Fast Blending of Planar Shapes Based on Invariant Invertible and Stable Descriptors

Emna Ghorbel, Faouzi Ghorbel, Ines Sakly, Slim Mhiri

Responsive image

Auto-TLDR; Fined-Fourier-based Invariant Descriptor for Planar Shape Blending

Slides Poster

In this paper, a novel method for blending planar shapes is introduced. This approach is based on the Fined-Fourier-based Invariant Descriptor (Fined-FID) that is invertible, invariant under Euclidean transformations and stable. Our approach extracts the Fined-FID from the two shapes of interest (the source and the target ones). Then, the extracted descriptors are averaged enabling the calculation of intermediate descriptors. Finally, thanks to the inversion criterion, the intermediate shapes are easily recovered by applying the inverse analytical expression to these intermediate descriptors. Compared to previous works, the Fined-FID-based morphing avoid the usual registration step, generates naturally closed intermediate contours and ensure invariance under Euclidean transformations and invariance to the starting point, while being computationally efficient (almost-linear complexity). The performed experiments show the performance of the proposed blending approach with respect to curvature-based methods.

Similar papers

2D Discrete Mirror Transform for Image Non-Linear Approximation

Alessandro Gnutti, Fabrizio Guerrini, Riccardo Leonardi

Responsive image

Auto-TLDR; Discrete Mirror Transform (DMT)

Slides Poster Similar

In this paper, a new 2D transform named Discrete Mirror Transform (DMT) is presented. The DMT is computed by decomposing a signal into its even and odd parts around an optimal location in a given direction so that the signal energy is maximally split between the two components. After minimizing the information required to regenerate the original signal by removing redundant structures, the process is iterated leading the signal energy to distribute into a continuously smaller set of coefficients. The DMT can be displayed as a binary tree, where each node represents the single (even or odd) signal derived from the decomposition in the previous level. An optimized version of the DMT (ODMT) is also introduced, by exploiting the possibility to choose different directions at which performing the decomposition. Experimental simulations have been carried out in order to test the sparsity properties of the DMT and ODMT when applied on images: referring to both transforms, the results show a superior performance with respect to the popular Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) in terms of non-linear approximation.

A New Geodesic-Based Feature for Characterization of 3D Shapes: Application to Soft Tissue Organ Temporal Deformations

Karim Makki, Amine Bohi, Augustin Ogier, Marc-Emmanuel Bellemare

Responsive image

Auto-TLDR; Spatio-Temporal Feature Descriptors for 3D Shape Characterization from Point Clouds

Slides Poster Similar

Spatio-temporal feature descriptors are of great importance for characterizing the local changes of 3D deformable shapes. In this study, we propose a method for characterizing 3D shapes from point clouds and we show a direct application on a study of organ temporal deformations. As an example, we characterize the behavior of the bladder during forced respiratory motion with a reduced number of 3D surface points: first, a set of equidistant points representing the vertices of quadrilateral mesh for the organ surface are tracked throughout a long dynamic MRI sequence using a large deformation diffeomorphic metric mapping (LDDMM) framework. Second, a novel 3D shape descriptor invariant to translation, scale and rotation is proposed for characterizing the temporal organ deformations by employing an Eulerian Partial Differential Equations (PDEs) methodology. We demonstrate the robustness of our feature on both synthetic 3D shapes and realistic dynamic Magnetic Resonance Imaging (MRI) data sequences portraying the bladder deformation during a forced breathing exercise. Promising results are obtained, showing that the proposed feature may be useful for several computer vision applications such as medical imaging, aerodynamics and robotics.

Combined Invariants to Gaussian Blur and Affine Transformation

Jitka Kostkova, Jan Flusser, Matteo Pedone

Responsive image

Auto-TLDR; A new theory of combined moment invariants to Gaussian blur and spatial affine transformation

Slides Poster Similar

The paper presents a new theory of combined moment invariants to Gaussian blur and spatial affine transformation. The blur kernel may be arbitrary oriented, scaled and elongated. No prior information about the kernel parameters and about the underlaying affine transform is required. The main idea, expressed by the Substitution Theorem, is to substitute pure blur invariants into traditional affine moment invariants. Potential applications of the new descriptors are in blur-invariant image recognition and in robust template matching.

Force Banner for the Recognition of Spatial Relations

Robin Deléarde, Camille Kurtz, Laurent Wendling, Philippe Dejean

Responsive image

Auto-TLDR; Spatial Relation Recognition using Force Banners

Slides Similar

Studying the spatial organization of objects in images is fundamental to increase both the understanding of the sensed scene and the accuracy of the perceived similarity between images. This often leads to the problem of spatial relation recognition: given two objects depicted in an image, what is their spatial relation? In this article, we consider this as a classification problem. Instead of considering directly the original image space (or imaging features) to predict the spatial relation, we propose a novel intermediate representation (called Force Banner) modeling rich spatial information between pairs of objects composing a scene. Such a representation captures the relative position between objects using a panel of forces (attraction and repulsion), that take into account the structural shapes of the objects and their distance in a directional fashion. Force Banners are used to feed a classical 2D Convolutional Neural Network (CNN) for the recognition of spatial relations, benefiting from pre-trained models and fine-tuning. Experimental results obtained on a dataset of images with various shapes highlight the interest of this approach, and in particular its benefit to describe spatial information.

A Plane-Based Approach for Indoor Point Clouds Registration

Ketty Favre, Muriel Pressigout, Luce Morin, Eric Marchand

Responsive image

Auto-TLDR; A plane-based registration approach for indoor environments based on LiDAR data

Slides Poster Similar

Iterative Closest Point (ICP) is one of the mostly used algorithms for 3D point clouds registration. This classical approach can be impacted by the large number of points contained in a point cloud. Planar structures, which are less numerous than points, can be used in well-structured man-made environment. In this paper we propose a registration method inspired by the ICP algorithm in a plane-based registration approach for indoor environments. This method is based solely on data acquired with a LiDAR sensor. A new metric based on plane characteristics is introduced to find the best plane correspondences. The optimal transformation is estimated through a two-step minimization approach, successively performing robust plane-to-plane minimization and non-linear robust point-to-plane registration. Experiments on the Autonomous Systems Lab (ASL) dataset show that the proposed method enables to successfully register 100% of the scans from the three indoor sequences. Experiments also show that the proposed method is more robust in large motion scenarios than other state-of-the-art algorithms.

