have played a significant role in super-resolution field due to its effectiveness and efficiency. However, most of the SISR methods neglect the importance among the feature map channels. Moreover, they can not eliminate the redundant noises, making the output image be blurred. In this paper, we propose the residual subtraction and attention network (RSAN) for powerful feature expression and channels importance learning. More specifically, RSAN firstly implements one redundance removal module to learn noise information in the feature map and subtract noise through residual learning. Then it introduces the channel attention module to amplify high-frequency information and suppress the weight of effectless channels. Experimental results on extensive public benchmarks demonstrate our RSAN achieves significant improvement over the previous SISR methods in terms of both quantitative metrics and visual quality.

5D Light Field Synthesis from a Monocular Video

Kyuho Bae, Andre Ivan, Hajime Nagahara, In Kyu Park

Responsive image

Auto-TLDR; Synthesis of Light Field Video from Monocular Video using Deep Learning

Slides Similar

Commercially available light field cameras have difficulty in capturing 5D (4D + time) light field videos. They can only capture still light filed images or are excessively expensive for normal users to capture the light field video. To tackle this problem, we propose a deep learning-based method for synthesizing a light field video from a monocular video. We propose a new synthetic light field video dataset that renders photorealistic scenes using Unreal Engine because no light field video dataset is available. The proposed deep learning framework synthesizes the light field video with a full set (9x9) of sub-aperture images from a normal monocular video. The proposed network consists of three sub-networks, namely, feature extraction, 5D light field video synthesis, and temporal consistency refinement. Experimental results show that our model can successfully synthesize the light field video for synthetic and real scenes and outperforms the previous frame-by-frame method quantitatively and qualitatively.

Multi-focus Image Fusion for Confocal Microscopy Using U-Net Regression Map

Md Maruf Hossain Shuvo, Yasmin M. Kassim, Filiz Bunyak, Olga V. Glinskii, Leike Xie, Vladislav V Glinsky, Virginia H. Huxley, Kannappan Palaniappan

Responsive image

Auto-TLDR; Independent Single Channel U-Net Fusion for Multi-focus Microscopy Images

Slides Poster Similar

Multi-focus image fusion plays an important role to better visualize the detailed information and anatomical structures of microscopy images. We propose a new approach to fuse all single-focus microscopy images in each Z-stack. As the structures are different in different channels, input images are separated into red and green channels. Red for blood vessels, and green for lymphatics like structures . Taking the maximum likelihood of U-Net regression likelihood map along Z, we obtain the focus selection map for each channel. We named this approach as Independent Single Channel U-Net (ISCU) fusion. We combined each channel fusion result to get the final dual channel composite RGB image. The dataset used is extremely challenging with complex microscopy images of mice dura mater attached to bone. We compared our results with one of the popular and widely used derivative based fusion method [7] using multiscale Hessian. We found that multiscale Hessian-based approach produces banding effects with nonhomogeneous background lacking detailed anatomical structures. So, we took the advantages of Convolutional Neural Network (CNN), and used the U-Net regression likelihood map to fuse the images. Perception based no-reference image quality assessment parameters like PIQUE, NIQE, and BRISQUE confirms the effectiveness of the proposed method.

Deep Universal Blind Image Denoising

Jae Woong Soh, Nam Ik Cho

Responsive image

Auto-TLDR; Image Denoising with Deep Convolutional Neural Networks

Slides Similar

Image denoising is an essential part of many image processing and computer vision tasks due to inevitable noise corruption during image acquisition. Traditionally, many researchers have investigated image priors for the denoising, within the Bayesian perspective based on image properties and statistics. Recently, deep convolutional neural networks (CNNs) have shown great success in image denoising by incorporating large-scale synthetic datasets. However, they both have pros and cons. While the deep CNNs are powerful for removing the noise with known statistics, they tend to lack flexibility and practicality for the blind and real-world noise. Moreover, they cannot easily employ explicit priors. On the other hand, traditional non-learning methods can involve explicit image priors, but they require considerable computation time and cannot exploit large-scale external datasets. In this paper, we present a CNN-based method that leverages the advantages of both methods based on the Bayesian perspective. Concretely, we divide the blind image denoising problem into sub-problems and conquer each inference problem separately. As the CNN is a powerful tool for inference, our method is rooted in CNNs and propose a novel design of network for efficient inference. With our proposed method, we can successfully remove blind and real-world noise, with a moderate number of parameters of universal CNN.

