Combined Invariants to Gaussian Blur and Affine Transformation

Jitka Kostkova, Jan Flusser, Matteo Pedone

Responsive image

Auto-TLDR; A new theory of combined moment invariants to Gaussian blur and spatial affine transformation

Slides Poster

The paper presents a new theory of combined moment invariants to Gaussian blur and spatial affine transformation. The blur kernel may be arbitrary oriented, scaled and elongated. No prior information about the kernel parameters and about the underlaying affine transform is required. The main idea, expressed by the Substitution Theorem, is to substitute pure blur invariants into traditional affine moment invariants. Potential applications of the new descriptors are in blur-invariant image recognition and in robust template matching.

Similar papers

Understanding When Spatial Transformer Networks Do Not Support Invariance, and What to Do about It

Lukas Finnveden, Ylva Jansson, Tony Lindeberg

Responsive image

Auto-TLDR; Spatial Transformer Networks are unable to support invariance when transforming CNN feature maps

Slides Poster Similar

Spatial transformer networks (STNs) were designed to enable convolutional neural networks (CNNs) to learn invariance to image transformations. STNs were originally proposed to transform CNN feature maps as well as input images. This enables the use of more complex features when predicting transformation parameters. However, since STNs perform a purely spatial transformation, they do not, in the general case, have the ability to align the feature maps of a transformed image with those of its original. STNs are therefore unable to support invariance when transforming CNN feature maps. We present a simple proof for this and study the practical implications, showing that this inability is coupled with decreased classification accuracy. We therefore investigate alternative STN architectures that make use of complex features. We find that while deeper localization networks are difficult to train, localization networks that share parameters with the classification network remain stable as they grow deeper, which allows for higher classification accuracy on difficult datasets. Finally, we explore the interaction between localization network complexity and iterative image alignment.

DCT/IDCT Filter Design for Ultrasound Image Filtering

Barmak Honarvar Shakibaei Asli, Jan Flusser, Yifan Zhao, John Ahmet Erkoyuncu, Rajkumar Roy

Responsive image

Auto-TLDR; Finite impulse response digital filter using DCT-II and inverse DCT

Slides Poster Similar

In this paper, a new recursive structure based on the convolution model of discrete cosine transform (DCT) for designing of a finite impulse response (FIR) digital filter is proposed. In our derivation, we start with the convolution model of DCT-II to use its Z-transform for the proposed filter structure perspective. Moreover, using the same algorithm, a filter base implementation of the inverse DCT (IDCT) for image reconstruction is developed. The computational time experiments of the proposed DCT/IDCT filter(s) demonstrate that the proposed filters achieve faster elapsed CPU time compared to the others. The image filtering and reconstruction performance of the proposed approach on ultrasound images are presented to validate the theoretical framework.

Exploring the Ability of CNNs to Generalise to Previously Unseen Scales Over Wide Scale Ranges

Ylva Jansson, Tony Lindeberg

Responsive image

Auto-TLDR; A theoretical analysis of invariance and covariance properties of scale channel networks

Slides Poster Similar

The ability to handle large scale variations is crucial for many real world visual tasks. A straightforward approach to handling scale in a deep neural network is to process multiple rescaled image copies in a set of scale channels (subnetworks). Scale invariance can then, in principle, be achieved by using weight sharing between the scale channels together with max or average pooling over the outputs from the scale channels. The ability of such scale channel networks to generalise to scales not present in the training set over significant scale ranges has, however, not previously been explored. We, therefore, present a theoretical analysis of invariance and covariance properties of scale channel networks and perform an experimental evaluation of the ability of different types of scale channel networks to generalise to previously unseen scales. We identify limitations of previous approaches and propose a new type of foveated scale channel architecture, where the scale channels process increasingly larger parts of the image with decreasing resolution. Our proposed FovMax and FovAvg networks perform almost identically over a scale range of 8 also when training on single scale training data and give improvements in the small sample regime.

A Globally Optimal Method for the PnP Problem with MRP Rotation Parameterization

Manolis Lourakis, George Terzakis

Responsive image

Auto-TLDR; A Direct least squares, algebraic PnP solver with modified Rodrigues parameters

Poster Similar

The perspective-n-point (PnP) problem is of fundamental importance in computer vision. A global optimality condition for PnP that is independent of a particular rotation parameterization was recently developed by Nakano. This paper puts forward a direct least squares, algebraic PnP solution that extends Nakano's work by combining his optimality condition with the modified Rodrigues parameters (MRPs) for parameterizing rotation. The result is a system of polynomials that is solved using the Groebner basis approach. An MRP vector has twice the rotational range of the classical Rodrigues (i.e., Cayley) vector used by Nakano to represent rotation. The proposed solver provides strong guarantees that the full rotation singularity associated with MRPs is avoided. Furthermore, detailed experiments provide evidence that our solver attains accuracy that is indistinguishable from Nakano's Cayley-based solution with a moderate increase in computational cost.

Fast Blending of Planar Shapes Based on Invariant Invertible and Stable Descriptors

Emna Ghorbel, Faouzi Ghorbel, Ines Sakly, Slim Mhiri

Responsive image

Auto-TLDR; Fined-Fourier-based Invariant Descriptor for Planar Shape Blending

Slides Poster Similar

In this paper, a novel method for blending planar shapes is introduced. This approach is based on the Fined-Fourier-based Invariant Descriptor (Fined-FID) that is invertible, invariant under Euclidean transformations and stable. Our approach extracts the Fined-FID from the two shapes of interest (the source and the target ones). Then, the extracted descriptors are averaged enabling the calculation of intermediate descriptors. Finally, thanks to the inversion criterion, the intermediate shapes are easily recovered by applying the inverse analytical expression to these intermediate descriptors. Compared to previous works, the Fined-FID-based morphing avoid the usual registration step, generates naturally closed intermediate contours and ensure invariance under Euclidean transformations and invariance to the starting point, while being computationally efficient (almost-linear complexity). The performed experiments show the performance of the proposed blending approach with respect to curvature-based methods.