Walk the Lines: Object Contour Tracing CNN for Contour Completion of Ships

André Peter Kelm, Udo Zölzer

Responsive image

Auto-TLDR; Walk the Lines: A Convolutional Neural Network trained to follow object contours

Slides Poster Similar

We develop a new contour tracing algorithm to enhance the results of the latest object contour detectors. The goal is to achieve a perfectly closed, single-pixel wide and detailed object contour, since this type of contour could be analyzed using methods such as Fourier descriptors. Convolutional Neural Networks (CNNs) are rarely used for contour tracing, and we see great potential in using their capabilities for this task. Therefore we present the Walk the Lines (WtL) algorithm: A standard regression CNN trained to follow object contours. As initial step, we train the CNN only on ship contours, but the principle is applicable to other objects. Input data are the image and the associated object contour prediction of the recently published RefineContourNet (RCN). The WtL gets the center pixel coordinates, which defines an input section, plus an angle for rotating this section. Ideally, the center pixel moves on the contour, while the angle describes upcoming directional contour changes. The WtL predicts its steps pixelwise in a selfrouting way. To obtain a complete object contour the WtL runs in parallel at different image locations and the traces of its individual paths are summed. In contrast to the comparable Non-Maximum Suppression (NMS) method, our approach produces connected contours with finer details. Finally, the object contour is binarized under the condition of being closed. In case all procedures work as desired, excellent ship segmentations with high IoUs are produced, showing details such as antennas and ship superstructures that are easily omitted by other segmentation methods.

Stabilized Calculation of Gaussian Smoothing and Its Differentials Using Attenuated Sliding Fourier Transform

Yukihiko Yamashita, Toru Wakahara

Responsive image

Auto-TLDR; An attenuated SFT for Gaussian smoothing

Slides Poster Similar

Gaussian smoothing and its first and second differentials are very important for image processing and computer vision. We already have methods based on the sliding Fourier transform (SFT) in order to calculate Gaussian smoothing efficiently. However, errors in floating point calculation accumulate quickly when we use the single-precision floating-point format. Also, the resultant discontinuities at the edges of SFT intervals generate false extreme points easily. To resolve the above-mentioned problems, we propose the attenuated SFT (ASFT) by introducing a decay factor to the original SFT together with a new criterion for determining coefficients to effectively approximate Gaussian function and its differentials. Extensive experiments demonstrate a decisive superiority of the proposed ASFT over the original SFT.

Graph Signal Active Contours

Olivier Lezoray

Responsive image

Auto-TLDR; Adaptation of Active Contour Without Edges for Graph Signal Processing

Slides Similar

With the advent of data living on vertices of graphs, there is much interest in processing the so-called graph signals for partitioning tasks. As active contours have had much impact in the image processing community, their formulation on graphs is of importance to the field of graph signal processing. This paper proposes an adaptation on graphs of a model that combines the Geodesic Active Contour and the Active Contour Without Edges models. In addition, specific terms depending on graphs are introduced in the formulation. This adaptation is solved using a level set formulation with a gradient descent that can be expressed as a morphological front evolution process. Experimental results on different kinds of graphs signals show the benefit of the approach.

Generalized Shortest Path-Based Superpixels for Accurate Segmentation of Spherical Images

Rémi Giraud, Rodrigo Borba Pinheiro, Yannick Berthoumieu

Responsive image

Auto-TLDR; SPS: Spherical Shortest Path-based Superpixels

Slides Poster Similar

Most of existing superpixel methods are designed to segment standard planar images as pre-processing for computer vision pipelines. Nevertheless, the increasing number of applications based on wide angle capture devices, mainly generating 360° spherical images, have enforced the need for dedicated superpixel approaches. In this paper, we introduce a new superpixel method for spherical images called SphSPS (for Spherical Shortest Path-based Superpixels). Our approach respects the spherical geometry and generalizes the notion of shortest path between a pixel and a superpixel center on the 3D spherical acquisition space. We show that the feature information on such path can be efficiently integrated into our clustering framework and jointly improves the respect of object contours and the shape regularity. To relevantly evaluate this last aspect in the spherical space, we also generalize a planar global regularity metric. Finally, the proposed SphSPS method obtains significantly better performances than both planar and spherical recent superpixel approaches on the reference 360 o spherical panorama segmentation dataset.

Generalized Conics: Properties and Applications

Aysylu Gabdulkhakova, Walter Kropatsch

Responsive image

Auto-TLDR; A Generalized Conic Representation for Distance Fields

Slides Poster Similar

In this paper the properties of the generalized conics are used to create a unified framework for generating various types of the distance fields. The main concept behind this work is a metric that measures the distance from a point to a line segment according to the definition of the ellipse. The proposed representation provides a possibility to efficiently compute the proximity, arithmetic mean of the distances and a space tessellation with regard to the given set of polygonal objects, line segments and points. In addition, the weights can be introduced for objects, their parts and combinations. This fact leads to a hierarchical representation that can be efficiently obtained using the pixel-wise operations. The practical value of the proposed ideas is demonstrated on example of applications like skeletonization, smoothing, optimal location finding and clustering.

One Step Clustering Based on A-Contrario Framework for Detection of Alterations in Historical Violins

Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, Marco Malagodi

Responsive image

Auto-TLDR; A-Contrario Clustering for the Detection of Altered Violins using UVIFL Images

Slides Poster Similar

Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of interventions necessary. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the ``Violins UVIFL imagery'' dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with the state of the art clustering methods shows improved overall precision and recall.

Generic Document Image Dewarping by Probabilistic Discretization of Vanishing Points

Gilles Simon, Salvatore Tabbone

Responsive image

Auto-TLDR; Robust Document Dewarping using vanishing points

Slides Poster Similar

Document images dewarping is still a challenge especially when documents are captured with one camera in an uncontrolled environment. In this paper we propose a generic approach based on vanishing points (VP) to reconstruct the 3D shape of document pages. Unlike previous methods we do not need to segment the text included in the documents. Therefore, our approach is less sensitive to pre-processing and segmentation errors. The computation of the VPs is robust and relies on the a-contrario framework, which has only one parameter whose setting is based on probabilistic reasoning instead of experimental tuning. Thus, our method can be applied to any kind of document including text and non-text blocks and extended to other kind of images. Experimental results show that the proposed method is robust to a variety of distortions.

