A Hierarchical Framework for Leaf Instance Segmentation: Application to Plant Phenotyping

Swati Bhugra, Kanish Garg, Santanu Chaudhury, Brejesh Lall

Responsive image

Auto-TLDR; Under-segmentation of plant image using a graph based formulation to extract leaf shape knowledge for the task of leaf instance segmentation

Slides Poster

Image based analysis of plants is a high-throughput and non-invasive approach to study plant traits. Based on plant image data, the quantitative estimation of many plant traits (leaf area index, biomass etc.) is associated with accurate segmentation of individual leaves. However, this task is challenging due to the presence of overlapped leaves and lack of discernible boundaries between them. In addition, variability in leaf shapes and arrangement among different plant species limits the broad utilisation of current leaf instance segmentation algorithms. In this paper, we propose a novel framework that relies on under-segmentation of plant image using a graph based formulation to extract leaf shape knowledge for the task of leaf instance segmentation. These shape priors are generated based on leaf shape characteristics independent of plant species. We demonstrate the performance of the proposed framework across multiple plant dataset i.e. Arabidopsis, Komatsuna and Salad. Experimental results indicate its broad utility.

Similar papers

Learning to Segment Clustered Amoeboid Cells from Brightfield Microscopy Via Multi-Task Learning with Adaptive Weight Selection

Rituparna Sarkar, Suvadip Mukherjee, Elisabeth Labruyere, Jean-Christophe Olivo-Marin

Responsive image

Auto-TLDR; Supervised Cell Segmentation from Microscopy Images using Multi-task Learning in a Multi-Task Learning Paradigm

Poster Similar

Detecting and segmenting individual cells from microscopy images is critical to various life science applications. Traditional cell segmentation tools are often ill-suited for applications in brightfield microscopy due to poor contrast and intensity heterogeneity, and only a small subset are applicable to segment cells in a cluster. In this regard, we introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm. A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network. The learning problem is posed in a novel min-max framework which enables adaptive estimation of the hyper-parameters in an automatic fashion. The region and cell boundary predictions are combined via morphological operations and active contour model to segment individual cells. The proposed methodology is particularly suited to segment touching cells from brightfield microscopy images without manual interventions. Quantitatively, we observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least 5.8% on average.

BAT Optimized CNN Model Identifies Water Stress in Chickpea Plant Shoot Images

Shiva Azimi, Taranjit Kaur, Tapan Gandhi

Responsive image

Auto-TLDR; BAT Optimized ResNet-18 for Stress Classification of chickpea shoot images under water deficiency

Slides Poster Similar

Stress due to water deficiency in plants can significantly lower the agricultural yield. It can affect many visible plant traits such as size and surface area, the number of leaves and their color, etc. In recent years, computer vision-based plant phenomics has emerged as a promising tool for plant research and management. Such techniques have the advantage of being non-destructive, non-evasive, fast, and offer high levels of automation. Pulses like chickpeas play an important role in ensuring food security in poor countries owing to their high protein and nutrition content. In the present work, we have built a dataset comprising of two varieties of chickpea plant shoot images under different moisture stress conditions. Specifically, we propose a BAT optimized ResNet-18 model for classifying stress induced by water deficiency using chickpea shoot images. BAT algorithm identifies the optimal value of the mini-batch size to be used for training rather than employing the traditional manual approach of trial and error. Experimentation on two crop varieties (JG and Pusa) reveals that BAT optimized approach achieves an accuracy of 96% and 91% for JG and Pusa varieties that is better than the traditional method by 4%. The experimental results are also compared with state of the art CNN models like Alexnet, GoogleNet, and ResNet-50. The comparison results demonstrate that the proposed BAT optimized ResNet-18 model achieves higher performance than the comparison counterparts.

Automated Whiteboard Lecture Video Summarization by Content Region Detection and Representation

Bhargava Urala Kota, Alexander Stone, Kenny Davila, Srirangaraj Setlur, Venu Govindaraju

Responsive image

Auto-TLDR; A Framework for Summarizing Whiteboard Lecture Videos Using Feature Representations of Handwritten Content Regions

Poster Similar

Lecture videos are rapidly becoming an invaluable source of information for students across the globe. Given the large number of online courses currently available, it is important to condense the information within these videos into a compact yet representative summary that can be used for search-based applications. We propose a framework to summarize whiteboard lecture videos by finding feature representations of detected handwritten content regions to determine unique content. We investigate multi-scale histogram of gradients and embeddings from deep metric learning for feature representation. We explicitly handle occluded, growing and disappearing handwritten content. Our method is capable of producing two kinds of lecture video summaries - the unique regions themselves or so-called key content and keyframes (which contain all unique content in a video segment). We use weighted spatio-temporal conflict minimization to segment the lecture and produce keyframes from detected regions and features. We evaluate both types of summaries and find that we obtain state-of-the-art peformance in terms of number of summary keyframes while our unique content recall and precision are comparable to state-of-the-art.

Estimation of Abundance and Distribution of SaltMarsh Plants from Images Using Deep Learning

Jayant Parashar, Suchendra Bhandarkar, Jacob Simon, Brian Hopkinson, Steven Pennings

Responsive image

Auto-TLDR; CNN-based approaches to automated plant identification and localization in salt marsh images

Poster Similar

Recent advances in computer vision and machine learning, most notably deep convolutional neural networks (CNNs), are exploited to identify and localize various plant species in salt marsh images. Three different approaches are explored that provide estimations of abundance and spatial distribution at varying levels of granularity in terms of spatial resolution. In the coarsest-grained approach, CNNs are tasked with identifying which of six plant species are present/absent in large patches within the salt marsh images. CNNs with diverse topological properties and attention mechanisms are shown capable of providing accurate estimations with >90 % precision and recall in the case of the more abundant plant species whereas the performance declines for less common plant species. Estimation of percent cover of each plant species is performed at a finer spatial resolution, where smaller image patches are extracted and the CNNs tasked with identifying the plant species or substrate at the center of the image patch. For the percent cover estimation task, the CNNs are observed to exhibit a performance profile similar to that for the presence/absence estimation task, but with an ~ 5-10% reduction in precision and recall. Finally, fine-grained estimation of the spatial distribution of the various plant species is performed via semantic segmentation. The Deeplab-V3 semantic segmentation architecture is observed to provide very accurate estimations for abundant plant species; however,a significant degradation in performance is observed in the case of less abundant plant species and, in extreme cases, rare plant classes are seen to be ignored entirely. Overall, a clear trade-off is observed between the CNN estimation quality and the spatial resolution of the underlying estimation thereby offering guidance for ecological applications of CNN-based approaches to automated plant identification and localization in salt marsh images.