Chebyshev-Harmonic-Fourier-Moments and Deep CNNs for Detecting Forged Handwriting

Lokesh Nandanwar, Shivakumara Palaiahnakote, Kundu Sayani, Umapada Pal, Tong Lu, Daniel Lopresti

Responsive image

Auto-TLDR; Chebyshev-Harmonic-Fourier-Moments and Deep Convolutional Neural Networks for forged handwriting detection

Slides Poster Similar

Recently developed sophisticated image processing techniques and tools have made easier the creation of high-quality forgeries of handwritten documents including financial and property records. To detect such forgeries of handwritten documents, this paper presents a new method by exploring the combination of Chebyshev-Harmonic-Fourier-Moments (CHFM) and deep Convolutional Neural Networks (D-CNNs). Unlike existing methods work based on abrupt changes due to distortion created by forgery operation, the proposed method works based on inconsistencies and irregular changes created by forgery operations. Inspired by the special properties of CHFM, such as its reconstruction ability by removing redundant information, the proposed method explores CHFM to obtain reconstructed images for the color components of the Original, Forged Noisy and Blurred classes. Motivated by the strong discriminative power of deep CNNs, for the reconstructed images of respective color components, the proposed method used deep CNNs for forged handwriting detection. Experimental results on our dataset and benchmark datasets (namely, ACPR 2019, ICPR 2018 FCD and IMEI datasets) show that the proposed method outperforms existing methods in terms of classification rate.

Stabilized Calculation of Gaussian Smoothing and Its Differentials Using Attenuated Sliding Fourier Transform

Yukihiko Yamashita, Toru Wakahara

Responsive image

Auto-TLDR; An attenuated SFT for Gaussian smoothing

Slides Poster Similar

Gaussian smoothing and its first and second differentials are very important for image processing and computer vision. We already have methods based on the sliding Fourier transform (SFT) in order to calculate Gaussian smoothing efficiently. However, errors in floating point calculation accumulate quickly when we use the single-precision floating-point format. Also, the resultant discontinuities at the edges of SFT intervals generate false extreme points easily. To resolve the above-mentioned problems, we propose the attenuated SFT (ASFT) by introducing a decay factor to the original SFT together with a new criterion for determining coefficients to effectively approximate Gaussian function and its differentials. Extensive experiments demonstrate a decisive superiority of the proposed ASFT over the original SFT.

Improving Gravitational Wave Detection with 2D Convolutional Neural Networks

Siyu Fan, Yisen Wang, Yuan Luo, Alexander Michael Schmitt, Shenghua Yu

Responsive image

Auto-TLDR; Two-dimensional Convolutional Neural Networks for Gravitational Wave Detection from Time Series with Background Noise

Poster Similar

Sensitive gravitational wave (GW) detectors such as that of Laser Interferometer Gravitational-wave Observatory (LIGO) realize the direct observation of GW signals that confirm Einstein's general theory of relativity. However, it remains challenges to quickly detect faint GW signals from a large number of time series with background noise under unknown probability distributions. Traditional methods such as matched-filtering in general assume Additive White Gaussian Noise (AWGN) and are far from being real-time due to its high computational complexity. To avoid these weaknesses, one-dimensional (1D) Convolutional Neural Networks (CNNs) are introduced to achieve fast online detection in milliseconds but do not have enough consideration on the trade-off between the frequency and time features, which will be revisited in this paper through data pre-processing and subsequent two-dimensional (2D) CNNs during offline training to improve the online detection sensitivity. In this work, the input data is pre-processed to form a 2D spectrum by Short-time Fourier transform (STFT), where frequency features are extracted without learning. Then, carrying out two 1D convolutions across time and frequency axes respectively, and concatenating the time-amplitude and frequency-amplitude feature maps with equal proportion subsequently, the frequency and time features are treated equally as the input of our following two-dimensional CNNs. The simulation of our above ideas works on a generated data set with uniformly varying SNR (2-17), which combines the GW signal generated by PYCBC and the background noise sampled directly from LIGO. Satisfying the real-time online detection requirement without noise distribution assumption, the experiments of this paper demonstrate better performance in average compared to that of 1D CNNs, especially in the cases of lower SNR (4-9).

Local Binary Quaternion Rotation Pattern for Colour Texture Retrieval

Hela Jebali, Noel Richard, Mohamed Naouai

Responsive image

Auto-TLDR; Local Binary Quaternion Rotation Pattern for Color Texture Classification

Poster Similar

Color is very important feature for image representation, it assumes very essential in the human visual recognition process. Most existing approaches usually extract features from the three color channels separately (Marginal way). Although, it exists few vector expressions of texture features. Aware of the high interaction that exists between different channels in the color image, this work introduces a compact texture descriptor, named Local Binary Quaternion Rotation Pattern (LBQRP). In this LBQRP purpose, the quaternion representation is used to represent color texture. The distance between two color can be expressed as the angle of rotation between two unit quaternions using the geodesic distance. After a LBQRP coding, local histograms are extracted and used as features. Experiments on three challenging color datasets: Vistex, Outex-TC13 and USPtex are carried out to evaluate the LBQRP performance in texture classification. Results show the high efficiency of the proposed approach facing to several stat-of-art methods.

MBD-GAN: Model-Based Image Deblurring with a Generative Adversarial Network

Li Song, Edmund Y. Lam

Responsive image

Auto-TLDR; Model-Based Deblurring GAN for Inverse Imaging

Slides Poster Similar

This paper presents a methodology to tackle inverse imaging problems by leveraging the synergistic power of imaging model and deep learning. The premise is that while learning-based techniques have quickly become the methods of choice in various applications, they often ignore the prior knowledge embedded in imaging models. Incorporating the latter has the potential to improve the image estimation. Specifically, we first provide a mathematical basis of using generative adversarial network (GAN) in inverse imaging through considering an optimization framework. Then, we develop the specific architecture that connects the generator and discriminator networks with the imaging model. While this technique can be applied to a variety of problems, from image reconstruction to super-resolution, we take image deblurring as the example here, where we show in detail the implementation and experimental results of what we call the model-based deblurring GAN (MBD-GAN).

Gaussian Convolution Angles: Invariant Vein and Texture Descriptors for Butterfly Species Identification

Xin Chen, Bin Wang, Yongsheng Gao

Responsive image

Auto-TLDR; Gaussian convolution angle for butterfly species classification

Slides Poster Similar

Identifying butterfly species by image patterns is a challenging task in computer vision and pattern recognition community due to many butterfly species having similar shape patterns with complex interior structures and considerable pose variation. In additional, geometrical transformation and illumination variation also make this task more difficult. In this paper, a novel image descriptor, named Gaussian convolution angle (GCA) is proposed for butterfly species classification. The proposed GCA projects the butterfly vein image function and intensity image function along a group of vectors that start from a common contour points and ends at the remaining contour points which results a group of vectors that capture the complex vein patterns and texture patterns of butterfly images. The Gaussian convolution of different scales is conducted to the resulting vector functions to generate a multiscale GCA descriptors. The proposed GCA is not only invariant to geometrical transformation including rotation, scaling and translation, but also invariant to lighting change. The proposed method has been tested on a publicly available butterfly image dataset that has 832 samples of 10 species. It achieves a classification accuracy of 92.03% which is higher than the benchmark methods.