Progressive Scene Segmentation Based on Self-Attention Mechanism

Yunyi Pan, Yuan Gan, Kun Liu, Yan Zhang

Responsive image

Auto-TLDR; Two-Stage Semantic Scene Segmentation with Self-Attention

Slides Poster Similar

Semantic scene segmentation is vital for a large variety of applications as it enables understanding of 3D data. Nowadays, various approaches based upon point clouds ignore the mathematical distribution of points and treat the points equally. The methods following this direction neglect the imbalance problem of samples that naturally exists in scenes. To avoid these issues, we propose a two-stage semantic scene segmentation framework based on self-attention mechanism and achieved state-of-the-art performance on 3D scene understanding tasks. We split the whole task into two small ones which efficiently relief the sample imbalance issue. In addition, we have designed a new self-attention block which could be inserted into submanifold convolution networks to model the long-range dependencies that exists among points. The proposed network consists of an encoder and a decoder, with the spatial-wise and channel-wise attention modules inserted. The two-stage network shares a U-Net architecture and is an end-to-end trainable framework which could predict the semantic label for the scene point clouds fed into it. Experiments on standard benchmarks of 3D scenes implies that our network could perform at par or better than the existing state-of-the-art methods.

Detail-Revealing Deep Low-Dose CT Reconstruction

Xinchen Ye, Yuyao Xu, Rui Xu, Shoji Kido, Noriyuki Tomiyama

Responsive image

Auto-TLDR; A Dual-branch Aggregation Network for Low-Dose CT Reconstruction

Slides Poster Similar

Low-dose CT imaging emerges with low radiation risk due to the reduction of radiation dose, but brings negative impact on the imaging quality. This paper addresses the problem of low-dose CT reconstruction. Previous methods are unsatisfactory due to the inaccurate recovery of image details under the strong noise generated by the reduction of radiation dose, which directly affects the final diagnosis. To suppress the noise effectively while retain the structures well, we propose a detail-revealing dual-branch aggregation network to effectively reconstruct the degraded CT image. Specifically, the main reconstruction branch iteratively exploits and compensates the reconstruction errors to gradually refine the CT image, while the prior branch is to learn the structure details as prior knowledge to help recover the CT image. A sophisticated detail-revealing loss is designed to fuse the information from both branches and guide the learning to obtain better performance from pixel-wise and holistic perspectives respectively. Experimental results show that our method outperforms the state-of-art methods in both PSNR and SSIM metrics.

Human Segmentation with Dynamic LiDAR Data

Tao Zhong, Wonjik Kim, Masayuki Tanaka, Masatoshi Okutomi

Responsive image

Auto-TLDR; Spatiotemporal Neural Network for Human Segmentation with Dynamic Point Clouds

Slides Similar

Consecutive LiDAR scans and depth images compose dynamic 3D sequences, which contain more abundant spatiotemporal information than a single frame. Similar to the development history of image and video perception, dynamic 3D sequence perception starts to come into sight after inspiring research on static 3D data perception. This work proposes a spatiotemporal neural network for human segmentation with the dynamic LiDAR point clouds. It takes a sequence of depth images as input. It has a two-branch structure, i.e., the spatial segmentation branch and the temporal velocity estimation branch. The velocity estimation branch is designed to capture motion cues from the input sequence and then propagates them to the other branch. So that the segmentation branch segments humans according to both spatial and temporal features. These two branches are jointly learned on a generated dynamic point cloud data set for human recognition. Our works fill in the blank of dynamic point cloud perception with the spherical representation of point cloud and achieves high accuracy. The experiments indicate that the introduction of temporal feature benefits the segmentation of dynamic point cloud perception.

FatNet: A Feature-Attentive Network for 3D Point Cloud Processing

Chaitanya Kaul, Nick Pears, Suresh Manandhar

Responsive image

Auto-TLDR; Feature-Attentive Neural Networks for Point Cloud Classification and Segmentation

Slides Similar

The application of deep learning to 3D point clouds is challenging due to its lack of order. Inspired by the point embeddings of PointNet and the edge embeddings of DGCNNs, we propose three improvements to the task of point cloud analysis. First, we introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings. Second, we find that applying the same attention mechanism across two different forms of feature map aggregation, max pooling and average pooling, gives better performance than either alone. Third, we observe that residual feature reuse in this setting propagates information more effectively between the layers, and makes the network easier to train. Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset, and an extremely competitive performance on the ShapeNet part segmentation challenge.