PIF: Anomaly detection via preference embedding

Filippo Leveni, Luca Magri, Giacomo Boracchi, Cesare Alippi

Responsive image

Auto-TLDR; PIF: Anomaly Detection with Preference Embedding for Structured Patterns

Slides Poster Similar

We address the problem of detecting anomalies with respect to structured patterns. To this end, we conceive a novel anomaly detection method called PIF, that combines the advantages of adaptive isolation methods with the flexibility of preference embedding. Specifically, we propose to embed the data in a high dimensional space where an efficient tree-based method, PI-FOREST, is employed to compute an anomaly score. Experiments on synthetic and real datasets demonstrate that PIF favorably compares with state-of-the-art anomaly detection techniques, and confirm that PI-FOREST is better at measuring arbitrary distances and isolate points in the preference space.

Point In: Counting Trees with Weakly Supervised Segmentation Network

Pinmo Tong, Shuhui Bu, Pengcheng Han

Responsive image

Auto-TLDR; Weakly Tree counting using Deep Segmentation Network with Localization and Mask Prediction

Slides Poster Similar

For tree counting tasks, since traditional image processing methods require expensive feature engineering and are not end-to-end frameworks, this will cause additional noise and cannot be optimized overall, so this method has not been widely used in recent trends of tree counting application. Recently, many deep learning based approaches are designed for this task because of the powerful feature extracting ability. The representative way is bounding box based supervised method, but time-consuming annotations are indispensable for them. Moreover, these methods are difficult to overcome the occlusion or overlap. To solve this problem, we propose a weakly tree counting network (WTCNet) based on deep segmentation network with only point supervision. It can simultaneously complete tree counting with localization and output mask of each tree at the same time. We first adopt a novel feature extractor network (FENet) to get features of input images, and then an effective strategy is introduced to deal with different mask predictions. In the end, we propose a basic localization guidance accompany with rectification guidance to train the network. We create two different datasets and select an existing challenging plant dataset to evaluate our method on three different tasks. Experimental results show the good performance improvement of our method compared with other existing methods. Further study shows that our method has great potential to reduce human labor and provide effective ground-truth masks and the results show the superiority of our method over the advanced methods.

Machine-Learned Regularization and Polygonization of Building Segmentation Masks

Stefano Zorzi, Ksenia Bittner, Friedrich Fraundorfer

Responsive image

Auto-TLDR; Automatic Regularization and Polygonization of Building Segmentation masks using Generative Adversarial Network

Slides Poster Similar

We propose a machine learning based approach for automatic regularization and polygonization of building segmentation masks. Taking an image as input, we first predict building segmentation maps exploiting generic fully convolutional network (FCN). A generative adversarial network (GAN) is then involved to perform a regularization of building boundaries to make them more realistic, i.e., having more rectilinear outlines which construct right angles if required. This is achieved through the interplay between the discriminator which gives a probability of input image being true and generator that learns from discriminator’s response to create more realistic images. Finally, we train the backbone convolutional neural network (CNN) which is adapted to predict sparse outcomes corresponding to building corners out of regularized building segmentation results. Experiments on three building segmentation datasets demonstrate that the proposed method is not only capable of obtaining accurate results, but also of producing visually pleasing building outlines parameterized as polygons.

A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes

Maximilian Söchting, Stefano Allegretti, Federico Bolelli, Costantino Grana

Responsive image

Auto-TLDR; Entropy Partitioning Decision Tree for Connected Components Labeling

Slides Poster Similar

Connected Components Labeling represents a fundamental step for many Computer Vision and Image Processing pipelines. Since the first appearance of the task in the sixties, many algorithmic solutions to optimize the computational load needed to label an image have been proposed. Among them, block-based scan approaches and decision trees revealed to be some of the most valuable strategies. However, due to the cost of the manual construction of optimal decision trees and the computational limitations of automatic strategies employed in the past, the application of blocks and decision trees has been restricted to small masks, and thus to 2D algorithms. With this paper we present a novel heuristic algorithm based on decision tree learning methodology, called Entropy Partitioning Decision Tree (EPDT). It allows to compute near-optimal decision trees for large scan masks. Experimental results demonstrate that algorithms based on the generated decision trees outperform state-of-the-art competitors.

Weakly Supervised Geodesic Segmentation of Egyptian Mummy CT Scans

Avik Hati, Matteo Bustreo, Diego Sona, Vittorio Murino, Alessio Del Bue

Responsive image

Auto-TLDR; A Weakly Supervised and Efficient Interactive Segmentation of Ancient Egyptian Mummies CT Scans Using Geodesic Distance Measure and GrabCut

Slides Poster Similar

In this paper, we tackle the task of automatically analyzing 3D volumetric scans obtained from computed tomography (CT) devices. In particular, we address a particular task for which data is very limited: the segmentation of ancient Egyptian mummies CT scans. We aim at digitally unwrapping the mummy and identify different segments such as body, bandages and jewelry. The problem is complex because of the lack of annotated data for the different semantic regions to segment, thus discouraging the use of strongly supervised approaches. We, therefore, propose a weakly supervised and efficient interactive segmentation method to solve this challenging problem. After segmenting the wrapped mummy from its exterior region using histogram analysis and template matching, we first design a voxel distance measure to find an approximate solution for the body and bandage segments. Here, we use geodesic distances since voxel features as well as spatial relationship among voxels is incorporated in this measure. Next, we refine the solution using a GrabCut based segmentation together with a tracking method on the slices of the scan that assigns labels to different regions in the volume, using limited supervision in the form of scribbles drawn by the user. The efficiency of the proposed method is demonstrated using visualizations and validated through quantitative measures and qualitative unwrapping of the mummy.

Approach for Document Detection by Contours and Contrasts

Daniil Tropin, Sergey Ilyuhin, Dmitry Nikolaev, Vladimir V. Arlazarov

Responsive image

Auto-TLDR; A countor-based method for arbitrary document detection on a mobile device

Slides Poster Similar

This paper considers the task of arbitrary document detection performed on a mobile device. The classical contour-based approach often mishandles cases with occlusion, complex background, or blur. Region-based approach, which relies on the contrast between object and background, does not have limitations, however its known implementations are highly resource-consuming. We propose a modification of a countor-based method, in which the competing hypotheses of the contour location are ranked according to the contrast between the areas inside and outside the border. In the performed experiments such modification leads to the 40% decrease of alternatives ordering errors and 10% decrease of the overall number of detection errors. We updated state-of-the-art performance on the open MIDV-500 dataset and demonstrated competitive results with the state-of-the-art on the SmartDoc dataset.