Trainable Spectrally Initializable Matrix Transformations in Convolutional Neural Networks

Michele Alberti, Angela Botros, Schuetz Narayan, Rolf Ingold, Marcus Liwicki, Mathias Seuret

Responsive image

Auto-TLDR; Trainable and Spectrally Initializable Matrix Transformations for Neural Networks

Slides Poster Similar

In this work, we introduce a new architectural component to Neural Networks (NN), i.e., trainable and spectrally initializable matrix transformations on feature maps. While previous literature has already demonstrated the possibility of adding static spectral transformations as feature processors, our focus is on more general trainable transforms. We study the transforms in various architectural configurations on four datasets of different nature: from medical (ColorectalHist, HAM10000) and natural (Flowers) images to historical documents (CB55). With rigorous experiments that control for the number of parameters and randomness, we show that networks utilizing the introduced matrix transformations outperform vanilla neural networks. The observed accuracy increases appreciably across all datasets. In addition, we show that the benefit of spectral initialization leads to significantly faster convergence, as opposed to randomly initialized matrix transformations. The transformations are implemented as auto-differentiable PyTorch modules that can be incorporated into any neural network architecture. The entire code base is open-source.

One Step Clustering Based on A-Contrario Framework for Detection of Alterations in Historical Violins

Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, Marco Malagodi

Responsive image

Auto-TLDR; A-Contrario Clustering for the Detection of Altered Violins using UVIFL Images

Slides Poster Similar

Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of interventions necessary. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the ``Violins UVIFL imagery'' dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with the state of the art clustering methods shows improved overall precision and recall.

Minimal Solvers for Indoor UAV Positioning

Marcus Valtonen Örnhag, Patrik Persson, Mårten Wadenbäck, Kalle Åström, Anders Heyden

Responsive image

Auto-TLDR; Relative Pose Solvers for Visual Indoor UAV Navigation

Slides Poster Similar

In this paper we consider a collection of relative pose problems which arise naturally in applications for visual indoor UAV navigation. We focus on cases where additional information from an onboard IMU is available and thus provides a partial extrinsic calibration through the gravitational vector. The solvers are designed for a partially calibrated camera, for a variety of realistic indoor scenarios, which makes it possible to navigate using images of the ground floor. Current state-of-the-art solvers use more general assumptions, such as using arbitrary planar structures; however, these solvers do not yield adequate reconstructions for real scenes, nor do they perform fast enough to be incorporated in real-time systems. We show that the proposed solvers enjoy better numerical stability, are faster, and require fewer point correspondences, compared to state-of-the-art solvers. These properties are vital components for robust navigation in real-time systems, and we demonstrate on both synthetic and real data that our method outperforms other methods, and yields superior motion estimation.

Learning Non-Rigid Surface Reconstruction from Spatio-Temporal Image Patches

Matteo Pedone, Abdelrahman Mostafa, Janne Heikkilä

Responsive image

Auto-TLDR; Dense Spatio-Temporal Depth Maps of Deformable Objects from Video Sequences

Slides Poster Similar

We present a method to reconstruct a dense spatio-temporal depth map of a non-rigidly deformable object directly from a video sequence. The estimation of depth is performed locally on spatio-temporal patches of the video, and then the full depth video of the entire shape is recovered by combining them together. Since the geometric complexity of a local spatio-temporal patch of a deforming non-rigid object is often simple enough to be faithfully represented with a parametric model, we artificially generate a database of small deforming rectangular meshes rendered with different material properties and light conditions, along with their corresponding depth videos, and use such data to train a convolutional neural network. We tested our method on both synthetic and Kinect data and experimentally observed that the reconstruction error is significantly lower than the one obtained using other approaches like conventional non-rigid structure from motion.

D3Net: Joint Demosaicking, Deblurring and Deringing

Tomas Kerepecky, Filip Sroubek

Responsive image

Auto-TLDR; Joint demosaicking deblurring and deringing network with light-weight architecture inspired by the alternating direction method of multipliers

Slides Similar

Images acquired with standard digital cameras have Bayer patterns and suffer from lens blur. A demosaicking step is implemented in every digital camera, yet blur often remains unattended due to computational cost and instability of deblurring algorithms. Linear methods, which are computationally less demanding, produce ringing artifacts in deblurred images. Complex non-linear deblurring methods avoid artifacts, however their complexity imply offline application after camera demosaicking, which leads to sub-optimal performance. In this work, we propose a joint demosaicking deblurring and deringing network with a light-weight architecture inspired by the alternating direction method of multipliers. The proposed network has a transparent and clear interpretation compared to other black-box data driven approaches. We experimentally validate its superiority over state-of-the-art demosaicking methods with offline deblurring.

Bayesian Active Learning for Maximal Information Gain on Model Parameters

Kasra Arnavaz, Aasa Feragen, Oswin Krause, Marco Loog

Responsive image

Auto-TLDR; Bayesian assumptions for Bayesian classification

Slides Poster Similar

The fact that machine learning models, despite their advancements, are still trained on randomly gathered data is proof that a lasting solution to the problem of optimal data gathering has not yet been found. In this paper, we investigate whether a Bayesian approach to the classification problem can provide assumptions under which one is guaranteed to perform at least as good as random sampling. For a logistic regression model, we show that maximal expected information gain on model parameters is a promising criterion for selecting samples, assuming that our classification model is well-matched to the data. Our derived criterion is closely related to the maximum model change. We experiment with data sets which satisfy this assumption to varying degrees to see how sensitive our performance is to the violation of our assumption in practice.

Graph Signal Active Contours

Olivier Lezoray

Responsive image

Auto-TLDR; Adaptation of Active Contour Without Edges for Graph Signal Processing

Slides Similar

With the advent of data living on vertices of graphs, there is much interest in processing the so-called graph signals for partitioning tasks. As active contours have had much impact in the image processing community, their formulation on graphs is of importance to the field of graph signal processing. This paper proposes an adaptation on graphs of a model that combines the Geodesic Active Contour and the Active Contour Without Edges models. In addition, specific terms depending on graphs are introduced in the formulation. This adaptation is solved using a level set formulation with a gradient descent that can be expressed as a morphological front evolution process. Experimental results on different kinds of graphs signals show the benefit of the approach.

Multi-Scale Keypoint Matching

Sina Lotfian, Hassan Foroosh

Responsive image

Auto-TLDR; Multi-Scale Keypoint Matching Using Multi-Scale Information

Slides Poster Similar

We propose a new hierarchical method to match keypoints by exploiting information across multiple scales. Traditionally, for each keypoint a single scale is detected and the matching process is done in the specific scale. We replace this approach with matching across scale-space. The holistic information from higher scales are used for early rejection of candidates that are far away in the feature space. The more localized and finer details of lower scale are then used to decide between remaining possible points. The proposed multi-scale solution is more consistent with the multi-scale processing that is present in the human visual system and is therefore biologically plausible. We evaluate our method on several datasets and achieve state of the art accuracy, while significantly outperforming others in extraction time.