Motion U-Net: Multi-Cue Encoder-Decoder Network for Motion Segmentation

Gani Rahmon, Filiz Bunyak, Kannappan Palaniappan

Responsive image

Auto-TLDR; Motion U-Net: A Deep Learning Framework for Robust Moving Object Detection under Challenging Conditions

Slides Poster Similar

Detection of moving objects is a critical first step in many computer vision applications. Several algorithms for motion and change detection were proposed. However, many of these approaches lack the ability to handle challenging real-world scenarios. Recently, deep learning approaches started to produce impressive solutions to computer vision tasks, particularly for detection and segmentation. Many existing deep learning networks proposed for moving object detection rely only on spatial appearance cues. In this paper, we propose a novel multi-cue and multi-stream network, Motion U-Net (MU-Net), which integrates motion, change, and appearance cues using a deep learning framework for robust moving object detection under challenging conditions. The proposed network consists of a two-stream encoder module followed by feature concatenation and a decoder module. Motion and change cues are computed through our tensor-based motion estimation and a multi-modal background subtraction modules. The proposed system was tested and evaluated on the change detection challenge datasets (CDnet-2014) and compared to state-of-the-art methods. On CDnet-2014 dataset, our approach reaches an average overall F-measure of 0.9852 and outperforms all current state-of-the-art methods. The network was also tested on the unseen SBI-2015 dataset and produced promising results.

Movement-Induced Priors for Deep Stereo

Yuxin Hou, Muhammad Kamran Janjua, Juho Kannala, Arno Solin

Responsive image

Auto-TLDR; Fusing Stereo Disparity Estimation with Movement-induced Prior Information

Slides Poster Similar

We propose a method for fusing stereo disparity estimation with movement-induced prior information. Instead of independent inference frame-by-frame, we formulate the problem as a non-parametric learning task in terms of a temporal Gaussian process prior with a movement-driven kernel for inter-frame reasoning. We present a hierarchy of three Gaussian process kernels depending on the availability of motion information, where our main focus is on a new gyroscope-driven kernel for handheld devices with low-quality MEMS sensors, thus also relaxing the requirement of having full 6D camera poses available. We show how our method can be combined with two state-of-the-art deep stereo methods. The method either work in a plug-and-play fashion with pre-trained deep stereo networks, or further improved by jointly training the kernels together with encoder--decoder architectures, leading to consistent improvement.

A GAN-Based Blind Inpainting Method for Masonry Wall Images

Yahya Ibrahim, Balázs Nagy, Csaba Benedek

Responsive image

Auto-TLDR; An End-to-End Blind Inpainting Algorithm for Masonry Wall Images

Slides Poster Similar

In this paper we introduce a novel end-to-end blind inpainting algorithm for masonry wall images, performing the automatic detection and virtual completion of occluded or damaged wall regions. For this purpose, we propose a three-stage deep neural network that comprises a U-Net-based sub-network for wall segmentation into brick, mortar and occluded regions, which is followed by a two-stage adversarial inpainting model. The first adversarial network predicts the schematic mortar-brick pattern of the occluded areas based on the observed wall structure, providing in itself valuable structural information for archeological and architectural applications. Finally, the second adversarial network predicts the RGB pixel values yielding a realistic visual experience for the observer. While the three stages implement a sequential pipeline, they interact through dependencies of their loss functions admitting the consideration of hidden feature dependencies between the different network components. For training and testing the network a new dataset has been created, and an extensive qualitative and quantitative evaluation versus the state-of-the-art is given.

Residual Learning of Video Frame Interpolation Using Convolutional LSTM

Keito Suzuki, Masaaki Ikehara

Responsive image

Auto-TLDR; Video Frame Interpolation Using Residual Learning and Convolutional LSTMs

Slides Poster Similar

Video frame interpolation aims to generate interme- diate frames between the original frames. This produces videos with a higher frame r ate and creates smoother motion. Many video frame interpolation methods first estimate the motion vector between the input frames and then synthesizes the intermediate frame based on the motion. However, these methods rely on the accuracy of the motion estimation step and fail to accurately generate the interpolated frame when the estimated motion vectors are inaccurate. Therefore, to avoid the uncertainties caused by motion estimation, this paper proposes a method that directly generates the intermediate frame. Since two consecutive frames are relatively similar, our method takes the average of these two frames and utilizes residual learning to learn the difference between the average of these frames and the ground truth middle frame. In addition, our method uses Convolutional LSTMs and four input frames to better incorporate spatiotemporal information. This neural network can be easily trained end to end without difficult to obtain data such as optical flow. Our experimental results show that the proposed method can perform favorably against other state-of-the-art frame interpolation methods.