Robust Skeletonization for Plant Root Structure Reconstruction from MRI

Jannis Horn

Responsive image

Auto-TLDR; Structural reconstruction of plant roots from MRI using semantic root vs shoot segmentation and 3D skeletonization

Slides Poster Similar

Structural reconstruction of plant roots from MRI is challenging, because of low resolution and low signal-to-noise ratio of the 3D measurements which may lead to disconnectivities and wrongly connected roots. We propose a two-stage approach for this task. The first stage is based on semantic root vs. soil segmentation and finds lowest-cost paths from any root voxel to the shoot. The second stage takes the largest fully connected component generated in the first stage and uses 3D skeletonization to extract a graph structure. We evaluate our method on 22 MRI scans and compare to human expert reconstructions.

SIMCO: SIMilarity-Based Object COunting

Marco Godi, Christian Joppi, Andrea Giachetti, Marco Cristani

Responsive image

Auto-TLDR; SIMCO: An Unsupervised Multi-class Object Counting Approach on InShape

Slides Poster Similar

We present SIMCO, a completely agnostic multi-class object counting approach. SIMCO starts by detecting foreground objects through a novel Mask RCNN-based architecture trained beforehand (just once) on a brand-new synthetic 2D shape dataset, InShape; the idea is to highlight every object resembling a primitive 2D shape (circle, square, rectangle, etc.). Each object detected is described by a low-dimensional embedding, obtained from a novel similarity-based head branch; this latter implements a triplet loss, encouraging similar objects (same 2D shape + color and scale) to map close. Subsequently, SIMCO uses this embedding for clustering, so that different 'classes' of similar objects can emerge and be counted, making SIMCO the very first multi-class unsupervised counter. The only required assumption is that repeated objects are present in the image. Experiments show that SIMCO provides state-of-the-art scores on counting benchmarks and that it can also help in many challenging image understanding tasks.

One Step Clustering Based on A-Contrario Framework for Detection of Alterations in Historical Violins

Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, Marco Malagodi

Responsive image

Auto-TLDR; A-Contrario Clustering for the Detection of Altered Violins using UVIFL Images

Slides Poster Similar

Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of interventions necessary. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the ``Violins UVIFL imagery'' dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with the state of the art clustering methods shows improved overall precision and recall.

On Morphological Hierarchies for Image Sequences

Caglayan Tuna, Alain Giros, François Merciol, Sébastien Lefèvre

Responsive image

Auto-TLDR; Comparison of Hierarchies for Image Sequences

Slides Poster Similar

Morphological hierarchies form a popular framework aiming at emphasizing the multiscale structure of digital image by performing an unsupervised spatial partitioning of the data. These hierarchies have been recently extended to cope with image sequences, and different strategies have been proposed to allow their construction from spatio-temporal data. In this paper, we compare these hierarchical representation strategies for image sequences according to their structural properties. We introduce a projection method to make these representations comparable. Furthermore, we extend one of these recent strategies in order to obtain more efficient hierarchical representations for image sequences. Experiments were conducted on both synthetic and real datasets, the latter being made of satellite image time series. We show that building one hierarchy by using spatial and temporal information together is more efficient comparing to other existing strategies.

Distortion-Adaptive Grape Bunch Counting for Omnidirectional Images

Ryota Akai, Yuzuko Utsumi, Yuka Miwa, Masakazu Iwamura, Koichi Kise

Responsive image

Auto-TLDR; Object Counting for Omnidirectional Images Using Stereographic Projection

Poster Similar

This paper proposes the first object counting method for omnidirectional images. Because conventional object counting methods cannot handle the distortion of omnidirectional images, we propose to process them using stereographic projection, which enables conventional methods to obtain a good approximation of the density function. However, the images obtained by stereographic projection are still distorted. Hence, to manage this distortion, we propose two methods. One is a new data augmentation method designed for the stereographic projection of omnidirectional images. The other is a distortion-adaptive Gaussian kernel that generates a density map ground truth while taking into account the distortion of stereographic projection. Using the counting of grape bunches as a case study, we constructed an original grape-bunch image dataset consisting of omnidirectional images and conducted experiments to evaluate the proposed method. The results show that the proposed method performs better than a direct application of the conventional method, improving mean absolute error by 14.7% and mean squared error by 10.5%.

One-Stage Multi-Task Detector for 3D Cardiac MR Imaging

Weizeng Lu, Xi Jia, Wei Chen, Nicolò Savioli, Antonio De Marvao, Linlin Shen, Declan O'Regan, Jinming Duan

Responsive image

Auto-TLDR; Multi-task Learning for Real-Time, simultaneous landmark location and bounding box detection in 3D space

Slides Poster Similar

Fast and accurate landmark location and bounding box detection are important steps in 3D medical imaging. In this paper, we propose a novel multi-task learning framework, for real-time, simultaneous landmark location and bounding box detection in 3D space. Our method extends the famous single-shot multibox detector (SSD) from single-task learning to multi-task learning and from 2D to 3D. Furthermore, we propose a post-processing approach to refine the network landmark output, by averaging the candidate landmarks. Owing to these settings, the proposed framework is fast and accurate. For 3D cardiac magnetic resonance (MR) images with size 224 × 224 × 64, our framework runs about 128 volumes per second (VPS) on GPU and achieves 6.75mm average point-to-point distance error for landmark location, which outperforms both state-of-the-art and baseline methods. We also show that segmenting the 3D image cropped with the bounding box results in both improved performance and efficiency.

A Benchmark Dataset for Segmenting Liver, Vasculature and Lesions from Large-Scale Computed Tomography Data

Bo Wang, Zhengqing Xu, Wei Xu, Qingsen Yan, Liang Zhang, Zheng You

Responsive image

Auto-TLDR; The Biggest Treatment-Oriented Liver Cancer Dataset for Segmentation

Slides Poster Similar

How to build a high-performance liver-related computer assisted diagnosis system is an open question of great interest. However, the performance of the state-of-art algorithm is always limited by the amount of data and quality of the label. To address this problem, we propose the biggest treatment-oriented liver cancer dataset for liver surgery and treatment planning. This dataset provides 216 cases (totally about 268K frames) scanned images in contrast-enhanced computed tomography (CT). We labeled all the CT images with the liver, liver vasculature and liver tumor segmentation ground truth for train and tune segmentation algorithms in advance. Based on that, we evaluate several recent and state-of-the-art segmentation algorithms, including 7 deep learning methods, on CT sequences. All results are compared to reference segmentations five error metrics that highlight different aspects of segmentation accuracy. In general, compared with previous datasets, our dataset is really a challenging dataset. To our knowledge, the proposed dataset and benchmark allow for the first time systematic exploration of such issues, and will be made available to allow for further research in this field.