Learning Non-Rigid Surface Reconstruction from Spatio-Temporal Image Patches

Matteo Pedone, Abdelrahman Mostafa, Janne Heikkilä

Responsive image

Auto-TLDR; Dense Spatio-Temporal Depth Maps of Deformable Objects from Video Sequences

Slides Poster Similar

We present a method to reconstruct a dense spatio-temporal depth map of a non-rigidly deformable object directly from a video sequence. The estimation of depth is performed locally on spatio-temporal patches of the video, and then the full depth video of the entire shape is recovered by combining them together. Since the geometric complexity of a local spatio-temporal patch of a deforming non-rigid object is often simple enough to be faithfully represented with a parametric model, we artificially generate a database of small deforming rectangular meshes rendered with different material properties and light conditions, along with their corresponding depth videos, and use such data to train a convolutional neural network. We tested our method on both synthetic and Kinect data and experimentally observed that the reconstruction error is significantly lower than the one obtained using other approaches like conventional non-rigid structure from motion.

Signature Features with the Visibility Transformation

Yue Wu, Hao Ni, Terry Lyons, Robin Hudson

Responsive image

Auto-TLDR; The Visibility Transformation for Pattern Recognition

Slides Poster Similar

In this paper we put the visibility transformation on a clear theoretical footing and show that this transform is able to embed the effect of the absolute position of the data stream into signature features in a unified and efficient way. The generated feature set is particularly useful in pattern recognition tasks, for its simplifying role in allowing the signature feature set to accommodate nonlinear functions of absolute and relative values.

Computing Stable Resultant-Based Minimal Solvers by Hiding a Variable

Snehal Bhayani, Zuzana Kukelova, Janne Heikkilä

Responsive image

Auto-TLDR; Sparse Permian-Based Method for Solving Minimal Systems of Polynomial Equations

Slides Similar

Many computer vision applications require robust and efficient estimation of camera geometry. The robust estimation is usually based on solving camera geometry problems from a minimal number of input data measurements, i.e., solving minimal problems, in a RANSAC-style framework. Minimal problems often result in complex systems of polynomial equations. The existing state-of-the-art methods for solving such systems are either based on Groebner Basis and the action matrix method, which have been extensively studied and optimized in the recent years or recently proposed approach based on a resultant computation using an extra variable. In this paper, we study an interesting alternative resultant-based method for solving sparse systems of polynomial equations by hiding one variable. This approach results in a larger eigenvalue problem than the action matrix and extra variable resultant-based methods; however, it does not need to compute an inverse or elimination of large matrices that may be numerically unstable. The proposed approach includes several improvements to the standard sparse resultant algorithms, which significantly improves the efficiency and stability of the hidden variable resultant-based solvers as we demonstrate on several interesting computer vision problems. We show that for the studied problems, our sparse resultant based approach leads to more stable solvers than the state-of-the-art Groebner Basis as well as existing resultant-based solvers, especially in close to critical configurations. Our new method can be fully automated and incorporated into existing tools for the automatic generation of efficient minimal solvers.

Multi-Scale Keypoint Matching

Sina Lotfian, Hassan Foroosh

Responsive image

Auto-TLDR; Multi-Scale Keypoint Matching Using Multi-Scale Information

Slides Poster Similar

We propose a new hierarchical method to match keypoints by exploiting information across multiple scales. Traditionally, for each keypoint a single scale is detected and the matching process is done in the specific scale. We replace this approach with matching across scale-space. The holistic information from higher scales are used for early rejection of candidates that are far away in the feature space. The more localized and finer details of lower scale are then used to decide between remaining possible points. The proposed multi-scale solution is more consistent with the multi-scale processing that is present in the human visual system and is therefore biologically plausible. We evaluate our method on several datasets and achieve state of the art accuracy, while significantly outperforming others in extraction time.

DCT/IDCT Filter Design for Ultrasound Image Filtering

Barmak Honarvar Shakibaei Asli, Jan Flusser, Yifan Zhao, John Ahmet Erkoyuncu, Rajkumar Roy

Responsive image

Auto-TLDR; Finite impulse response digital filter using DCT-II and inverse DCT

Slides Poster Similar

In this paper, a new recursive structure based on the convolution model of discrete cosine transform (DCT) for designing of a finite impulse response (FIR) digital filter is proposed. In our derivation, we start with the convolution model of DCT-II to use its Z-transform for the proposed filter structure perspective. Moreover, using the same algorithm, a filter base implementation of the inverse DCT (IDCT) for image reconstruction is developed. The computational time experiments of the proposed DCT/IDCT filter(s) demonstrate that the proposed filters achieve faster elapsed CPU time compared to the others. The image filtering and reconstruction performance of the proposed approach on ultrasound images are presented to validate the theoretical framework.

Distinctive 3D Local Deep Descriptors

Fabio Poiesi, Davide Boscaini

Responsive image

Auto-TLDR; DIPs: Local Deep Descriptors for Point Cloud Regression

Slides Poster Similar

We present a simple but yet effective method for learning distinctive 3D local deep descriptors (DIPs) that can be used to register point clouds without requiring an initial alignment. Point cloud patches are extracted, canonicalised with respect to their estimated local reference frame and encoded into rotation-invariant compact descriptors by a PointNet-based deep neural network. DIPs can effectively generalise across different sensor modalities because they are learnt end-to-end from locally and randomly sampled points. Moreover, because DIPs encode only local geometric information, they are robust to clutter, occlusions and missing regions. We evaluate and compare DIPs against alternative hand-crafted and deep descriptors on several indoor and outdoor datasets reconstructed using different sensors. Results show that DIPs (i) achieve comparable results to the state-of-the-art on RGB-D indoor scenes (3DMatch dataset), (ii) outperform state-of-the-art by a large margin on laser-scanner outdoor scenes (ETH dataset), and (iii) generalise to indoor scenes reconstructed with the Visual-SLAM system of Android ARCore.

Joint Learning Multiple Curvature Descriptor for 3D Palmprint Recognition

Lunke Fei, Bob Zhang, Jie Wen, Chunwei Tian, Peng Liu, Shuping Zhao

Responsive image

Auto-TLDR; Joint Feature Learning for 3D palmprint recognition using curvature data vectors

Slides Poster Similar

3D palmprint-based biometric recognition has drawn growing research attention due to its several merits over 2D counterpart such as robust structural measurement of a palm surface and high anti-counterfeiting capability. However, most existing 3D palmprint descriptors are hand-crafted that usually extract stationary features from 3D palmprint images. In this paper, we propose a feature learning method to jointly learn compact curvature feature descriptor for 3D palmprint recognition. We first form multiple curvature data vectors to completely sample the intrinsic curvature information of 3D palmprint images. Then, we jointly learn a feature projection function that project curvature data vectors into binary feature codes, which have the maximum inter-class variances and minimum intra-class distance so that they are discriminative. Moreover, we learn the collaborative binary representation of the multiple curvature feature codes by minimizing the information loss between the final representation and the multiple curvature features, so that the proposed method is more compact in feature representation and efficient in matching. Experimental results on the baseline 3D palmprint database demonstrate the superiority of the proposed method in terms of recognition performance in comparison with state-of-the-art 3D palmprint descriptors.