PC-Net: A Deep Network for 3D Point Clouds Analysis

Zhuo Chen, Tao Guan, Yawei Luo, Yuesong Wang

Responsive image

Auto-TLDR; PC-Net: A Hierarchical Neural Network for 3D Point Clouds Analysis

Slides Poster Similar

Due to the irregularity and sparsity of 3D point clouds, applying convolutional neural networks directly on them can be nontrivial. In this work, we propose a simple but effective approach for 3D Point Clouds analysis, named PC-Net. PC-Net directly learns on point sets and is equipped with three new operations: first, we apply a novel scale-aware neighbor search for adaptive neighborhood extracting; second, for each neighboring point, we learn a local spatial feature as a complement to their associated features; finally, at the end we use a distance re-weighted pooling to aggregate all the features from local structure. With this module, we design hierarchical neural network for point cloud understanding. For both classification and segmentation tasks, our architecture proves effective in the experiments and our models demonstrate state-of-the-art performance over existing deep learning methods on popular point cloud benchmarks.

Automatical Enhancement and Denoising of Extremely Low-Light Images

Yuda Song, Yunfang Zhu, Xin Du

Responsive image

Auto-TLDR; INSNet: Illumination and Noise Separation Network for Low-Light Image Restoring

Slides Poster Similar

Deep convolutional neural networks (DCNN) based methodologies have achieved remarkable performance on various low-level vision tasks recently. Restoring images captured at night is one of the trickiest low-level vision tasks due to its high-level noise and low-level intensity. We propose a DCNN-based methodology, Illumination and Noise Separation Network (INSNet), which performs both denoising and enhancement on these extremely low-light images. INSNet fully utilizes global-ware features and local-ware features using the modified network structure and image sampling scheme. Compared to well-designed complex neural networks, our proposed methodology only needs to add a bypass network to the existing network. However, it can boost the quality of recovered images dramatically but only increase the computational cost by less than 0.1%. Even without any manual settings, INSNet can stably restore the extremely low-light images to desired high-quality images.

Partially Supervised Multi-Task Network for Single-View Dietary Assessment

Ya Lu, Thomai Stathopoulou, Stavroula Mougiakakou

Responsive image

Auto-TLDR; Food Volume Estimation from a Single Food Image via Geometric Understanding and Semantic Prediction

Slides Poster Similar

Food volume estimation is an essential step in the pipeline of dietary assessment and demands the precise depth estimation of the food surface and table plane. Existing methods based on computer vision require either multi-image input or additional depth maps, reducing convenience of implementation and practical significance. Despite the recent advances in unsupervised depth estimation from a single image, the achieved performance in the case of large texture-less areas needs to be improved. In this paper, we propose a network architecture that jointly performs geometric understanding (i.e., depth prediction and 3D plane estimation) and semantic prediction on a single food image, enabling a robust and accurate food volume estimation regardless of the texture characteristics of the target plane. For the training of the network, only monocular videos with semantic ground truth are required, while the depth map and 3D plane ground truth are no longer needed. Experimental results on two separate food image databases demonstrate that our method performs robustly on texture-less scenarios and is superior to unsupervised networks and structure from motion based approaches, while it achieves comparable performance to fully-supervised methods.

Hierarchically Aggregated Residual Transformation for Single Image Super Resolution

Zejiang Hou, Sy Kung

Responsive image

Auto-TLDR; HARTnet: Hierarchically Aggregated Residual Transformation for Multi-Scale Super-resolution

Slides Poster Similar

Visual patterns usually appear at different scales/sizes in natural images. Multi-scale feature representation is of great importance for the single-image super-resolution(SISR) task to reconstruct image objects at different scales.However, such characteristic has been rarely considered by CNN-based SISR methods. In this work, we propose a novel build-ing block, i.e. hierarchically aggregated residual transformation(HART), to achieve multi-scale feature representation in each layer of the network. Within each HART block, we connect multiple convolutions in a hierarchical residual-like manner, which greatly expands the range of effective receptive fields and helps to detect image features at different scales. To theoretically understand the proposed HART block, we recast SISR as an optimal control problem and show that HART effectively approximates the classical4th-order Runge-Kutta method, which has the merit of small local truncation error for solving numerical ordinary differential equation. By cascading the proposed HART blocks, we establish our high-performing HARTnet. Comparedwith existing SR state-of-the-arts (including those in NTIRE2019 SR Challenge leaderboard), the proposed HARTnet demonstrates consistent PSNR/SSIM performance improvements on various benchmark datasets under different degradation models.Moreover, HARTnet can efficiently restore more faithful high-resolution images than comparative SR methods (cf. Figure 1).