Content-Sensitive Superpixels Based on Adaptive Regrowth

Xiaopeng Li, Junlin Xiong

Responsive image

Auto-TLDR; Adaptive Regrowth for Content-Sensitive Superpixels

Slides Poster Similar

In this paper, we propose an efficient method to produce content-sensitive superpixels. Our method produces regular superpixels in relatively homogeneous regions and captures object boundaries in content-dense regions. Compared with the existing content-sensitive superpixel methods,a new adaptive regrowth strategy with an explicit boundary constraint is proposed.The boundary constraint limits the shapes and the sizes of superpixels to ensure semantic consistency. The adaptive regrowth strategy generates more superpixels to capture small objects in content-dense regions. Experiments on the BSDS500 benchmark show that our method outperforms the state-of-the-art superpixel methods in terms of content sensitivity and several standard evaluation metrics.

Siamese Fully Convolutional Tracker with Motion Correction

Mathew Francis, Prithwijit Guha

Responsive image

Auto-TLDR; A Siamese Ensemble for Visual Tracking with Appearance and Motion Components

Slides Poster Similar

Visual tracking algorithms use cues like appearance, structure, motion etc. for locating an object in a video. We propose an ensemble tracker with appearance and motion components. A siamese tracker that learns object appearance from a static image and motion vectors computed between consecutive frames with a flow network forms the ensemble. Motion predicted object localization is used to correct the appearance component in the ensemble. Complementary nature of the components bring performance improvement as observed in experiments performed on VOT2018 and VOT2019 datasets.

Walk the Lines: Object Contour Tracing CNN for Contour Completion of Ships

André Peter Kelm, Udo Zölzer

Responsive image

Auto-TLDR; Walk the Lines: A Convolutional Neural Network trained to follow object contours

Slides Poster Similar

We develop a new contour tracing algorithm to enhance the results of the latest object contour detectors. The goal is to achieve a perfectly closed, single-pixel wide and detailed object contour, since this type of contour could be analyzed using methods such as Fourier descriptors. Convolutional Neural Networks (CNNs) are rarely used for contour tracing, and we see great potential in using their capabilities for this task. Therefore we present the Walk the Lines (WtL) algorithm: A standard regression CNN trained to follow object contours. As initial step, we train the CNN only on ship contours, but the principle is applicable to other objects. Input data are the image and the associated object contour prediction of the recently published RefineContourNet (RCN). The WtL gets the center pixel coordinates, which defines an input section, plus an angle for rotating this section. Ideally, the center pixel moves on the contour, while the angle describes upcoming directional contour changes. The WtL predicts its steps pixelwise in a selfrouting way. To obtain a complete object contour the WtL runs in parallel at different image locations and the traces of its individual paths are summed. In contrast to the comparable Non-Maximum Suppression (NMS) method, our approach produces connected contours with finer details. Finally, the object contour is binarized under the condition of being closed. In case all procedures work as desired, excellent ship segmentations with high IoUs are produced, showing details such as antennas and ship superstructures that are easily omitted by other segmentation methods.

A Fine-Grained Dataset and Its Efficient Semantic Segmentation for Unstructured Driving Scenarios

Kai Andreas Metzger, Peter Mortimer, Hans J "Joe" Wuensche

Responsive image

Auto-TLDR; TAS500: A Semantic Segmentation Dataset for Autonomous Driving in Unstructured Environments

Slides Poster Similar

Research in autonomous driving for unstructured environments suffers from a lack of semantically labeled datasets compared to its urban counterpart. Urban and unstructured outdoor environments are challenging due to the varying lighting and weather conditions during a day and across seasons. In this paper, we introduce TAS500, a novel semantic segmentation dataset for autonomous driving in unstructured environments. TAS500 offers fine-grained vegetation and terrain classes to learn drivable surfaces and natural obstacles in outdoor scenes effectively. We evaluate the performance of modern semantic segmentation models with an additional focus on their efficiency. Our experiments demonstrate the advantages of fine-grained semantic classes to improve the overall prediction accuracy, especially along the class boundaries. The dataset, code, and pretrained model are available online.

Multiple Future Prediction Leveraging Synthetic Trajectories

Lorenzo Berlincioni, Federico Becattini, Lorenzo Seidenari, Alberto Del Bimbo

Responsive image

Auto-TLDR; Synthetic Trajectory Prediction using Markov Chains

Slides Poster Similar

Trajectory prediction is an important task, especially in autonomous driving. The ability to forecast the position of other moving agents can yield to an effective planning, ensuring safety for the autonomous vehicle as well for the observed entities. In this work we propose a data driven approach based on Markov Chains to generate synthetic trajectories, which are useful for training a multiple future trajectory predictor. The advantages are twofold: on the one hand synthetic samples can be used to augment existing datasets and train more effective predictors; on the other hand, it allows to generate samples with multiple ground truths, corresponding to diverse equally likely outcomes of the observed trajectory. We define a trajectory prediction model and a loss that explicitly address the multimodality of the problem and we show that combining synthetic and real data leads to prediction improvements, obtaining state of the art results.

Directed Variational Cross-encoder Network for Few-Shot Multi-image Co-segmentation

Sayan Banerjee, Divakar Bhat S, Subhasis Chaudhuri, Rajbabu Velmurugan

Responsive image

Auto-TLDR; Directed Variational Inference Cross Encoder for Class Agnostic Co-Segmentation of Multiple Images

Slides Poster Similar

In this paper, we propose a novel framework for class agnostic co-segmentation of multiple images using comparatively smaller datasets. We have developed a novel encoder-decoder network termed as DVICE (Directed Variational Inference Cross Encoder), which learns a continuous embedding space to ensure better similarity learning. We employ a combination of the proposed variational encoder-decoder and a novel few-shot learning approach to tackle the small sample size problem in co-segmentation. Furthermore, the proposed framework does not use any semantic class labels and is entirely class agnostic. Through exhaustive experimentation using a small volume of data over multiple datasets, we have demonstrated that our approach outperforms all existing state-of-the-art techniques.