Understanding When Spatial Transformer Networks Do Not Support Invariance, and What to Do about It

Lukas Finnveden, Ylva Jansson, Tony Lindeberg

Responsive image

Auto-TLDR; Spatial Transformer Networks are unable to support invariance when transforming CNN feature maps

Slides Poster Similar

Spatial transformer networks (STNs) were designed to enable convolutional neural networks (CNNs) to learn invariance to image transformations. STNs were originally proposed to transform CNN feature maps as well as input images. This enables the use of more complex features when predicting transformation parameters. However, since STNs perform a purely spatial transformation, they do not, in the general case, have the ability to align the feature maps of a transformed image with those of its original. STNs are therefore unable to support invariance when transforming CNN feature maps. We present a simple proof for this and study the practical implications, showing that this inability is coupled with decreased classification accuracy. We therefore investigate alternative STN architectures that make use of complex features. We find that while deeper localization networks are difficult to train, localization networks that share parameters with the classification network remain stable as they grow deeper, which allows for higher classification accuracy on difficult datasets. Finally, we explore the interaction between localization network complexity and iterative image alignment.

Minimal Solvers for Indoor UAV Positioning

Marcus Valtonen Örnhag, Patrik Persson, Mårten Wadenbäck, Kalle Åström, Anders Heyden

Responsive image

Auto-TLDR; Relative Pose Solvers for Visual Indoor UAV Navigation

Slides Poster Similar

In this paper we consider a collection of relative pose problems which arise naturally in applications for visual indoor UAV navigation. We focus on cases where additional information from an onboard IMU is available and thus provides a partial extrinsic calibration through the gravitational vector. The solvers are designed for a partially calibrated camera, for a variety of realistic indoor scenarios, which makes it possible to navigate using images of the ground floor. Current state-of-the-art solvers use more general assumptions, such as using arbitrary planar structures; however, these solvers do not yield adequate reconstructions for real scenes, nor do they perform fast enough to be incorporated in real-time systems. We show that the proposed solvers enjoy better numerical stability, are faster, and require fewer point correspondences, compared to state-of-the-art solvers. These properties are vital components for robust navigation in real-time systems, and we demonstrate on both synthetic and real data that our method outperforms other methods, and yields superior motion estimation.

3D Point Cloud Registration Based on Cascaded Mutual Information Attention Network

Xiang Pan, Xiaoyi Ji

Responsive image

Auto-TLDR; Cascaded Mutual Information Attention Network for 3D Point Cloud Registration

Slides Poster Similar

For 3D point cloud registration, how to improve the local feature correlation of two point clouds is a challenging problem. In this paper, we propose a cascaded mutual information attention registration network. The network improves the accuracy of point cloud registration by stacking residual structure and using lateral connection. Firstly, the local reference coordinate system is defined by spherical representation for the local point set, which improves the stability and reliability of local features under noise. Secondly, the attention structure is used to improve the network depth and ensure the convergence of the network. Furthermore, a lateral connection is introduced into the network to avoid the loss of features in the process of concatenation. In the experimental part, the results of different algorithms are compared. It can be found that the proposed cascaded network can enhance the correlation of local features between different point clouds. As a result, it improves the registration accuracy significantly over the DCP and other typical algorithms.

Graph Convolutional Neural Networks for Power Line Outage Identification

Jia He, Maggie Cheng

Responsive image

Auto-TLDR; Graph Convolutional Networks for Power Line Outage Identification

Poster Similar

In this paper, we consider the power line outage identification problem as a graph signal classification problem, where the signal at each vertex is given as a time series. We propose graph convolutional networks (GCNs) for the task of classifying signals supported on graphs. An important element of the GCN design is filter design. We consider filtering signals in either the vertex (spatial) domain, or the frequency (spectral) domain. Two basic architectures are proposed. In the spatial GCN architecture, the GCN uses a graph shift operator as the basic building block to incorporate the underlying graph structure into the convolution layer. The spatial filter directly utilizes the graph connectivity information. It defines the filter to be a polynomial in the graph shift operator to obtain the convolved features that aggregate neighborhood information of each node. In the spectral GCN architecture, a frequency filter is used instead. A graph Fourier transform operator first transforms the raw graph signal from the vertex domain to the frequency domain, and then a filter is defined using the graph's spectral parameters. The spectral GCN then uses the output from the graph Fourier transform to compute the convolved features. There are additional challenges to classify the time-evolving graph signal as the signal value at each vertex changes over time. The GCNs are designed to recognize different spatiotemporal patterns from high-dimensional data defined on a graph. The application of the proposed methods to power line outage identification shows that these GCN architectures can successfully classify abnormal signal patterns and identify the outage location.

Appliance Identification Using a Histogram Post-Processing of 2D Local Binary Patterns for Smart Grid Applications

Yassine Himeur, Abdullah Alsalemi, Faycal Bensaali, Abbes Amira

Responsive image

Auto-TLDR; LBP-BEVM based Local Binary Patterns for Appliances Identification in the Smart Grid

Similar

Identifying domestic appliances in the smart grid leads to a better power usage management and further helps in detecting appliance-level abnormalities. An efficient identification can be achieved only if a robust feature extraction scheme is developed with a high ability to discriminate between different appliances on the smart grid. Accordingly, we propose in this paper a novel method to extract electrical power signatures after transforming the power signal to 2D space, which has more encoding possibilities. Following, an improved local binary patterns (LBP) is proposed that relies on improving the discriminative ability of conventional LBP using a post-processing stage. A binarized eigenvalue map (BEVM) is extracted from the 2D power matrix and then used to post-process the generated LBP representation. Next, two histograms are constructed, namely up and down histograms, and are then concatenated to form the global histogram. A comprehensive performance evaluation is performed on two different datasets, namely the GREEND and WITHED, in which power data were collected at 1 Hz and 44000 Hz sampling rates, respectively. The obtained results revealed the superiority of the proposed LBP-BEVM based system in terms of the identification performance versus other 2D descriptors and existing identification frameworks.