Multi-scale Processing of Noisy Images using Edge Preservation Losses

Nati Ofir

Responsive image

Auto-TLDR; Multi-scale U-net for Noisy Image Detection and Denoising

Slides Poster Similar

Noisy image processing is a fundamental task of computer vision. The first example is the detection of faint edges in noisy images, a challenging problem studied in the last decades. A recent study introduced a fast method to detect faint edges in the highest accuracy among all the existing approaches. Their complexity is nearly linear in the image's pixels and their runtime is seconds for a noisy image. Their approach utilizes a multi-scale binary partitioning of the image. By utilizing the multi-scale U-net architecture, we show in this paper that their method can be dramatically improved in both aspects of run time and accuracy. By training the network on a dataset of binary images, we developed an approach for faint edge detection that works in linear complexity. Our runtime of a noisy image is milliseconds on a GPU. Even though our method is orders of magnitude faster, we still achieve higher accuracy of detection under many challenging scenarios. In addition, we show that our approach to performing multi-scale preprocessing of noisy images using U-net improves the ability to perform other vision tasks under the presence of noise. We prove it on the problems of noisy objects classification and classical image denoising. We show that multi-scale denoising can be carried out by a novel edge preservation loss. As our experiments show, we achieve high-quality results in the three aspects of faint edge detection, noisy image classification and natural image denoising.

A Gated and Bifurcated Stacked U-Net Module for Document Image Dewarping

Hmrishav Bandyopadhyay, Tanmoy Dasgupta, Nibaran Das, Mita Nasipuri

Responsive image

Auto-TLDR; Gated and Bifurcated Stacked U-Net for Dewarping Document Images

Slides Poster Similar

Capturing images of documents is one of the easiest and most used methods of recording them. These images however, being captured with the help of handheld devices, often lead to undesirable distortions that are hard to remove. We propose a supervised Gated and Bifurcated Stacked U-Net module to predict a dewarping grid and create a distortion free image from the input. While the network is trained on synthetically warped document images, results are calculated on the basis of real world images. The novelty in our methods exists not only in a bifurcation of the U-Net to help eliminate the intermingling of the grid coordinates, but also in the use of a gated network which adds boundary and other minute line level details to the model. The end-to-end pipeline proposed by us achieves state-of-the-art performance on the DocUNet dataset after being trained on just 8 percent of the data used in previous methods.

Selective Kernel and Motion-Emphasized Loss Based Attention-Guided Network for HDR Imaging of Dynamic Scenes

Yipeng Deng, Qin Liu, Takeshi Ikenaga

Responsive image

Auto-TLDR; SK-AHDRNet: A Deep Network with attention module and motion-emphasized loss function to produce ghost-free HDR images

Slides Poster Similar

Ghost-like artifacts caused by ill-exposed and motion areas is one of the most challenging problems in high dynamic range (HDR) image reconstruction.When the motion range is small, previous methods based on optical flow or patch-match can suppress ghost-like artifacts by first aligning input images before merging them.However, they are not robust enough and still produce artifacts for challenging scenes where large foreground motions exist.To this end, we propose a deep network with attention module and motion-emphasized loss function to produce ghost-free HDR images. In attention module, we use channel and spatial attention to guide network to emphasize important components such as motion and saturated areas automatically. With the purpose of being robust to images with different resolutions and objects with distinct scale, we adopt the selective kernel network as the basic framework for channel attention. In addition to the attention module, the motion-emphasized loss function based on the motion and ill-exposed areas mask is designed to help network reconstruct motion areas. Experiments on the public dataset indicate that the proposed SK-AHDRNet produces ghost-free results where detail in ill-exposed areas is well recovered. The proposed method scores 43.17 with PSNR metric and 61.02 with HDR-VDP-2 metric on test which outperforms all conventional works. According to quantitative and qualitative evaluations, the proposed method can achieve state-of-the-art performance.

LiNet: A Lightweight Network for Image Super Resolution

Armin Mehri, Parichehr Behjati Ardakani, Angel D. Sappa

Responsive image

Auto-TLDR; LiNet: A Compact Dense Network for Lightweight Super Resolution

Slides Poster Similar

This paper proposes a new lightweight network, LiNet, that enhancing technical efficiency in lightweight super resolution and operating approximately like very large and costly networks in terms of number of network parameters and operations. The proposed architecture allows the network to learn more abstract properties by avoiding low-level information via multiple links. LiNet introduces a Compact Dense Module, which contains set of inner and outer blocks, to efficiently extract meaningful information, to better leverage multi-level representations before upsampling stage, and to allow an efficient information and gradient flow within the network. Experiments on benchmark datasets show that the proposed LiNet achieves favorable performance against lightweight state-of-the-art methods.