Ultrasound Image Restoration Using Weighted Nuclear Norm Minimization

Hanmei Yang, Ye Luo, Jianwei Lu, Jian Lu

Responsive image

Auto-TLDR; A Nonconvex Low-Rank Matrix Approximation Model for Ultrasound Images Restoration

Poster Similar

Ultrasound images are often contaminated by speckle noise during the acquisition process, which influences the performance of subsequent application. The paper introduces a nonconvex low-rank matrix approximation model for ultrasound images restoration, which integrates the weighted unclear norm minimization (WNNM) and data fidelity term. WNNM can adaptively assign weights on differnt singular values to preserve more details in restored images. The fidelity term about ultrasound images do not be utilized in existing low-rank ultrasound denoising methods. This optimization question can effectively solved by alternating direction method of multipliers (ADMM). The experimental results on simulated images and real medical ultrasound images demonstrate the excellent performance of the proposed method compared with other four state-of-the-art methods.

Phase Retrieval Using Conditional Generative Adversarial Networks

Tobias Uelwer, Alexander Oberstraß, Stefan Harmeling

Responsive image

Auto-TLDR; Conditional Generative Adversarial Networks for Phase Retrieval

Slides Poster Similar

In this paper, we propose the application of conditional generative adversarial networks to solve various phase retrieval problems. We show that including knowledge of the measurement process at training time leads to an optimization at test time that is more robust to initialization than existing approaches involving generative models. In addition, conditioning the generator network on the measurements enables us to achieve much more detailed results. We empirically demonstrate that these advantages provide meaningful solutions to the Fourier and the compressive phase retrieval problem and that our method outperforms well-established projection-based methods as well as existing methods that are based on neural networks. Like other deep learning methods, our approach is very robust to noise and can therefore be very useful for real-world applications.

Approach for Document Detection by Contours and Contrasts

Daniil Tropin, Sergey Ilyuhin, Dmitry Nikolaev, Vladimir V. Arlazarov

Responsive image

Auto-TLDR; A countor-based method for arbitrary document detection on a mobile device

Slides Poster Similar

This paper considers the task of arbitrary document detection performed on a mobile device. The classical contour-based approach often mishandles cases with occlusion, complex background, or blur. Region-based approach, which relies on the contrast between object and background, does not have limitations, however its known implementations are highly resource-consuming. We propose a modification of a countor-based method, in which the competing hypotheses of the contour location are ranked according to the contrast between the areas inside and outside the border. In the performed experiments such modification leads to the 40% decrease of alternatives ordering errors and 10% decrease of the overall number of detection errors. We updated state-of-the-art performance on the open MIDV-500 dataset and demonstrated competitive results with the state-of-the-art on the SmartDoc dataset.

Revisiting Graph Neural Networks: Graph Filtering Perspective

Hoang Nguyen-Thai, Takanori Maehara, Tsuyoshi Murata

Responsive image

Auto-TLDR; Two-Layers Graph Convolutional Network with Graph Filters Neural Network

Slides Poster Similar

In this work, we develop quantitative results to the learnability of a two-layers Graph Convolutional Network (GCN). Instead of analyzing GCN under some classes of functions, our approach provides a quantitative gap between a two-layers GCN and a two-layers MLP model. From the graph signal processing perspective, we provide useful insights to some flaws of graph neural networks for vertex classification. We empirically demonstrate a few cases when GCN and other state-of-the-art models cannot learn even when true vertex features are extremely low-dimensional. To demonstrate our theoretical findings and propose a solution to the aforementioned adversarial cases, we build a proof of concept graph neural network model with different filters named Graph Filters Neural Network (gfNN).

Smart Inference for Multidigit Convolutional Neural Network Based Barcode Decoding

Duy-Thao Do, Tolcha Yalew, Tae Joon Jun, Daeyoung Kim

Responsive image

Auto-TLDR; Smart Inference for Barcode Decoding using Deep Convolutional Neural Network

Slides Poster Similar

Barcodes are ubiquitous and have been used in most of critical daily activities for decades. However, most of traditional decoders require well-founded barcode under a relatively standard condition. While wilder conditioned barcodes such as underexposed, occluded, blurry, wrinkled and rotated are commonly captured in reality, those traditional decoders show weakness of recognizing. Several works attempted to solve those challenging barcodes, but many limitations still exist. This work aims to solve the decoding problem using deep convolutional neural network with the possibility of running on portable devices. Firstly, we proposed a special modification of inference based on the feature of having checksum and test-time augmentation, named as Smart Inference (SI) in prediction phase of a trained model. SI considerably boosts accuracy and reduces the false prediction for trained models. Secondly, we have created a large practical evaluation dataset of real captured 1D barcode under various challenging conditions to test our methods vigorously, which is publicly available for other researchers. The experiments' results demonstrated the SI effectiveness with the highest accuracy of 95.85% which outperformed many existing decoders on the evaluation set. Finally, we successfully minimized the best model by knowledge distillation to a shallow model which is shown to have high accuracy (90.85%) with good inference speed of 34.2 ms per image on a real edge device.

GraphBGS: Background Subtraction Via Recovery of Graph Signals

Jhony Heriberto Giraldo Zuluaga, Thierry Bouwmans

Responsive image

Auto-TLDR; Graph BackGround Subtraction using Graph Signals

Slides Poster Similar

Background subtraction is a fundamental pre-processing task in computer vision. This task becomes challenging in real scenarios due to variations in the background for both static and moving camera sequences. Several deep learning methods for background subtraction have been proposed in the literature with competitive performances. However, these models show performance degradation when tested on unseen videos; and they require huge amount of data to avoid overfitting. Recently, graph-based algorithms have been successful approaching unsupervised and semi-supervised learning problems. Furthermore, the theory of graph signal processing and semi-supervised learning have been combined leading to new insights in the field of machine learning. In this paper, concepts of recovery of graph signals are introduced in the problem of background subtraction. We propose a new algorithm called Graph BackGround Subtraction (GraphBGS), which is composed of: instance segmentation, background initialization, graph construction, graph sampling, and a semi-supervised algorithm inspired from the theory of recovery of graph signals. Our algorithm has the advantage of requiring less data than deep learning methods while having competitive results on both: static and moving camera videos. GraphBGS outperforms unsupervised and supervised methods in several challenging conditions on the publicly available Change Detection (CDNet2014), and UCSD background subtraction databases.