Sketch-Based Community Detection Via Representative Node Sampling

Mahlagha Sedghi, Andre Beckus, George Atia

Responsive image

Auto-TLDR; Sketch-based Clustering of Community Detection Using a Small Sketch

Slides Poster Similar

This paper proposes a sketch-based approach to the community detection problem which clusters the full graph through the use of an informative and concise sketch. The reduced sketch is built through an effective sampling approach which selects few nodes that best represent the complete graph and operates on a pairwise node similarity measure based on the average commute time. After sampling, the proposed algorithm clusters the nodes in the sketch, and then infers the cluster membership of the remaining nodes in the full graph based on their aggregate similarity to nodes in the partitioned sketch. By sampling nodes with strong representation power, our approach can improve the success rates over full graph clustering. In challenging cases with large node degree variation, our approach not only maintains competitive accuracy with full graph clustering despite using a small sketch, but also outperforms existing sampling methods. The use of a small sketch allows considerable storage savings, and computational and timing improvements for further analysis such as clustering and visualization. We provide numerical results on synthetic data based on the homogeneous, heterogeneous and degree corrected versions of the stochastic block model, as well as experimental results on real-world data.

A Hierarchical Framework for Leaf Instance Segmentation: Application to Plant Phenotyping

Swati Bhugra, Kanish Garg, Santanu Chaudhury, Brejesh Lall

Responsive image

Auto-TLDR; Under-segmentation of plant image using a graph based formulation to extract leaf shape knowledge for the task of leaf instance segmentation

Slides Poster Similar

Image based analysis of plants is a high-throughput and non-invasive approach to study plant traits. Based on plant image data, the quantitative estimation of many plant traits (leaf area index, biomass etc.) is associated with accurate segmentation of individual leaves. However, this task is challenging due to the presence of overlapped leaves and lack of discernible boundaries between them. In addition, variability in leaf shapes and arrangement among different plant species limits the broad utilisation of current leaf instance segmentation algorithms. In this paper, we propose a novel framework that relies on under-segmentation of plant image using a graph based formulation to extract leaf shape knowledge for the task of leaf instance segmentation. These shape priors are generated based on leaf shape characteristics independent of plant species. We demonstrate the performance of the proposed framework across multiple plant dataset i.e. Arabidopsis, Komatsuna and Salad. Experimental results indicate its broad utility.

Trainable Spectrally Initializable Matrix Transformations in Convolutional Neural Networks

Michele Alberti, Angela Botros, Schuetz Narayan, Rolf Ingold, Marcus Liwicki, Mathias Seuret

Responsive image

Auto-TLDR; Trainable and Spectrally Initializable Matrix Transformations for Neural Networks

Slides Poster Similar

In this work, we introduce a new architectural component to Neural Networks (NN), i.e., trainable and spectrally initializable matrix transformations on feature maps. While previous literature has already demonstrated the possibility of adding static spectral transformations as feature processors, our focus is on more general trainable transforms. We study the transforms in various architectural configurations on four datasets of different nature: from medical (ColorectalHist, HAM10000) and natural (Flowers) images to historical documents (CB55). With rigorous experiments that control for the number of parameters and randomness, we show that networks utilizing the introduced matrix transformations outperform vanilla neural networks. The observed accuracy increases appreciably across all datasets. In addition, we show that the benefit of spectral initialization leads to significantly faster convergence, as opposed to randomly initialized matrix transformations. The transformations are implemented as auto-differentiable PyTorch modules that can be incorporated into any neural network architecture. The entire code base is open-source.

Unconstrained Vision Guided UAV Based Safe Helicopter Landing

Arindam Sikdar, Abhimanyu Sahu, Debajit Sen, Rohit Mahajan, Ananda Chowdhury

Responsive image

Auto-TLDR; Autonomous Helicopter Landing in Hazardous Environments from Unmanned Aerial Images Using Constrained Graph Clustering

Slides Poster Similar

In this paper, we have addressed the problem of automated detection of safe zone(s) for helicopter landing in hazardous environments from images captured by an Unmanned Aerial Vehicle (UAV). The unconstrained motion of the image capturing drone (the UAV in our case) makes the problem further difficult. The solution pipeline consists of natural landmark detection and tracking, stereo-pair generation using constrained graph clustering, digital terrain map construction and safe landing zone detection. The main methodological contribution lies in mathematically formulating epipolar constraint and then using it in a Minimum Spanning Tree (MST) based graph clustering approach. We have also made publicly available AHL (Autonomous Helicopter Landing) dataset, a new aerial video dataset captured by a drone, with annotated ground-truths. Experimental comparisons with other competing clustering methods i) in terms of Dunn Index and Davies Bouldin Index as well as ii) for frame-level safe zone detection in terms of F-measure and confusion matrix clearly demonstrate the effectiveness of the proposed formulation.

Approach for Document Detection by Contours and Contrasts

Daniil Tropin, Sergey Ilyuhin, Dmitry Nikolaev, Vladimir V. Arlazarov

Responsive image

Auto-TLDR; A countor-based method for arbitrary document detection on a mobile device

Slides Poster Similar

This paper considers the task of arbitrary document detection performed on a mobile device. The classical contour-based approach often mishandles cases with occlusion, complex background, or blur. Region-based approach, which relies on the contrast between object and background, does not have limitations, however its known implementations are highly resource-consuming. We propose a modification of a countor-based method, in which the competing hypotheses of the contour location are ranked according to the contrast between the areas inside and outside the border. In the performed experiments such modification leads to the 40% decrease of alternatives ordering errors and 10% decrease of the overall number of detection errors. We updated state-of-the-art performance on the open MIDV-500 dataset and demonstrated competitive results with the state-of-the-art on the SmartDoc dataset.

Cluster-Size Constrained Network Partitioning

Maksim Mironov, Konstantin Avrachenkov

Responsive image

Auto-TLDR; Unsupervised Graph Clustering with Stochastic Block Model

Slides Poster Similar

In this paper we consider a graph clustering problem with a given number of clusters and approximate desired sizes of the clusters. One possible motivation for such task could be the problem of databases or servers allocation within several given large computational clusters, where we want related objects to share the same cluster in order to minimize latency and transaction costs. This task differs from the original community detection problem, though we adopt some ideas from Glauber Dynamics and Label Propagation Algorithm. At the same time we consider no additional information about node labels, so the task has nature of unsupervised learning. We propose an algorithm for the problem, show that it works well for a large set of parameters of Stochastic Block Model (SBM) and theoretically show its running time complexity for achieving almost exact recovery is of $O(n\cdot\deg_{av} \cdot \omega )$ for the mean-field SBM with $\omega$ tending to infinity arbitrary slow. Other significant advantage of the proposed approach is its local nature, which means it can be efficiently distributed with no scheduling or synchronization.