Adaptive Image Compression Using GAN Based Semantic-Perceptual Residual Compensation

Ruojing Wang, Zitang Sun, Sei-Ichiro Kamata, Weili Chen

Responsive image

Auto-TLDR; Adaptive Image Compression using GAN based Semantic-Perceptual Residual Compensation

Slides Poster Similar

Image compression is a basic task in image processing. In this paper, We present an adaptive image compression algorithm that relies on GAN based semantic-perceptual residual compensation, which is available to offer visually pleasing reconstruction at a low bitrate. Our method adopt an U-shaped encoding and decoding structure accompanied by a well-designed dense residual connection with strip pooling module to improve the original auto-encoder. Besides, we introduce the idea of adversarial learning by introducing a discriminator thus constructed a complete GAN. To improve the coding efficiency, we creatively designed an adaptive semantic-perception residual compensation block based on Grad-CAM algorithm. In the improvement of the quantizer, we embed the method of soft-quantization so as to solve the problem to some extent that back propagation process is irreversible. Simultaneously, we use the latest FLIF lossless compression algorithm and BPG vector compression algorithm to perform deeper compression on the image. More importantly experimental results including PSNR, MS-SSIM demonstrate that the proposed approach outperforms the current state-of-the-art image compression methods.

On-Device Text Image Super Resolution

Dhruval Jain, Arun Prabhu, Gopi Ramena, Manoj Goyal, Debi Mohanty, Naresh Purre, Sukumar Moharana

Responsive image

Auto-TLDR; A Novel Deep Neural Network for Super-Resolution on Low Resolution Text Images

Slides Poster Similar

Recent research on super-resolution (SR) has wit- nessed major developments with the advancements of deep convolutional neural networks. There is a need for information extraction from scenic text images or even document images on device, most of which are low-resolution (LR) images. Therefore, SR becomes an essential pre-processing step as Bicubic Upsampling, which is conventionally present in smartphones, performs poorly on LR images. To give the user more control over his privacy, and to reduce the carbon footprint by reducing the overhead of cloud computing and hours of GPU usage, executing SR models on the edge is a necessity in the recent times. There are various challenges in running and optimizing a model on resource-constrained platforms like smartphones. In this paper, we present a novel deep neural network that reconstructs sharper character edges and thus boosts OCR confidence. The proposed architecture not only achieves significant improvement in PSNR over bicubic upsampling on various benchmark datasets but also runs with an average inference time of 11.7 ms per image. We have outperformed state-of-the-art on the Text330 dataset. We also achieve an OCR accuracy of 75.89% on the ICDAR 2015 TextSR dataset, where ground truth has an accuracy of 78.10%.

Wavelet Attention Embedding Networks for Video Super-Resolution

Young-Ju Choi, Young-Woon Lee, Byung-Gyu Kim

Responsive image

Auto-TLDR; Wavelet Attention Embedding Network for Video Super-Resolution

Slides Poster Similar

Recently, Video super-resolution (VSR) has become more crucial as the resolution of display has been grown. The majority of deep learning-based VSR methods combine the convolutional neural networks (CNN) with motion compensation or alignment module to estimate high-resolution (HR) frame from low-resolution (LR) frames. However, most of previous methods deal with the spatial features equally and may result in the misaligned temporal features by pixel-based motion compensation and alignment module. It can lead to the damaging effect on the accuracy of the estimated HR feature. In this paper, we propose a wavelet attention embedding network (WAEN), including wavelet embedding network (WENet) and attention embedding network (AENet), to fully exploit the spatio-temporal informative features. The WENet is operated as a spatial feature extractor of individual low and high-frequency information based on 2-D Haar discrete wavelet transform. The meaningful temporal feature is extracted in the AENet through utilizing the weighted attention map between frames. Experimental results demonstrate that the proposed method achieves superior performance compared with state-of-the-art methods.

Facetwise Mesh Refinement for Multi-View Stereo

Andrea Romanoni, Matteo Matteucci

Responsive image

Auto-TLDR; Facetwise Refinement of Multi-View Stereo using Delaunay Triangulations

Slides Similar

Mesh refinement is a fundamental step for accurate Multi-View Stereo. It modifies the geometry of an initial manifold mesh to minimize the photometric error induced in a set of camera pairs. This initial mesh is usually the output of volumetric 3D reconstruction based on min-cut over Delaunay Triangulations. Such methods produce a significant amount of non-manifold vertices, therefore they require a vertex split step to explicitly repair them. In this paper we extend this method to preemptively fix the non-manifold vertices by reasoning directly on the Delaunay Triangulation and avoid most vertex splits. The main contribution of this paper addresses the problem of choosing the camera pairs adopted by the refinement process. We treat the problem as a mesh labeling process, where each label corresponds to a camera pair. Differently from the state-of-the-art methods, which use each camera pair to refine all the visible parts of the mesh, we choose, for each facet, the best pair that enforces both the overall visibility and coverage. The refinement step is applied for each facet using only the camera pair selected. This facetwise refinement helps the process to be applied in the most evenly way possible.