Kernel-based Graph Convolutional Networks

Hichem Sahbi

Responsive image

Auto-TLDR; Spatial Graph Convolutional Networks in Recurrent Kernel Hilbert Space

Slides Poster Similar

Learning graph convolutional networks (GCNs) is an emerging field which aims at generalizing deep learning to arbitrary non-regular domains. Most of the existing GCNs follow a neighborhood aggregation scheme, where the representation of a node is recursively obtained by aggregating its neighboring node representations using averaging or sorting operations. However, these operations are either ill-posed or weak to be discriminant or increase the number of training parameters and thereby the computational complexity and the risk of overfitting. In this paper, we introduce a novel GCN framework that achieves spatial graph convolution in a reproducing kernel Hilbert space. The latter makes it possible to design, via implicit kernel representations, convolutional graph filters in a high dimensional and more discriminating space without increasing the number of training parameters. The particularity of our GCN model also resides in its ability to achieve convolutions without explicitly realigning nodes in the receptive fields of the learned graph filters with those of the input graphs, thereby making convolutions permutation agnostic and well defined. Experiments conducted on the challenging task of skeleton-based action recognition show the superiority of the proposed method against different baselines as well as the related work.

Learning Stable Deep Predictive Coding Networks with Weight Norm Supervision

Guo Ruohao

Responsive image

Auto-TLDR; Stability of Predictive Coding Network with Weight Norm Supervision

Slides Poster Similar

Predictive Coding Network (PCN) is an important neural network inspired by visual processing models in neuroscience. It combines the feedforward and feedback processing and has the architecture of recurrent neural networks (RNNs). This type of network is usually trained with backpropagation through time (BPTT). With infinite recurrent steps, PCN is a dynamic system. However, as one of the most important properties, stability is rarely studied in this type of network. Inspired by reservoir computing, we investigate the stability of hierarchical RNNs from the perspective of dynamic systems, and propose a sufficient condition for their echo state property (ESP). Our study shows the global stability is determined by stability of the local layers and the feedback between neighboring layers. Based on it, we further propose Weight Norm Supervision, a new algorithm that controls the stability of PCN dynamics by imposing different weight norm constraints on different parts of the network. We compare our approach with other training methods in terms of stability and prediction capability. The experiments show that our algorithm learns stable PCNs with a reliable prediction precision in the most effective and controllable way.

PointSpherical: Deep Shape Context for Point Cloud Learning in Spherical Coordinates

Hua Lin, Bin Fan, Yongcheng Liu, Yirong Yang, Zheng Pan, Jianbo Shi, Chunhong Pan, Huiwen Xie

Responsive image

Auto-TLDR; Spherical Hierarchical Modeling of 3D Point Cloud

Slides Poster Similar

We propose Spherical Hierarchical modeling of 3D point cloud. Inspired by Shape Context, we design a receptive field on each 3D point by placing a spherical coordinate on it. We sample points using the furthest point method and creating overlapping balls of points. For each ball, we divide the space into radial, polar angular and azimuthal angular bins on which we form a Spherical Hierarchy. We apply 1x1 CNN convolution on points to start the initial feature extraction. Repeated 3D CNN and max pooling over the Spherical bins propagate contextual information until all the information is condensed in the center bin. Extensive experiments on five datasets strongly evidence that our method outperform current models on various Point Cloud Learning tasks, including 2D/3D shape classification, 3D part segmentation and 3D semantic segmentation.

2D Discrete Mirror Transform for Image Non-Linear Approximation

Alessandro Gnutti, Fabrizio Guerrini, Riccardo Leonardi

Responsive image

Auto-TLDR; Discrete Mirror Transform (DMT)

Slides Poster Similar

In this paper, a new 2D transform named Discrete Mirror Transform (DMT) is presented. The DMT is computed by decomposing a signal into its even and odd parts around an optimal location in a given direction so that the signal energy is maximally split between the two components. After minimizing the information required to regenerate the original signal by removing redundant structures, the process is iterated leading the signal energy to distribute into a continuously smaller set of coefficients. The DMT can be displayed as a binary tree, where each node represents the single (even or odd) signal derived from the decomposition in the previous level. An optimized version of the DMT (ODMT) is also introduced, by exploiting the possibility to choose different directions at which performing the decomposition. Experimental simulations have been carried out in order to test the sparsity properties of the DMT and ODMT when applied on images: referring to both transforms, the results show a superior performance with respect to the popular Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) in terms of non-linear approximation.

Joint Learning Multiple Curvature Descriptor for 3D Palmprint Recognition

Lunke Fei, Bob Zhang, Jie Wen, Chunwei Tian, Peng Liu, Shuping Zhao

Responsive image

Auto-TLDR; Joint Feature Learning for 3D palmprint recognition using curvature data vectors

Slides Poster Similar

3D palmprint-based biometric recognition has drawn growing research attention due to its several merits over 2D counterpart such as robust structural measurement of a palm surface and high anti-counterfeiting capability. However, most existing 3D palmprint descriptors are hand-crafted that usually extract stationary features from 3D palmprint images. In this paper, we propose a feature learning method to jointly learn compact curvature feature descriptor for 3D palmprint recognition. We first form multiple curvature data vectors to completely sample the intrinsic curvature information of 3D palmprint images. Then, we jointly learn a feature projection function that project curvature data vectors into binary feature codes, which have the maximum inter-class variances and minimum intra-class distance so that they are discriminative. Moreover, we learn the collaborative binary representation of the multiple curvature feature codes by minimizing the information loss between the final representation and the multiple curvature features, so that the proposed method is more compact in feature representation and efficient in matching. Experimental results on the baseline 3D palmprint database demonstrate the superiority of the proposed method in terms of recognition performance in comparison with state-of-the-art 3D palmprint descriptors.

Localization and Transformation Reconstruction of Image Regions: An Extended Congruent Triangles Approach

Afra'A Ahmad Alyosef, Christian Elias, Andreas Nürnberger

Responsive image

Auto-TLDR; Outlier Filtering of Sub-Image Relations using Geometrical Information

Slides Poster Similar

Most of the existing methods to localize (sub) image relations – a subclass of near-duplicate retrieval techniques – rely on the distinctiveness of matched features of the images being compared. These sets of matching features usually include a proportion of outliers, i.e. features linking non matching regions. In approaches that are designed for retrieval purposes only, these false matches usually have a minor impact on the final ranking. However, if also a localization of regions and corresponding image transformations should be computed, these false matches often have a more significant impact. In this paper, we propose a novel outlier filtering approach based on the geometrical information of the matched features. Our approach is similar to the RANSAC model, but instead of randomly selecting sets of matches and employ them to derive the homography transformation between images or image regions, we exploit in addition the geometrical relation of feature matches to find the best congruent triangle matches. Based on this information we classify outliers and determine the correlation between image regions. We compare our approach with state of art approaches using different feature models and various benchmark data sets (sub-image/panorama with affine transformation, adding blur, noise or scale change). The results indicate that our approach is more robust than the state of art approaches and is able to detect correlation even when most matches are outliers. Moreover, our approach reduces the pre-processing time to filter the matches significantly.