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

FourierNet: Compact Mask Representation for Instance Segmentation Using Differentiable Shape Decoders

Hamd Ul Moqeet Riaz, Nuri Benbarka, Andreas Zell

Responsive image

Auto-TLDR; FourierNet: A Single shot, anchor-free, fully convolutional instance segmentation method that predicts a shape vector

Slides Poster Similar

We present FourierNet, a single shot, anchor-free, fully convolutional instance segmentation method that predicts a shape vector. Consequently, this shape vector is converted into the masks' contour points using a fast numerical transform. Compared to previous methods, we introduce a new training technique, where we utilize a differentiable shape decoder, which manages the automatic weight balancing of the shape vector's coefficients. We used the Fourier series as a shape encoder because of its coefficient interpretability and fast implementation. FourierNet shows promising results compared to polygon representation methods, achieving 30.6 mAP on the MS COCO 2017 benchmark. At lower image resolutions, it runs at 26.6 FPS with 24.3 mAP. It reaches 23.3 mAP using just eight parameters to represent the mask (note that at least four parameters are needed for bounding box prediction only). Qualitative analysis shows that suppressing a reasonable proportion of higher frequencies of Fourier series, still generates meaningful masks. These results validate our understanding that lower frequency components hold higher information for the segmentation task, and therefore, we can achieve a compressed representation. Code is available at: github.com/cogsys-tuebingen/FourierNet.

Generic Merging of Structure from Motion Maps with a Low Memory Footprint

Gabrielle Flood, David Gillsjö, Patrik Persson, Anders Heyden, Kalle Åström

Responsive image

Auto-TLDR; A Low-Memory Footprint Representation for Robust Map Merge

Slides Poster Similar

With the development of cheap image sensors, the amount of available image data have increased enormously, and the possibility of using crowdsourced collection methods has emerged. This calls for development of ways to handle all these data. In this paper, we present new tools that will enable efficient, flexible and robust map merging. Assuming that separate optimisations have been performed for the individual maps, we show how only relevant data can be stored in a low memory footprint representation. We use these representations to perform map merging so that the algorithm is invariant to the merging order and independent of the choice of coordinate system. The result is a robust algorithm that can be applied to several maps simultaneously. The result of a merge can also be represented with the same type of low-memory footprint format, which enables further merging and updating of the map in a hierarchical way. Furthermore, the method can perform loop closing and also detect changes in the scene between the capture of the different image sequences. Using both simulated and real data — from both a hand held mobile phone and from a drone — we verify the performance of the proposed method.

On Morphological Hierarchies for Image Sequences

Caglayan Tuna, Alain Giros, François Merciol, Sébastien Lefèvre

Responsive image

Auto-TLDR; Comparison of Hierarchies for Image Sequences

Slides Poster Similar

Morphological hierarchies form a popular framework aiming at emphasizing the multiscale structure of digital image by performing an unsupervised spatial partitioning of the data. These hierarchies have been recently extended to cope with image sequences, and different strategies have been proposed to allow their construction from spatio-temporal data. In this paper, we compare these hierarchical representation strategies for image sequences according to their structural properties. We introduce a projection method to make these representations comparable. Furthermore, we extend one of these recent strategies in order to obtain more efficient hierarchical representations for image sequences. Experiments were conducted on both synthetic and real datasets, the latter being made of satellite image time series. We show that building one hierarchy by using spatial and temporal information together is more efficient comparing to other existing strategies.

Quantization in Relative Gradient Angle Domain for Building Polygon Estimation

Yuhao Chen, Yifan Wu, Linlin Xu, Alexander Wong

Responsive image

Auto-TLDR; Relative Gradient Angle Transform for Building Footprint Extraction from Remote Sensing Data

Slides Poster Similar

Building footprint extraction in remote sensing data benefits many important applications, such as urban planning and population estimation. Recently, rapid development of Convolutional Neural Networks (CNNs) and open-sourced high resolution satellite building image datasets have pushed the performance boundary further for automated building extractions. However, CNN approaches often generate imprecise building morphologies including noisy edges and round corners. In this paper, we leverage the performance of CNNs, and propose a module that uses prior knowledge of building corners to create angular and concise building polygons from CNN segmentation outputs. We describe a new transform, Relative Gradient Angle Transform (RGA Transform) that converts object contours from time vs. space to time vs. angle. We propose a new shape descriptor, Boundary Orientation Relation Set (BORS), to describe angle relationship between edges in RGA domain, such as orthogonality and parallelism. Finally, we develop an energy minimization framework that makes use of the angle relationship in BORS to straighten edges and reconstruct sharp corners, and the resulting corners create a polygon. Experimental results demonstrate that our method refines CNN output from a rounded approximation to a more clear-cut angular shape of the building footprint.

An Invariance-Guided Stability Criterion for Time Series Clustering Validation

Florent Forest, Alex Mourer, Mustapha Lebbah, Hanane Azzag, Jérôme Lacaille

Responsive image

Auto-TLDR; An invariance-guided method for clustering model selection in time series data

Slides Poster Similar

Time series clustering is a challenging task due to the specificities of this type of data. Temporal correlation and invariance to transformations such as shifting, warping or noise prevent the use of standard data mining methods. Time series clustering has been mostly studied under the angle of finding efficient algorithms and distance metrics adapted to the specific nature of time series data. Much less attention has been devoted to the general problem of model selection. Clustering stability has emerged as a universal and model-agnostic principle for clustering model selection. This principle can be stated as follows: an algorithm should find a structure in the data that is resilient to perturbation by sampling or noise. We propose to apply stability analysis to time series by leveraging prior knowledge on the nature and invariances of the data. These invariances determine the perturbation process used to assess stability. Based on a recently introduced criterion combining between-cluster and within-cluster stability, we propose an invariance-guided method for model selection, applicable to a wide range of clustering algorithms. Experiments conducted on artificial and benchmark data sets demonstrate the ability of our criterion to discover structure and select the correct number of clusters, whenever data invariances are known beforehand.