CURL: Neural Curve Layers for Global Image Enhancement

Sean Moran, Steven Mcdonagh, Greg Slabaugh

Responsive image

Auto-TLDR; CURL: Neural CURve Layers for Image Enhancement

Slides Poster Similar

We present a novel approach to adjust global image properties such as colour, saturation, and luminance using human-interpretable image enhancement curves, inspired by the Photoshop curves tool. Our method, dubbed neural CURve Layers (CURL), is designed as a multi-colour space neural retouching block trained jointly in three different colour spaces (HSV, CIELab, RGB) guided by a novel multi-colour space loss. The curves are fully differentiable and are trained end-to-end for different computer vision problems including photo enhancement (RGB-to-RGB) and as part of the image signal processing pipeline for image formation (RAW-to-RGB). To demonstrate the effectiveness of CURL we combine this global image transformation block with a pixel-level (local) image multi-scale encoder-decoder backbone network. In an extensive experimental evaluation we show that CURL produces state-of-the-art image quality versus recently proposed deep learning approaches in both objective and perceptual metrics, setting new state-of-the-art performance on multiple public datasets.

Quantization in Relative Gradient Angle Domain for Building Polygon Estimation

Yuhao Chen, Yifan Wu, Linlin Xu, Alexander Wong

Responsive image

Auto-TLDR; Relative Gradient Angle Transform for Building Footprint Extraction from Remote Sensing Data

Slides Poster Similar

Building footprint extraction in remote sensing data benefits many important applications, such as urban planning and population estimation. Recently, rapid development of Convolutional Neural Networks (CNNs) and open-sourced high resolution satellite building image datasets have pushed the performance boundary further for automated building extractions. However, CNN approaches often generate imprecise building morphologies including noisy edges and round corners. In this paper, we leverage the performance of CNNs, and propose a module that uses prior knowledge of building corners to create angular and concise building polygons from CNN segmentation outputs. We describe a new transform, Relative Gradient Angle Transform (RGA Transform) that converts object contours from time vs. space to time vs. angle. We propose a new shape descriptor, Boundary Orientation Relation Set (BORS), to describe angle relationship between edges in RGA domain, such as orthogonality and parallelism. Finally, we develop an energy minimization framework that makes use of the angle relationship in BORS to straighten edges and reconstruct sharp corners, and the resulting corners create a polygon. Experimental results demonstrate that our method refines CNN output from a rounded approximation to a more clear-cut angular shape of the building footprint.

Deep Photo Relighting by Integrating Both 2D and 3D Lighting Information

Takashi Machida, Satoru Nakanishi

Responsive image

Auto-TLDR; DPR: Deep Photorelighting for Image Detection/Classification and Data Augmentation

Slides Poster Similar

In this paper, we propose a novel framework called ``deep photorelighting'' (DPR) that can transform the lighting condition of an image for a virtual test of image detection/classification algorithm, city environment design, and data augmentation for machine learning. Our framework employs the deep neural network (DNN) approach based on U-Net. Specifically, DPR has two keypoints for transforming one lighting condition to another one by DNN. One is that we can support all factors that affect the lighting conditions (e.g., viewpoint, object materials/geometry, light position) by using 2D and 3D information such as omnidirectional image, omnidirectional depth image, and region segmentation image. The other keypoint is that we can reproduce indirect influences from outside the frame such as shadow by grasping the whole lighting environment with omnidirectional image/depth. As a result, DPR can generate relighting image without fatal artifacts such an unnatural shading/shadows of objects. In experiments, we confirmed that a generated image is well reproduced compared with the ground truth image. We also confirmed that shadows, which occur inside and outside the frame through obstacles, are properly added/deleted in the generated image compared with the ground truth image.

Video Reconstruction by Spatio-Temporal Fusion of Blurred-Coded Image Pair

Anupama S, Prasan Shedligeri, Abhishek Pal, Kaushik Mitr

Responsive image

Auto-TLDR; Recovering Video from Motion-Blurred and Coded Exposure Images Using Deep Learning

Slides Poster Similar

Learning-based methods have enabled the recovery of a video sequence from a single motion-blurred image or a single coded exposure image. Recovering video from a single motion-blurred image is a very ill-posed problem and the recovered video usually has many artifacts. In addition to this, the direction of motion is lost and it results in motion ambiguity. However, it has the advantage of fully preserving the information in the static parts of the scene. The traditional coded exposure framework is better-posed but it only samples a fraction of the space-time volume, which is at best $50\%$ of the space-time volume. Here, we propose to use the complementary information present in the fully-exposed (blurred) image along with the coded exposure image to recover a high fidelity video without any motion ambiguity. Our framework consists of a shared encoder followed by an attention module to selectively combine the spatial information from the fully-exposed image with the temporal information from the coded image, which is then super-resolved to recover a non-ambiguous high-quality video. The input to our algorithm is a fully-exposed and coded image pair. Such an acquisition system already exists in the form of a Coded-two-bucket (C2B) camera. We demonstrate that our proposed deep learning approach using blurred-coded image pair produces much better results than those from just a blurred image or just a coded image.