Batch-Incremental Triplet Sampling for Training Triplet Networks Using Bayesian Updating Theorem

Milad Sikaroudi, Benyamin Ghojogh, Fakhri Karray, Mark Crowley, Hamid Reza Tizhoosh

Responsive image

Auto-TLDR; Bayesian Updating Triplet Mining with Bayesian updating

Slides Poster Similar

Variants of Triplet networks are robust entities for learning a discriminative embedding subspace. There exist different triplet mining approaches for selecting the most suitable training triplets. Some of these mining methods rely on the extreme distances between instances, and some others make use of sampling. However, sampling from stochastic distributions of data rather than sampling merely from the existing embedding instances can provide more discriminative information. In this work, we sample triplets from distributions of data rather than from existing instances. We consider a multivariate normal distribution for the embedding of each class. Using Bayesian updating and conjugate priors, we update the distributions of classes dynamically by receiving the new mini-batches of training data. The proposed triplet mining with Bayesian updating can be used with any triplet-based loss function, e.g., \textit{triplet-loss} or Neighborhood Component Analysis (NCA) loss. Accordingly, Our triplet mining approaches are called Bayesian Updating Triplet (BUT) and Bayesian Updating NCA (BUNCA), depending on which loss function is being used. Experimental results on two public datasets, namely MNIST and histopathology colorectal cancer (CRC), substantiate the effectiveness of the proposed triplet mining method.

HP2IFS: Head Pose Estimation Exploiting Partitioned Iterated Function Systems

Carmen Bisogni, Michele Nappi, Chiara Pero, Stefano Ricciardi

Responsive image

Auto-TLDR; PIFS based head pose estimation using fractal coding theory and Partitioned Iterated Function Systems

Slides Poster Similar

Estimating the actual head orientation from 2D images, with regard to its three degrees of freedom, is a well known problem that is highly significant for a large number of applications involving head pose knowledge. Consequently, this topic has been tackled by a plethora of methods and algorithms the most part of which exploits neural networks. Machine learning methods, indeed, achieve accurate head rotation values yet require an adequate training stage and, to that aim, a relevant number of positive and negative examples. In this paper we take a different approach to this topic by using fractal coding theory and particularly Partitioned Iterated Function Systems to extract the fractal code from the input head image and to compare this representation to the fractal code of a reference model through Hamming distance. According to experiments conducted on both the BIWI and the AFLW2000 databases, the proposed PIFS based head pose estimation method provides accurate yaw/pitch/roll angular values, with a performance approaching that of state of the art of machine-learning based algorithms and exceeding most of non-training based approaches.

Generalized Conics: Properties and Applications

Aysylu Gabdulkhakova, Walter Kropatsch

Responsive image

Auto-TLDR; A Generalized Conic Representation for Distance Fields

Slides Poster Similar

In this paper the properties of the generalized conics are used to create a unified framework for generating various types of the distance fields. The main concept behind this work is a metric that measures the distance from a point to a line segment according to the definition of the ellipse. The proposed representation provides a possibility to efficiently compute the proximity, arithmetic mean of the distances and a space tessellation with regard to the given set of polygonal objects, line segments and points. In addition, the weights can be introduced for objects, their parts and combinations. This fact leads to a hierarchical representation that can be efficiently obtained using the pixel-wise operations. The practical value of the proposed ideas is demonstrated on example of applications like skeletonization, smoothing, optimal location finding and clustering.

A Two-Step Approach to Lidar-Camera Calibration

Yingna Su, Yaqing Ding, Jian Yang, Hui Kong

Responsive image

Auto-TLDR; Closed-Form Calibration of Lidar-camera System for Ego-motion Estimation and Scene Understanding

Slides Poster Similar

Autonomous vehicles and robots are typically equipped with Lidar and camera. Hence, calibrating the Lidar-camera system is of extreme importance for ego-motion estimation and scene understanding. In this paper, we propose a two-step approach (coarse + fine) for the external calibration between a camera and a multiple-line Lidar. First, a new closed-form solution is proposed to obtain the initial calibration parameters. We compare our solution with the state-of-the-art SVD-based algorithm, and show the benefits of both the efficiency and stability. With the initial calibration parameters, the ICP-based calibration framework is used to register the point clouds which extracted from the camera and Lidar coordinate frames, respectively. Our method has been applied to two Lidar-camera systems: an HDL-64E Lidar-camera system, and a VLP-16 Lidar-camera system. Experimental results demonstrate that our method achieves promising performance and higher accuracy than two open-source methods.

3D Pots Configuration System by Optimizing Over Geometric Constraints

Jae Eun Kim, Muhammad Zeeshan Arshad, Seong Jong Yoo, Je Hyeong Hong, Jinwook Kim, Young Min Kim

Responsive image

Auto-TLDR; Optimizing 3D Configurations for Stable Pottery Restoration from irregular and noisy evidence

Slides Poster Similar

While potteries are common artifacts excavated in archaeological sites, the restoration process relies on the manual cleaning and reassembling shattered pieces. Since the number of possible 3D configurations is considerably large, the exhaustive manual trial may result in an abrasion on fractured surfaces and even failure to find the correct matches. As a result, many recent works suggest virtual reassembly from 3D scans of the fragments. The problem is challenging in the view of the conventional 3D geometric analysis, as it is hard to extract reliable shape features from the thin break lines. We propose to optimize the global configuration by combining geometric constraints with information from noisy shape features. Specifically, we enforce bijection and continuity of sequence of correspondences given estimates of corners and pair-wise matching scores between multiple break lines. We demonstrate that our pipeline greatly increases the accuracy of correspondences, resulting in the stable restoration of 3D configurations from irregular and noisy evidence.

Total Whitening for Online Signature Verification Based on Deep Representation

Xiaomeng Wu, Akisato Kimura, Kunio Kashino, Seiichi Uchida

Responsive image

Auto-TLDR; Total Whitening for Online Signature Verification

Slides Poster Similar

In deep metric learning targeted at time series, the correlation between feature activations may be easily enlarged through highly nonlinear neural networks, leading to suboptimal embedding effectiveness. An effective solution to this problem is whitening. For example, in online signature verification, whitening can be derived for three individual Gaussian distributions, namely the distributions of local features at all temporal positions 1) for all signatures of all subjects, 2) for all signatures of each particular subject, and 3) for each particular signature of each particular subject. This study proposes a unified method called total whitening that integrates these individual Gaussians. Total whitening rectifies the layout of multiple individual Gaussians to resemble a standard normal distribution, improving the balance between intraclass invariance and interclass discriminative power. Experimental results demonstrate that total whitening achieves state-of-the-art accuracy when tested on online signature verification benchmarks.