Dependently Coupled Principal Component Analysis for Bivariate Inversion Problems

Navdeep Dahiya, Yifei Fan, Samuel Bignardi, Tony Yezzi, Romeil Sandhu

Responsive image

Auto-TLDR; Asymmetric Principal Component Analysis between Paired Data in an Asymmetric manner

Slides Poster Similar

Principal Component Analysis (PCA) is a widely used technique for dimensionality reduction in various problem domains including data compression, image processing, visualization, exploratory data analysis, pattern recognition, time series prediction and machine learning. Often, data is presented in a correlated paired manner such there exists observable and correlated unobservable measurements. Unfortunately, traditional PCA techniques generally fail to optimally capture the leverageable correlations between such paired data as it does not yield a maximally correlated basis between the observable and unobservable counterparts. This instead is the objective of Canonical Correlation Analysis (and the more general Partial Least Squares methods); however, such techniques are still symmetric in maximizing correlation (covariance for PLSR) over all choices of basis for both datasets without differentiating between observable and unobservable variables (except for the regression phase of PLSR). Further, these methods deviate from PCA's formulation objective to minimize approximation error, seeking instead to maximize correlation or covariance. While these are sensible optimization objectives, they are not equivalent to error minimization. We therefore introduce a new method of leveraging PCA between paired datasets in an asymmetric manner which is optimal with respect to approximation error during training. We generate an asymmetrically paired basis for which we relax orthogonality constraints on the orthogonality in decomposing unreliable unobservable measurements. In doing so, this allows us to optimally capture the variations of the observable data while conditionally minimizing the expected prediction error for the unobservable component. We show preliminary results that demonstrate improved learning of our proposed method compared to that of traditional techniques.

Gaussian Convolution Angles: Invariant Vein and Texture Descriptors for Butterfly Species Identification

Xin Chen, Bin Wang, Yongsheng Gao

Responsive image

Auto-TLDR; Gaussian convolution angle for butterfly species classification

Slides Poster Similar

Identifying butterfly species by image patterns is a challenging task in computer vision and pattern recognition community due to many butterfly species having similar shape patterns with complex interior structures and considerable pose variation. In additional, geometrical transformation and illumination variation also make this task more difficult. In this paper, a novel image descriptor, named Gaussian convolution angle (GCA) is proposed for butterfly species classification. The proposed GCA projects the butterfly vein image function and intensity image function along a group of vectors that start from a common contour points and ends at the remaining contour points which results a group of vectors that capture the complex vein patterns and texture patterns of butterfly images. The Gaussian convolution of different scales is conducted to the resulting vector functions to generate a multiscale GCA descriptors. The proposed GCA is not only invariant to geometrical transformation including rotation, scaling and translation, but also invariant to lighting change. The proposed method has been tested on a publicly available butterfly image dataset that has 832 samples of 10 species. It achieves a classification accuracy of 92.03% which is higher than the benchmark methods.

A Riemannian Framework for Detecting Stimulus-Relevant Fiber Pathways

Jingyong Su, Linlin Tang, Zhipeng Yang, Mengmeng Guo

Responsive image

Auto-TLDR; Clustering Task-Specific Fiber Pathways in Functional MRI using BOLD Signals

Poster Similar

Functional MRI based on blood oxygenation level-dependent (BOLD) contrast is well established as a neuro-imaging technique for detecting neural activity in the cortex of the human brain. Recent studies have shown that variations of BOLD signals in white matter are also related to neural activities both in resting state and under functional loading. We develop a comprehensive framework of detecting task-specific fiber pathways. We not only study fiber tracts as open curves with different physical features (shape, scale, orientation and position), but also incorporate the BOLD signals transmitted along them to find stimulus-relevant pathways. Specifically, we propose a novel Riemannian metric, which is a weighted sum of distances in product space of shapes and functions. This metric provides both a cost function for registration and a proper distance for comparison. Experimental results on real data have shown that we can cluster fiber pathways correctly by evaluating correlations between BOLD signals and stimuli, temporal variations and power spectra of them. The proposed framework can also be easily generalized to various applications where multi-modality data exist.

A Hybrid Metric Based on Persistent Homology and Its Application to Signal Classification

Austin Lawson, Yu-Min Chung, William Cruse

Responsive image

Auto-TLDR; Topological Data Analysis with Persistence Curves

Poster Similar

Topological Data Analysis (TDA) is a rising field in machine learning. TDA considers the shape of data set. Persistence diagrams, one of main tools in TDA, store topological information about the data. Persistence curves, a recently developed framework, provides a canonical and flexible way to encode the information presented in persistence diagrams into vectors. Based on persistence curves, we (1) provide new sets of features for time series, (2) prove that these features are robust to noise, (3) propose a hybrid metric that takes both geometric and topological information of the time series into account. Finally, we apply these metrics to the UCR Time Series Classification Archive. These empirical results show that our metrics perform better than the relevant benchmark in most cases.

Graph Approximations to Geodesics on Metric Graphs

Robin Vandaele, Yvan Saeys, Tijl De Bie

Responsive image

Auto-TLDR; Topological Pattern Recognition of Metric Graphs Using Proximity Graphs

Slides Poster Similar

In machine learning, high-dimensional point clouds are often assumed to be sampled from a topological space of which the intrinsic dimension is significantly lower than the representation dimension. Proximity graphs, such as the Rips graph or kNN graph, are often used as an intermediate representation to learn or visualize topological and geometrical properties of this space. The key idea behind this approach is that distances on the graph preserve the geodesic distances on the unknown space well, and as such, can be used to infer local and global geometric patterns of this space. Prior results provide us with conditions under which these distances are well-preserved for geodesically convex, smooth, compact manifolds. Yet, proximity graphs are ideal representations for a much broader class of spaces, such as metric graphs, i.e., graphs embedded in the Euclidean space. It turns out—as proven in this paper—that these existing conditions cannot be straightforwardly adapted to these spaces. In this work, we provide novel, flexible, and insightful characteristics and results for topological pattern recognition of metric graphs to bridge this gap.

3D Pots Configuration System by Optimizing Over Geometric Constraints

Jae Eun Kim, Muhammad Zeeshan Arshad, Seong Jong Yoo, Je Hyeong Hong, Jinwook Kim, Young Min Kim

Responsive image

Auto-TLDR; Optimizing 3D Configurations for Stable Pottery Restoration from irregular and noisy evidence

Slides Poster Similar

While potteries are common artifacts excavated in archaeological sites, the restoration process relies on the manual cleaning and reassembling shattered pieces. Since the number of possible 3D configurations is considerably large, the exhaustive manual trial may result in an abrasion on fractured surfaces and even failure to find the correct matches. As a result, many recent works suggest virtual reassembly from 3D scans of the fragments. The problem is challenging in the view of the conventional 3D geometric analysis, as it is hard to extract reliable shape features from the thin break lines. We propose to optimize the global configuration by combining geometric constraints with information from noisy shape features. Specifically, we enforce bijection and continuity of sequence of correspondences given estimates of corners and pair-wise matching scores between multiple break lines. We demonstrate that our pipeline greatly increases the accuracy of correspondences, resulting in the stable restoration of 3D configurations from irregular and noisy evidence.