Learning Knowledge-Rich Sequential Model for Planar Homography Estimation in Aerial Video

Pu Li, Xiaobai Liu

Responsive image

Auto-TLDR; Sequential Estimation of Planar Homographic Transformations over Aerial Videos

Slides Poster Similar

This paper presents an unsupervised approach that leverages raw aerial videos to learn to estimate planar homographic transformation between consecutive video frames. Previous learning-based estimators work on pairs of images to estimate their planar homographic transformations but suffer from severe over-fitting issues, especially when applying over aerial videos. To address this concern, we develop a sequential estimator that directly processes a sequence of video frames and estimates their pairwise planar homographic transformations in batches. We also incorporate a set of spatial-temporal knowledge to regularize the learning of such a sequence-to-sequence model. We collect a set of challenging aerial videos and compare the proposed method to the alternative algorithms. Empirical studies suggest that our sequential model achieves significant improvement over alternative image-based methods and the knowledge-rich regularization further boosts our system performance. Our codes and dataset could be found at https://github.com/Paul-LiPu/DeepVideoHomography

Learning to Implicitly Represent 3D Human Body from Multi-Scale Features and Multi-View Images

Zhongguo Li, Magnus Oskarsson, Anders Heyden

Responsive image

Auto-TLDR; Reconstruction of 3D human bodies from multi-view images using multi-stage end-to-end neural networks

Slides Poster Similar

Reconstruction of 3D human bodies, from images, faces many challenges, due to it generally being an ill-posed problem. In this paper we present a method to reconstruct 3D human bodies from multi-view images, through learning an implicit function to represent 3D shape, based on multi-scale features extracted by multi-stage end-to-end neural networks. Our model consists of several end-to-end hourglass networks for extracting multi-scale features from multi-view images, and a fully connected network for implicit function classification from these features. Given a 3D point, it is projected to multi-view images and these images are fed into our model to extract multi-scale features. The scales of features extracted by the hourglass networks decrease with the depth of our model, which represents the information from local to global scale. Then, the multi-scale features as well as the depth of the 3D point are combined to a new feature vector and the fully connected network classifies the feature vector, in order to predict if the point lies inside or outside of the 3D mesh. The advantage of our method is that we use both local and global features in the fully connected network and represent the 3D mesh by an implicit function, which is more memory-efficient. Experiments on public datasets demonstrate that our method surpasses previous approaches in terms of the accuracy of 3D reconstruction of human bodies from images.

Super-Resolution Guided Pore Detection for Fingerprint Recognition

Syeda Nyma Ferdous, Ali Dabouei, Jeremy Dawson, Nasser M. Nasarabadi

Responsive image

Auto-TLDR; Super-Resolution Generative Adversarial Network for Fingerprint Recognition Using Pore Features

Slides Poster Similar

Performance of fingerprint recognition algorithms substantially rely on fine features extracted from fingerprints. Apart from minutiae and ridge patterns, pore features have proven to be usable for fingerprint recognition. Although features from minutiae and ridge patterns are quite attainable from low-resolution images, using pore features is practical only if the fingerprint image is of high resolution which necessitates a model that enhances the image quality of the conventional 500 ppi legacy fingerprints preserving the fine details. To find a solution for recovering pore information from low-resolution fingerprints, we adopt a joint learning-based approach that combines both super-resolution and pore detection networks. Our modified single image Super-Resolution Generative Adversarial Network (SRGAN) framework helps to reliably reconstruct high-resolution fingerprint samples from low-resolution ones assisting the pore detection network to identify pores with a high accuracy. The network jointly learns a distinctive feature representation from a real low-resolution fingerprint sample and successfully synthesizes a high-resolution sample from it. To add discriminative information and uniqueness for all the subjects, we have integrated features extracted from a deep fingerprint verifier with the SRGAN quality discriminator. We also add ridge reconstruction loss, utilizing ridge patterns to make the best use of extracted features. Our proposed method solves the recognition problem by improving the quality of fingerprint images. High recognition accuracy of the synthesized samples that is close to the accuracy achieved using the original high-resolution images validate the effectiveness of our proposed model.