Multi-Scale Keypoint Matching

Sina Lotfian, Hassan Foroosh

Responsive image

Auto-TLDR; Multi-Scale Keypoint Matching Using Multi-Scale Information

Slides Poster Similar

We propose a new hierarchical method to match keypoints by exploiting information across multiple scales. Traditionally, for each keypoint a single scale is detected and the matching process is done in the specific scale. We replace this approach with matching across scale-space. The holistic information from higher scales are used for early rejection of candidates that are far away in the feature space. The more localized and finer details of lower scale are then used to decide between remaining possible points. The proposed multi-scale solution is more consistent with the multi-scale processing that is present in the human visual system and is therefore biologically plausible. We evaluate our method on several datasets and achieve state of the art accuracy, while significantly outperforming others in extraction time.

3D Semantic Labeling of Photogrammetry Meshes Based on Active Learning

Mengqi Rong, Shuhan Shen, Zhanyi Hu

Responsive image

Auto-TLDR; 3D Semantic Expression of Urban Scenes Based on Active Learning

Slides Poster Similar

As different urban scenes are similar but still not completely consistent, coupled with the complexity of labeling directly in 3D, high-level understanding of 3D scenes has always been a tricky problem. In this paper, we propose a procedural approach for 3D semantic expression of urban scenes based on active learning. We first start with a small labeled image set to fine-tune a semantic segmentation network and then project its probability map onto a 3D mesh model for fusion, finally outputs a 3D semantic mesh model in which each facet has a semantic label and a heat model showing each facet’s confidence. Our key observation is that our algorithm is iterative, in each iteration, we use the output semantic model as a supervision to select several valuable images for annotation to co-participate in the fine-tuning for overall improvement. In this way, we reduce the workload of labeling but not the quality of 3D semantic model. Using urban areas from two different cities, we show the potential of our method and demonstrate its effectiveness.

CASNet: Common Attribute Support Network for Image Instance and Panoptic Segmentation

Xiaolong Liu, Yuqing Hou, Anbang Yao, Yurong Chen, Keqiang Li

Responsive image

Auto-TLDR; Common Attribute Support Network for instance segmentation and panoptic segmentation

Slides Poster Similar

Instance segmentation and panoptic segmentation is being paid more and more attention in recent years. In comparison with bounding box based object detection and semantic segmentation, instance segmentation can provide more analytical results at pixel level. Given the insight that pixels belonging to one instance have one or more common attributes of current instance, we bring up an one-stage instance segmentation network named Common Attribute Support Network (CASNet), which realizes instance segmentation by predicting and clustering common attributes. CASNet is designed in the manner of fully convolutional and can implement training and inference from end to end. And CASNet manages predicting the instance without overlaps and holes, which problem exists in most of current instance segmentation algorithms. Furthermore, it can be easily extended to panoptic segmentation through minor modifications with little computation overhead. CASNet builds a bridge between semantic and instance segmentation from finding pixel class ID to obtaining class and instance ID by operations on common attribute. Through experiment for instance and panoptic segmentation, CASNet gets mAP 32.8\% and PQ 59.0\% on Cityscapes validation dataset by joint training, and mAP 36.3\% and PQ 66.1\% by separated training mode. For panoptic segmentation, CASNet gets state-of-the-art performance on the Cityscapes validation dataset.

Attention Based Coupled Framework for Road and Pothole Segmentation

Shaik Masihullah, Ritu Garg, Prerana Mukherjee, Anupama Ray

Responsive image

Auto-TLDR; Few Shot Learning for Road and Pothole Segmentation on KITTI and IDD

Slides Poster Similar

In this paper, we propose a novel attention based coupled framework for road and pothole segmentation. In many developing countries as well as in rural areas, the drivable areas are neither well-defined, nor well-maintained. Under such circumstances, an Advance Driver Assistant System (ADAS) is needed to assess the drivable area and alert about the potholes ahead to ensure vehicle safety. Moreover, this information can also be used in structured environments for assessment and maintenance of road health. We demonstrate few shot learning approach for pothole detection to leverage accuracy even with fewer training samples. We report the exhaustive experimental results for road segmentation on KITTI and IDD datasets. We also present pothole segmentation on IDD.

End-To-End Multi-Task Learning for Lung Nodule Segmentation and Diagnosis

Wei Chen, Qiuli Wang, Dan Yang, Xiaohong Zhang, Chen Liu, Yucong Li

Responsive image

Auto-TLDR; A novel multi-task framework for lung nodule diagnosis based on deep learning and medical features

Slides Similar

Computer-Aided Diagnosis (CAD) systems for lung nodule diagnosis based on deep learning have attracted much attention in recent years. However, most existing methods ignore the relationships between the segmentation and classification tasks, which leads to unstable performances. To address this problem, we propose a novel multi-task framework, which can provide lung nodule segmentation mask, malignancy prediction, and medical features for interpretable diagnosis at the same time. Our framework mainly contains two sub-network: (1) Multi-Channel Segmentation Sub-network (MSN) for lung nodule segmentation, and (2) Joint Classification Sub-network (JCN) for interpretable lung nodule diagnosis. In the proposed framework, we use U-Net down-sampling processes for extracting low-level deep learning features, which are shared by two sub-networks. The JCN forces the down-sampling processes to learn better lowlevel deep features, which lead to a better construct of segmentation masks. Meanwhile, two additional channels constructed by OTSU and super-pixel (SLIC) methods, are utilized as the guideline of the feature extraction. The proposed framework takes advantages of deep learning methods and classical methods, which can significantly improve the performances of all tasks. We evaluate the proposed framework on public dataset LIDCIDRI. Our framework achieves a promising Dice score of 86.43% in segmentation, 87.07% in malignancy level prediction, and convincing results in interpretable medical feature predictions.

Feature Embedding Based Text Instance Grouping for Largely Spaced and Occluded Text Detection

Pan Gao, Qi Wan, Renwu Gao, Linlin Shen

Responsive image

Auto-TLDR; Text Instance Embedding Based Feature Embeddings for Multiple Text Instance Grouping

Slides Poster Similar

A text instance can be easily detected as multiple ones due to the large space between texts/characters, curved shape and partial occlusion. In this paper, a feature embedding based text instance grouping algorithm is proposed to solve this problem. To learn the feature space, a TIEM (Text Instance Embedding Module) is trained to minimize the within instance scatter and maximize the between instance scatter. Similarity between different text instances are measured in the feature space and merged if they meet certain conditions. Experimental results show that our approach can effectively connect text regions that belong to the same text instance. Competitive performance of our approach has been achieved on CTW1500, Total-Text, IC15 and a subset consists of texts selected from the three datasets, with large spacing and occlusions.