Deep Universal Blind Image Denoising

Jae Woong Soh, Nam Ik Cho

Responsive image

Auto-TLDR; Image Denoising with Deep Convolutional Neural Networks

Slides Similar

Image denoising is an essential part of many image processing and computer vision tasks due to inevitable noise corruption during image acquisition. Traditionally, many researchers have investigated image priors for the denoising, within the Bayesian perspective based on image properties and statistics. Recently, deep convolutional neural networks (CNNs) have shown great success in image denoising by incorporating large-scale synthetic datasets. However, they both have pros and cons. While the deep CNNs are powerful for removing the noise with known statistics, they tend to lack flexibility and practicality for the blind and real-world noise. Moreover, they cannot easily employ explicit priors. On the other hand, traditional non-learning methods can involve explicit image priors, but they require considerable computation time and cannot exploit large-scale external datasets. In this paper, we present a CNN-based method that leverages the advantages of both methods based on the Bayesian perspective. Concretely, we divide the blind image denoising problem into sub-problems and conquer each inference problem separately. As the CNN is a powerful tool for inference, our method is rooted in CNNs and propose a novel design of network for efficient inference. With our proposed method, we can successfully remove blind and real-world noise, with a moderate number of parameters of universal CNN.

Graph Convolutional Neural Networks for Power Line Outage Identification

Jia He, Maggie Cheng

Responsive image

Auto-TLDR; Graph Convolutional Networks for Power Line Outage Identification

Poster Similar

In this paper, we consider the power line outage identification problem as a graph signal classification problem, where the signal at each vertex is given as a time series. We propose graph convolutional networks (GCNs) for the task of classifying signals supported on graphs. An important element of the GCN design is filter design. We consider filtering signals in either the vertex (spatial) domain, or the frequency (spectral) domain. Two basic architectures are proposed. In the spatial GCN architecture, the GCN uses a graph shift operator as the basic building block to incorporate the underlying graph structure into the convolution layer. The spatial filter directly utilizes the graph connectivity information. It defines the filter to be a polynomial in the graph shift operator to obtain the convolved features that aggregate neighborhood information of each node. In the spectral GCN architecture, a frequency filter is used instead. A graph Fourier transform operator first transforms the raw graph signal from the vertex domain to the frequency domain, and then a filter is defined using the graph's spectral parameters. The spectral GCN then uses the output from the graph Fourier transform to compute the convolved features. There are additional challenges to classify the time-evolving graph signal as the signal value at each vertex changes over time. The GCNs are designed to recognize different spatiotemporal patterns from high-dimensional data defined on a graph. The application of the proposed methods to power line outage identification shows that these GCN architectures can successfully classify abnormal signal patterns and identify the outage location.

Interpolation in Auto Encoders with Bridge Processes

Carl Ringqvist, Henrik Hult, Judith Butepage, Hedvig Kjellstrom

Responsive image

Auto-TLDR; Stochastic interpolations from auto encoders trained on flattened sequences

Slides Poster Similar

Auto encoding models have been extensively studied in recent years. They provide an efficient framework for sample generation, as well as for analysing feature learning. Furthermore, they are efficient in performing interpolations between data-points in semantically meaningful ways. In this paper, we introduce a method for generating sequence samples from auto encoders trained on flattened sequences (e.g video sample from auto encoders trained to generate a video frame); as well as a canonical, dimension independent method for generating stochastic interpolations. The distribution of interpolation paths is represented as the distribution of a bridge process constructed from an artificial random data generating process in the latent space, having the prior distribution as its invariant distribution.

Force Banner for the Recognition of Spatial Relations

Robin Deléarde, Camille Kurtz, Laurent Wendling, Philippe Dejean

Responsive image

Auto-TLDR; Spatial Relation Recognition using Force Banners

Slides Similar

Studying the spatial organization of objects in images is fundamental to increase both the understanding of the sensed scene and the accuracy of the perceived similarity between images. This often leads to the problem of spatial relation recognition: given two objects depicted in an image, what is their spatial relation? In this article, we consider this as a classification problem. Instead of considering directly the original image space (or imaging features) to predict the spatial relation, we propose a novel intermediate representation (called Force Banner) modeling rich spatial information between pairs of objects composing a scene. Such a representation captures the relative position between objects using a panel of forces (attraction and repulsion), that take into account the structural shapes of the objects and their distance in a directional fashion. Force Banners are used to feed a classical 2D Convolutional Neural Network (CNN) for the recognition of spatial relations, benefiting from pre-trained models and fine-tuning. Experimental results obtained on a dataset of images with various shapes highlight the interest of this approach, and in particular its benefit to describe spatial information.

Calibration and Absolute Pose Estimation of Trinocular Linear Camera Array for Smart City Applications

Martin Ahrnbom, Mikael Nilsson, Håkan Ardö, Kalle Åström, Oksana Yastremska-Kravchenko, Aliaksei Laureshyn

Responsive image

Auto-TLDR; Trinocular Linear Camera Array Calibration for Traffic Surveillance Applications

Slides Poster Similar

A method for calibrating a Trinocular Linear Camera Array (TLCA) for traffic surveillance applications, such as towards smart cities, is presented. A TLCA-specific parametrization guarantees that the calibration finds a model where all the cameras are on a straight line. The method uses both a chequerboard close to the camera, as well as measured 3D points far from the camera: points measured in world coordinates, as well as their corresponding 2D points found manually in the images. Superior calibration accuracy can be obtained compared to standard methods using only a single data source, largely due to the use of chequerboards, while the line constraint in the parametrization allows for joint rectification. The improved triangulation accuracy, from 8-12 cm to around 6 cm when calibrating with 30-50 points in our experiment, allowing better road user analysis. The method is demonstrated by a proof-of-concept application where a point cloud is generated from multiple disparity maps, visualizing road user detections in 3D.