Sequential Non-Rigid Factorisation for Head Pose Estimation

Stefania Cristina, Kenneth Patrick Camilleri

Responsive image

Auto-TLDR; Sequential Shape-and-Motion Factorisation for Head Pose Estimation in Eye-Gaze Tracking

Slides Poster Similar

Within the context of eye-gaze tracking, the capability of permitting the user to move naturally is an important step towards allowing for more natural user interaction in less constrained scenarios. Natural movement can be characterised by changes in head pose, as well as non-rigid face deformations as the user performs different facial expressions. While the estimation of head pose within the domain of eye-gaze tracking is being increasingly considered, the face is most often regarded as a rigid body. The few methods that factor the challenge of handling face deformations into the head pose estimation problem, often require the availability of a pre-defined face model or a considerable amount of training data. In this paper, we direct our attention towards the application of shape-and-motion factorisation for head pose estimation, since this does not generally rely on the availability of an initial face model. Over the years, various shape-and-motion factorisation methods have been proposed to address the challenges of rigid and non-rigid shape and motion recovery, in a batch or sequential manner. However, the real-time recovery of non-rigid shape and motion by factorisation remains, in general, an open problem. Our work addresses this open problem by proposing a sequential factorisation method for non-rigid shape and motion recovery, which does not rely on the availability of a pre-defined face deformation model or training data. Quantitative and qualitative results show that our method can handle various non-rigid face deformations without deterioration of the head pose estimation accuracy.

Probabilistic Word Embeddings in Kinematic Space

Adarsh Jamadandi, Rishabh Tigadoli, Ramesh Ashok Tabib, Uma Mudenagudi

Responsive image

Auto-TLDR; Kinematic Space for Hierarchical Representation Learning

Slides Poster Similar

In this paper, we propose a method for learning representations in the space of Gaussian-like distribution defined on a novel geometrical space called Kinematic space. The utility of non-Euclidean geometry for deep representation learning has gained traction, specifically different models of hyperbolic geometry such as Poincar\'{e} and Lorentz models have proven useful for learning hierarchical representations. Going beyond manifolds with constant curvature, albeit has better representation capacity might lead to unhanding of computationally tractable tools like Riemannian optimization methods. Here, we explore a pseudo-Riemannian auxiliary Lorentzian space called Kinematic space and provide a principled approach for constructing a Gaussian-like distribution, which is compatible with gradient-based learning methods, to formulate a probabilistic word embedding framework. Contrary to, mapping lexically distributed representations to a single point vector in Euclidean space, we advocate for mapping entities to density-based representations, as it provides explicit control over the uncertainty in representations. We test our framework by embedding WordNet-Noun hierarchy, a large lexical database, our experiments report strong consistent improvements in Mean Rank and Mean Average Precision (MAP) values compared to probabilistic word embedding frameworks defined on Euclidean and hyperbolic spaces. Our framework reports a significant 83.140\% improvement in Mean Rank compared to Euclidean version and an improvement of 79.416\% over hyperbolic version. Our work serves as an evidence for the utility of novel geometrical spaces for learning hierarchical representations.

Local Binary Quaternion Rotation Pattern for Colour Texture Retrieval

Hela Jebali, Noel Richard, Mohamed Naouai

Responsive image

Auto-TLDR; Local Binary Quaternion Rotation Pattern for Color Texture Classification

Poster Similar

Color is very important feature for image representation, it assumes very essential in the human visual recognition process. Most existing approaches usually extract features from the three color channels separately (Marginal way). Although, it exists few vector expressions of texture features. Aware of the high interaction that exists between different channels in the color image, this work introduces a compact texture descriptor, named Local Binary Quaternion Rotation Pattern (LBQRP). In this LBQRP purpose, the quaternion representation is used to represent color texture. The distance between two color can be expressed as the angle of rotation between two unit quaternions using the geodesic distance. After a LBQRP coding, local histograms are extracted and used as features. Experiments on three challenging color datasets: Vistex, Outex-TC13 and USPtex are carried out to evaluate the LBQRP performance in texture classification. Results show the high efficiency of the proposed approach facing to several stat-of-art methods.

3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties

Soha Sadat Mahdi, Nele Nauwelaers, Philip Joris, Giorgos Bouritsas, Imperial London, Sergiy Bokhnyak, Susan Walsh, Mark Shriver, Michael Bronstein, Peter Claes

Responsive image

Auto-TLDR; Multi-biometric Fusion for Biometric Verification using 3D Facial Mesures

Slides Similar

Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naïve Bayes-based score-fuser.

PIF: Anomaly detection via preference embedding

Filippo Leveni, Luca Magri, Giacomo Boracchi, Cesare Alippi

Responsive image

Auto-TLDR; PIF: Anomaly Detection with Preference Embedding for Structured Patterns

Slides Poster Similar

We address the problem of detecting anomalies with respect to structured patterns. To this end, we conceive a novel anomaly detection method called PIF, that combines the advantages of adaptive isolation methods with the flexibility of preference embedding. Specifically, we propose to embed the data in a high dimensional space where an efficient tree-based method, PI-FOREST, is employed to compute an anomaly score. Experiments on synthetic and real datasets demonstrate that PIF favorably compares with state-of-the-art anomaly detection techniques, and confirm that PI-FOREST is better at measuring arbitrary distances and isolate points in the preference space.

A Quantitative Evaluation Framework of Video De-Identification Methods

Sathya Bursic, Alessandro D'Amelio, Marco Granato, Giuliano Grossi, Raffaella Lanzarotti

Responsive image

Auto-TLDR; Face de-identification using photo-reality and facial expressions

Slides Poster Similar

We live in an era of privacy concerns, motivating a large research effort in face de-identification. As in other fields, we are observing a general movement from hand-crafted methods to deep learning methods, mainly involving generative models. Although these methods produce more natural de-identified images or videos, we claim that the mere evaluation of the de-identification is not sufficient, especially when it comes to processing the images/videos further. In this note, we take into account the issue of preserving privacy, facial expressions, and photo-reality simultaneously, proposing a general testing framework. The method is applied to four open-source tools, producing a baseline for future de-identification methods.