Partially Supervised Multi-Task Network for Single-View Dietary Assessment

Ya Lu, Thomai Stathopoulou, Stavroula Mougiakakou

Responsive image

Auto-TLDR; Food Volume Estimation from a Single Food Image via Geometric Understanding and Semantic Prediction

Slides Poster Similar

Food volume estimation is an essential step in the pipeline of dietary assessment and demands the precise depth estimation of the food surface and table plane. Existing methods based on computer vision require either multi-image input or additional depth maps, reducing convenience of implementation and practical significance. Despite the recent advances in unsupervised depth estimation from a single image, the achieved performance in the case of large texture-less areas needs to be improved. In this paper, we propose a network architecture that jointly performs geometric understanding (i.e., depth prediction and 3D plane estimation) and semantic prediction on a single food image, enabling a robust and accurate food volume estimation regardless of the texture characteristics of the target plane. For the training of the network, only monocular videos with semantic ground truth are required, while the depth map and 3D plane ground truth are no longer needed. Experimental results on two separate food image databases demonstrate that our method performs robustly on texture-less scenarios and is superior to unsupervised networks and structure from motion based approaches, while it achieves comparable performance to fully-supervised methods.

Making Every Label Count: Handling Semantic Imprecision by Integrating Domain Knowledge

Clemens-Alexander Brust, Björn Barz, Joachim Denzler

Responsive image

Auto-TLDR; Class Hierarchies for Imprecise Label Learning and Annotation eXtrapolation

Slides Poster Similar

Noisy data, crawled from the web or supplied by volunteers such as Mechanical Turkers or citizen scientists, is considered an alternative to professionally labeled data. There has been research focused on mitigating the effects of label noise. It is typically modeled as inaccuracy, where the correct label is replaced by an incorrect label from the same set. We consider an additional dimension of label noise: imprecision. For example, a non-breeding snow bunting is labeled as a bird. This label is correct, but not as precise as the task requires. Standard softmax classifiers cannot learn from such a weak label because they consider all classes mutually exclusive, which non-breeding snow bunting and bird are not. We propose CHILLAX (Class Hierarchies for Imprecise Label Learning and Annotation eXtrapolation), a method based on hierarchical classification, to fully utilize labels of any precision. Experiments on noisy variants of NABirds and ILSVRC2012 show that our method outperforms strong baselines by as much as 16.4 percentage points, and the current state of the art by up to 3.9 percentage points.

Recovery of 2D and 3D Layout Information through an Advanced Image Stitching Algorithm Using Scanning Electron Microscope Images

Aayush Singla, Bernhard Lippmann, Helmut Graeb

Responsive image

Auto-TLDR; Image Stitching for True Geometrical Layout Recovery in Nanoscale Dimension

Slides Poster Similar

Image stitching describes the process of reconstruction of a high resolution image from combining multiple images. Using a scanning electron microscope as the image source, individual images will show patterns in a nm dimension whereas the combined image may cover an area of several mm2. The recovery of the physical layout of modern semiconductor products manufactured in advanced technologies nodes down to 22 nm requires a perfect stitching process with no deviation with respect to the original design data, as any stitching error will result in failures during the reconstruction of the electrical design. In addition, the recovery of the complete design requires the acquisition of all individual layers of a semiconductor device which represent a 3D structure with interconnections defining error limits on the stitching error for each individual scanned image mosaic. An advanced stitching and alignment process is presented enabling a true geometrical layout recovery in nanoscale dimensions which is also applied and evaluated on other use cases from biological applications.

Quantization in Relative Gradient Angle Domain for Building Polygon Estimation

Yuhao Chen, Yifan Wu, Linlin Xu, Alexander Wong

Responsive image

Auto-TLDR; Relative Gradient Angle Transform for Building Footprint Extraction from Remote Sensing Data

Slides Poster Similar

Building footprint extraction in remote sensing data benefits many important applications, such as urban planning and population estimation. Recently, rapid development of Convolutional Neural Networks (CNNs) and open-sourced high resolution satellite building image datasets have pushed the performance boundary further for automated building extractions. However, CNN approaches often generate imprecise building morphologies including noisy edges and round corners. In this paper, we leverage the performance of CNNs, and propose a module that uses prior knowledge of building corners to create angular and concise building polygons from CNN segmentation outputs. We describe a new transform, Relative Gradient Angle Transform (RGA Transform) that converts object contours from time vs. space to time vs. angle. We propose a new shape descriptor, Boundary Orientation Relation Set (BORS), to describe angle relationship between edges in RGA domain, such as orthogonality and parallelism. Finally, we develop an energy minimization framework that makes use of the angle relationship in BORS to straighten edges and reconstruct sharp corners, and the resulting corners create a polygon. Experimental results demonstrate that our method refines CNN output from a rounded approximation to a more clear-cut angular shape of the building footprint.

Object Segmentation Tracking from Generic Video Cues

Amirhossein Kardoost, Sabine Müller, Joachim Weickert, Margret Keuper

Responsive image

Auto-TLDR; A Light-Weight Variational Framework for Video Object Segmentation in Videos

Slides Poster Similar

We propose a light-weight variational framework for online tracking of object segmentations in videos based on optical flow and image boundaries. While high-end computer vision methods on this task rely on sequence specific training of dedicated CNN architectures, we show the potential of a variational model, based on generic video information from motion and color. Such cues are usually required for tasks such as robot navigation or grasp estimation. We leverage them directly for video object segmentation and thus provide accurate segmentations at potentially very low extra cost. Our simple method can provide competitive results compared to the costly CNN-based methods with parameter tuning. Furthermore, we show that our approach can be combined with state-of-the-art CNN-based segmentations in order to improve over their respective results. We evaluate our method on the datasets DAVIS 16,17 and SegTrack v2.

Story Comparison for Estimating Field of View Overlap in a Video Collection

Thierry Malon, Sylvie Chambon, Alain Crouzil, Vincent Charvillat

Responsive image

Auto-TLDR; Finding Videos with Overlapping Fields of View Using Video Data

Slides Similar

Determining the links between large amounts of video data with no prior knowledge of the camera positions is a hard task to automate. From a collection of videos acquired from static cameras simultaneously, we propose a method for finding groups of videos with overlapping fields of view. Each video is first processed individually: at regular time steps, objects are detected and are assigned a category and an appearance descriptor. Next, the video is split into cells at different resolutions and we assign to each cell its story: it consists of the list of objects detected in the cell over time. Once the stories are established for each video, the links between cells of different videos are determined by comparing their stories: two cells are linked if they show simultaneous detections of objects of the same category with similar appearances. Pairs of videos with overlapping fields of view are identified using these links between cells. A link graph is finally returned, in which each node represents a video, and the edges indicate pairs of overlapping videos. The approach is evaluated on a set of 63 real videos from both public datasets and live surveillance videos, as well as on 84 synthetic videos, and shows promising results.