3CS Algorithm for Efficient Gaussian Process Model Retrieval

Fabian Berns, Kjeld Schmidt, Ingolf Bracht, Christian Beecks

Responsive image

Auto-TLDR; Efficient retrieval of Gaussian Process Models for large-scale data using divide-&-conquer-based approach

Slides Poster Similar

Gaussian Process Models (GPMs) have been applied for various pattern recognition tasks due to their analytical tractability, ability to quantify uncertainty for their own results as well as to subsume prominent other regression techniques. Despite these promising prospects their super-quadratic computation time complexity for model selection and evaluation impedes its broader application for more than a few thousand data points. Although there have been many proposals towards Gaussian Processes for large-scale data, those only offer a linearly scaling improvement to a cubical scaling problem. In particular, solutions like the Nystrom approximation or sparse matrices are only taking fractions of the given data into account and subsequently lead to inaccurate models. In this paper, we thus propose a divide-&-conquer-based approach, that allows to efficiently retrieve GPMs for large-scale data. The resulting model is composed of independent pattern representations for non-overlapping segments of the given data and consequently reduces computation time significantly. Our performance analysis indicates that our proposal is able to outperform state-of-the-art algorithms for GPM retrieval with respect to the qualities of efficiency and accuracy.

Computing Stable Resultant-Based Minimal Solvers by Hiding a Variable

Snehal Bhayani, Zuzana Kukelova, Janne Heikkilä

Responsive image

Auto-TLDR; Sparse Permian-Based Method for Solving Minimal Systems of Polynomial Equations

Slides Similar

Many computer vision applications require robust and efficient estimation of camera geometry. The robust estimation is usually based on solving camera geometry problems from a minimal number of input data measurements, i.e., solving minimal problems, in a RANSAC-style framework. Minimal problems often result in complex systems of polynomial equations. The existing state-of-the-art methods for solving such systems are either based on Groebner Basis and the action matrix method, which have been extensively studied and optimized in the recent years or recently proposed approach based on a resultant computation using an extra variable. In this paper, we study an interesting alternative resultant-based method for solving sparse systems of polynomial equations by hiding one variable. This approach results in a larger eigenvalue problem than the action matrix and extra variable resultant-based methods; however, it does not need to compute an inverse or elimination of large matrices that may be numerically unstable. The proposed approach includes several improvements to the standard sparse resultant algorithms, which significantly improves the efficiency and stability of the hidden variable resultant-based solvers as we demonstrate on several interesting computer vision problems. We show that for the studied problems, our sparse resultant based approach leads to more stable solvers than the state-of-the-art Groebner Basis as well as existing resultant-based solvers, especially in close to critical configurations. Our new method can be fully automated and incorporated into existing tools for the automatic generation of efficient minimal solvers.

Transferable Model for Shape Optimization subject to Physical Constraints

Lukas Harsch, Johannes Burgbacher, Stefan Riedelbauch

Responsive image

Auto-TLDR; U-Net with Spatial Transformer Network for Flow Simulations

Slides Poster Similar

The interaction of neural networks with physical equations offers a wide range of applications. We provide a method which enables a neural network to transform objects subject to given physical constraints. Therefore an U-Net architecture is used to learn the underlying physical behaviour of fluid flows. The network is used to infer the solution of flow simulations which will be shown for a wide range of generic channel flow simulations. Physical meaningful quantities can be computed on the obtained solution, e.g. the total pressure difference or the forces on the objects. A Spatial Transformer Network with thin-plate-splines is used for the interaction between the physical constraints and the geometric representation of the objects. Thus, a transformation from an initial to a target geometry is performed such that the object is fulfilling the given constraints. This method is fully differentiable i.e., gradient informations can be used for the transformation. This can be seen as an inverse design process. The advantage of this method over many other proposed methods is, that the physical constraints are based on the inferred flow field solution. Thus, we can apply a transferable model to varying problem setups, which is not limited to a given set of geometry parameters or physical quantities.

A Multilinear Sampling Algorithm to Estimate Shapley Values

Ramin Okhrati, Aldo Lipani

Responsive image

Auto-TLDR; A sampling method for Shapley values for multilayer Perceptrons

Slides Poster Similar

Shapley values are great analytical tools in game theory to measure the importance of a player in a game. Due to their axiomatic and desirable properties such as efficiency, they have become popular for feature importance analysis in data science and machine learning. However, the time complexity to compute Shapley values based on the original formula is exponential, and as the number of features increases, this becomes infeasible. Castro et al. [1] developed a sampling algorithm, to estimate Shapley values. In this work, we propose a new sampling method based on a multilinear extension technique as applied in game theory. The aim is to provide a more efficient (sampling) method for estimating Shapley values. Our method is applicable to any machine learning model, in particular for either multiclass classifications or regression problems. We apply the method to estimate Shapley values for multilayer Perceptrons (MLPs) and through experimentation on two datasets, we demonstrate that our method provides more accurate estimations of the Shapley values by reducing the variance of the sampling statistics

A Hierarchical Framework for Leaf Instance Segmentation: Application to Plant Phenotyping

Swati Bhugra, Kanish Garg, Santanu Chaudhury, Brejesh Lall

Responsive image

Auto-TLDR; Under-segmentation of plant image using a graph based formulation to extract leaf shape knowledge for the task of leaf instance segmentation

Slides Poster Similar

Image based analysis of plants is a high-throughput and non-invasive approach to study plant traits. Based on plant image data, the quantitative estimation of many plant traits (leaf area index, biomass etc.) is associated with accurate segmentation of individual leaves. However, this task is challenging due to the presence of overlapped leaves and lack of discernible boundaries between them. In addition, variability in leaf shapes and arrangement among different plant species limits the broad utilisation of current leaf instance segmentation algorithms. In this paper, we propose a novel framework that relies on under-segmentation of plant image using a graph based formulation to extract leaf shape knowledge for the task of leaf instance segmentation. These shape priors are generated based on leaf shape characteristics independent of plant species. We demonstrate the performance of the proposed framework across multiple plant dataset i.e. Arabidopsis, Komatsuna and Salad. Experimental results indicate its broad utility.

T-SVD Based Non-Convex Tensor Completion and Robust Principal Component Analysis

Tao Li, Jinwen Ma

Responsive image

Auto-TLDR; Non-Convex tensor rank surrogate function and non-convex sparsity measure for tensor recovery

Slides Poster Similar

In this paper, we propose a novel non-convex tensor rank surrogate function and a novel non-convex sparsity measure. The basic idea is to sidestep the bias of $\ell_1-$norm by introducing the concavity. Furthermore, we employ this non-convex penalty in tensor recovery problems such as tensor completion and tensor robust principal component analysis. Due to the concavity, the parameters of these models are difficult to solve. To tackle this problem, we devise a majorization minimization algorithm that can optimize the upper bound of the original function in each iteration, and every sub-problem is solved by the alternating direction multiplier method. We also analyze the theoretical properties of the proposed algorithm. Finally, the experimental results on natural and hyperspectral images demonstrate the efficacy and efficiency of the proposed method.