Map-Based Temporally Consistent Geolocalization through Learning Motion Trajectories

Bing Zha, Alper Yilmaz

Responsive image

Auto-TLDR; Exploiting Motion Trajectories for Geolocalization of Object on Topological Map using Recurrent Neural Network

Slides Poster Similar

In this paper, we propose a novel trajectory learning method that exploits motion trajectories on topological map using recurrent neural network for temporally consistent geolocalization of object. Inspired by human's ability to both be aware of distance and direction of self-motion in navigation, our trajectory learning method learns a pattern representation of trajectories encoded as a sequence of distances and turning angles to assist self-localization. We pose the learning process as a conditional sequence prediction problem in which each output locates the object on a traversable edge in a map. Considering the prediction sequence ought to be topologically connected in the graph-structured map, we adopt two different hypotheses generation and elimination strategies to eliminate disconnected sequence prediction. We demonstrate our approach on the KITTI stereo visual odometry dataset which is a city-scale environment. The key benefits of our approach to geolocalization are that 1) we take advantage of powerful sequence modeling ability of recurrent neural network and its robustness to noisy input, 2) only require a map in the form of a graph and 3) simply use an affordable sensor that generates motion trajectory. The experiments show that the motion trajectories can be learned by training an recurrent neural network, and temporally consistent geolocation can be predicted with both of the proposed strategies.

Generic Document Image Dewarping by Probabilistic Discretization of Vanishing Points

Gilles Simon, Salvatore Tabbone

Responsive image

Auto-TLDR; Robust Document Dewarping using vanishing points

Slides Poster Similar

Document images dewarping is still a challenge especially when documents are captured with one camera in an uncontrolled environment. In this paper we propose a generic approach based on vanishing points (VP) to reconstruct the 3D shape of document pages. Unlike previous methods we do not need to segment the text included in the documents. Therefore, our approach is less sensitive to pre-processing and segmentation errors. The computation of the VPs is robust and relies on the a-contrario framework, which has only one parameter whose setting is based on probabilistic reasoning instead of experimental tuning. Thus, our method can be applied to any kind of document including text and non-text blocks and extended to other kind of images. Experimental results show that the proposed method is robust to a variety of distortions.

SynDHN: Multi-Object Fish Tracker Trained on Synthetic Underwater Videos

Mygel Andrei Martija, Prospero Naval

Responsive image

Auto-TLDR; Underwater Multi-Object Tracking in the Wild with Deep Hungarian Network

Slides Poster Similar

In this paper, we seek to extend multi-object tracking research on a relatively less explored domain, that of, underwater multi-object tracking in the wild. Multi-object fish tracking is an important task because it can provide fish monitoring systems with richer information (e.g. multiple views of the same fish) as compared to detections and it can be an invaluable input to fish behavior analysis. However, there is a lack of an annotated benchmark dataset with enough samples for this task. To circumvent the need for manual ground truth tracking annotation, we craft a synthetic dataset. Using this synthetic dataset, we train an integrated detector and tracker called SynDHN. SynDHN uses the Deep Hungarian Network (DHN), which is a differentiable approximation of the Hungarian assignment algorithm. We repurpose DHN to become the tracking component of our algorithm by performing the task of affinity estimation between detector predictions. We consider both spatial and appearance features for affinity estimation. Our results show that despite being trained on a synthetic dataset, SynDHN generalizes well to real underwater video tracking and performs better against our baseline algorithms.

Motion Segmentation with Pairwise Matches and Unknown Number of Motions

Federica Arrigoni, Tomas Pajdla, Luca Magri

Responsive image

Auto-TLDR; Motion Segmentation using Multi-Modelfitting andpermutation synchronization

Slides Poster Similar

In this paper we address motion segmentation, that is the problem of clustering points in multiple images according to a number of moving objects. Two-frame correspondences are assumed as input without prior knowledge about trajectories. Our method is based on principles from ''multi-model fitting'' and ''permutation synchronization'', and - differently from previous techniques working under the same assumptions - it can handle an unknown number of motions. The proposed approach is validated on standard datasets, showing that it can correctly estimate the number of motions while maintaining comparable or better accuracy than the state of the art.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

A Novel Random Forest Dissimilarity Measure for Multi-View Learning

Hongliu Cao, Simon Bernard, Robert Sabourin, Laurent Heutte

Responsive image

Auto-TLDR; Multi-view Learning with Random Forest Relation Measure and Instance Hardness

Slides Poster Similar

Multi-view learning is a learning task in which data is described by several concurrent representations. Its main challenge is most often to exploit the complementarities between these representations to help solve a classification/regression task. This is a challenge that can be met nowadays if there is a large amount of data available for learning. However, this is not necessarily true for all real-world problems, where data are sometimes scarce (e.g. problems related to the medical environment). In these situations, an effective strategy is to use intermediate representations based on the dissimilarities between instances. This work presents new ways of constructing these dissimilarity representations, learning them from data with Random Forest classifiers. More precisely, two methods are proposed, which modify the Random Forest proximity measure, to adapt it to the context of High Dimension Low Sample Size (HDLSS) multi-view classification problems. The second method, based on an Instance Hardness measurement, is significantly more accurate than other state-of-the-art measurements including the original RF Proximity measurement and the Large Margin Nearest Neighbor (LMNN) metric learning measurement.

Unconstrained Vision Guided UAV Based Safe Helicopter Landing

Arindam Sikdar, Abhimanyu Sahu, Debajit Sen, Rohit Mahajan, Ananda Chowdhury

Responsive image

Auto-TLDR; Autonomous Helicopter Landing in Hazardous Environments from Unmanned Aerial Images Using Constrained Graph Clustering

Slides Poster Similar

In this paper, we have addressed the problem of automated detection of safe zone(s) for helicopter landing in hazardous environments from images captured by an Unmanned Aerial Vehicle (UAV). The unconstrained motion of the image capturing drone (the UAV in our case) makes the problem further difficult. The solution pipeline consists of natural landmark detection and tracking, stereo-pair generation using constrained graph clustering, digital terrain map construction and safe landing zone detection. The main methodological contribution lies in mathematically formulating epipolar constraint and then using it in a Minimum Spanning Tree (MST) based graph clustering approach. We have also made publicly available AHL (Autonomous Helicopter Landing) dataset, a new aerial video dataset captured by a drone, with annotated ground-truths. Experimental comparisons with other competing clustering methods i) in terms of Dunn Index and Davies Bouldin Index as well as ii) for frame-level safe zone detection in terms of F-measure and confusion matrix clearly demonstrate the effectiveness of the proposed formulation.

Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches

Kalun Ho, Janis Keuper, Franz-Josef Pfreundt, Margret Keuper

Responsive image

Auto-TLDR; Clustering Objectives for K-means and Correlation Clustering Using Triplet Loss

Slides Poster Similar

In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset.

ID Documents Matching and Localization with Multi-Hypothesis Constraints

Guillaume Chiron, Nabil Ghanmi, Ahmad Montaser Awal

Responsive image

Auto-TLDR; Identity Document Localization in the Wild Using Multi-hypothesis Exploration

Slides Poster Similar

This paper presents an approach for spotting and accurately localizing identity documents in the wild. Contrary to blind solutions that often rely on borders and corners detection, the proposed approach requires a classification a priori along with a list of predefined models. The matching and accurate localization are performed using specific ID document features. This process is especially difficult due to the intrinsic variable nature of ID models (text fields, multi-pass printing with offset, unstable layouts, added artifacts, blinking security elements, non-rigid materials). We tackle the problem by putting different combinations of features in competition within a multi-hypothesis exploration where only the best document quadrilateral candidate is retained thanks to a custom visual similarity metric. The idea is to find, in a given context, at least one feature able to correctly crop the document. The proposed solution has been tested and has shown its benefits on both the MIDV-500 academic dataset and an industrial one supposedly more representative of a real-life application.

Light3DPose: Real-Time Multi-Person 3D Pose Estimation from Multiple Views

Alessio Elmi, Davide Mazzini, Pietro Tortella

Responsive image

Auto-TLDR; 3D Pose Estimation of Multiple People from a Few calibrated Camera Views using Deep Learning

Slides Poster Similar

We present an approach to perform 3D pose estimation of multiple people from a few calibrated camera views. Our architecture, leveraging the recently proposed unprojection layer, aggregates feature-maps from a 2D pose estimator backbone into a comprehensive representation of the 3D scene. Such intermediate representation is then elaborated by a fully-convolutional volumetric network and a decoding stage to extract 3D skeletons with sub-voxel accuracy. Our method achieves state of the art MPJPE on the CMU Panoptic dataset using a few unseen views and obtains competitive results even with a single input view. We also assess the transfer learning capabilities of the model by testing it against the publicly available Shelf dataset obtaining good performance metrics. The proposed method is inherently efficient: as a pure bottom-up approach, it is computationally independent of the number of people in the scene. Furthermore, even though the computational burden of the 2D part scales linearly with the number of input views, the overall architecture is able to exploit a very lightweight 2D backbone which is orders of magnitude faster than the volumetric counterpart, resulting in fast inference time. The system can run at 6 FPS, processing up to 10 camera views on a single 1080Ti GPU.

Hierarchical Mixtures of Generators for Adversarial Learning

Alper Ahmetoğlu, Ethem Alpaydin

Responsive image

Auto-TLDR; Hierarchical Mixture of Generative Adversarial Networks

Slides Similar

Generative adversarial networks (GANs) are deep neural networks that allow us to sample from an arbitrary probability distribution without explicitly estimating the distri- bution. There is a generator that takes a latent vector as input and transforms it into a valid sample from the distribution. There is also a discriminator that is trained to discriminate such fake samples from true samples of the distribution; at the same time, the generator is trained to generate fakes that the discriminator cannot tell apart from the true samples. Instead of learning a global generator, a recent approach involves training multiple generators each responsible from one part of the distribution. In this work, we review such approaches and propose the hierarchical mixture of generators, inspired from the hierarchical mixture of experts model, that learns a tree structure implementing a hierarchical clustering with soft splits in the decision nodes and local generators in the leaves. Since the generators are combined softly, the whole model is continuous and can be trained using gradient-based optimization, just like the original GAN model. Our experiments on five image data sets, namely, MNIST, FashionMNIST, UTZap50K, Oxford Flowers, and CelebA, show that our proposed model generates samples of high quality and diversity in terms of popular GAN evaluation metrics. The learned hierarchical structure also leads to knowledge extraction.

Automatic Semantic Segmentation of Structural Elements related to the Spinal Cord in the Lumbar Region by Using Convolutional Neural Networks

Jhon Jairo Sáenz Gamboa, Maria De La Iglesia-Vaya, Jon Ander Gómez

Responsive image

Auto-TLDR; Semantic Segmentation of Lumbar Spine Using Convolutional Neural Networks

Slides Poster Similar

This work addresses the problem of automatically segmenting the MR images corresponding to the lumbar spine. The purpose is to detect and delimit the different structural elements like vertebrae, intervertebral discs, nerves, blood vessels, etc. This task is known as semantic segmentation. The approach proposed in this work is based on convolutional neural networks whose output is a mask where each pixel from the input image is classified into one of the possible classes. Classes were defined by radiologists and correspond to structural elements and tissues. The proposed network architectures are variants of the U-Net. Several complementary blocks were used to define the variants: spatial attention models, deep supervision and multi-kernels at input, this last block type is based on the idea of inception. Those architectures which got the best results are described in this paper, and their results are discussed. Two of the proposed architectures outperform the standard U-Net used as baseline.

Weight Estimation from an RGB-D Camera in Top-View Configuration

Marco Mameli, Marina Paolanti, Nicola Conci, Filippo Tessaro, Emanuele Frontoni, Primo Zingaretti

Responsive image

Auto-TLDR; Top-View Weight Estimation using Deep Neural Networks

Slides Poster Similar

The development of so-called soft-biometrics aims at providing information related to the physical and behavioural characteristics of a person. This paper focuses on bodyweight estimation based on the observation from a top-view RGB-D camera. In fact, the capability to estimate the weight of a person can be of help in many different applications, from health-related scenarios to business intelligence and retail analytics. To deal with this issue, a TVWE (Top-View Weight Estimation) framework is proposed with the aim of predicting the weight. The approach relies on the adoption of Deep Neural Networks (DNNs) that have been trained on depth data. Each network has also been modified in its top section to replace classification with prediction inference. The performance of five state-of-art DNNs has been compared, namely VGG16, ResNet, Inception, DenseNet and Efficient-Net. In addition, a convolutional auto-encoder has also been included for completeness. Considering the limited literature in this domain, the TVWE framework has been evaluated on a new publicly available dataset: “VRAI Weight estimation Dataset”, which also collects, for each subject, labels related to weight, gender, and height. The experimental results have demonstrated that the proposed methods are suitable for this task, bringing different and significant insights for the application of the solution in different domains.